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Abstract

We present a robust and inherently parallel strategy for tracking "corner" features
on independently moving (and possibly non-rigid) objects. The system operates over
long, monocular image sequences and comprises two main parts. A matcher performs
two-frame correspondence based on spatial proximity and similarity in local image
structure, while a (racier maintains an image trajectory (and predictor) for every
feature. The use of low-level features ensures an opportunistic and widely applicable
algorithm. Moreover, the system copes with noisy data, predictor failure, and oc-
clusion and disocclusion of scene structure. Motion and scene analysis modules can
then be built onto this framework. The algorithm is aimed at applications with small
inter-frame motion, such as videoconferencing.

1 Introduction

This paper addresses the problem of robustly extracting the image motion of indepen-
dently moving (and possibly non-rigid) objects over long periods of time. The application
motivating this research is model-based coding of facial image sequences [l], which re-
quires fast, reliable motion estimation on lengthy monocular sequences. Here, we focus on
the low-level "front-end" of such a system, and show that the use of general-purpose "cor-
ner" features enables us to cope with a wide range of facial variations and accessories (e.g.,
beards and glasses). The image trajectories that emerge are intended to drive "higher-
level" modules, which will group features into coherently moving objects and estimate
their 3D motion. Further details of the research described here can be found in [6].

We build on recent work at Oxford by Wang and Brady [11], who developed a "corner"
finder that runs at 14Hz on T800 transputers. These "corners" are curvature extrema in
the image intensity surface, and have already served successfully as features in a stereo-
matching algorithm [10]. We extend this work to the general motion case, which introduces
both benefits and complications: the former because temporal integration facilitates noise
resistance and allows ambiguity to be resolved in time, and the latter because objects can
change over time in ways they can't over space alone. As in the DROID system [3], we
employ a single tracker and predictor per feature.

Our framework has two parts: a matcher, to perform two-frame correspondence, and
a tracker, to maintain the trajectories and perform prediction. The utility of corners
as correspondence tokens is demonstrated in Section 2, and their extraction mechanism
described. The matcher and tracker subsystems are then discussed separately in Sections 3
and 4, and we conclude with directions for future research. Results on real imagery are
given throughout.

BMVC 1992 doi:10.5244/C.6.32
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2 Corner detection

In order to match different views of an object, one must first obtain a set of reliable features
from each view. (The explicit extraction of "correspondence tokens" was supported by
Ullman [8] and further justified by Verri and Poggio [9].) We employ the term "corners" to
refer to distinctive feature points such as discontinuities, points of occlusion, and various
intensity curvature maxima (e.g., surface markings). These appear in the image as loci of
two-dimensional intensity change (i.e., second-order features), and impose more constraint
on visual processes than edges (which encode only one-dimensional change) [2]. This is
particularly true of visual motion; various authors (e.g., [4]) have shown that the full optic
flow field n is recoverable at corner points, whilst only the normal component p1 can be
recovered locally along an edge (owing to the aperture problem). Furthermore, corner
tokens are discrete and distinguishable, so can be explicitly tracked over time; arbitrarily
curving edges are difficult to describe and hence to track [3].

To date, corners have mainly been used where there is an abundance of physical corners
arising from man-made objects (e.g., factory environments). We contend, however, that
corner features are equally useful in many natural scenes. In a human face, for instance,
there are no right-angles or sharp discontinuities; facial features are rounded and the skin
surface is smooth. Nonetheless, our experiments on many images [6] have shown that
there are numerous "corner points" in the image of a human face (Figure 1). Often they
correspond to salient anatomical features (e.g., nostrils or corners of the eyes), but more
importantly, they are stable, robust beacons which can be tracked as the head moves.

Furthermore, by using corner features we gain the important advantages of generality

and opportunism. Videoconferencing researchers in particular have largely overlooked this
low-level approach, aiming directly for high-level facial features. (An exception was So
et al. [7] who used centres-of-gravity of iso-density contours.) Our tracking system can
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Figure 1: [Left] CCITT sequence "Clair" with corners superimposed; [a] Ii features

(squares) falling in a search window centred on an I\ feature (circle) are match candi-

dates; [b] A "love triangle": feature A in I\ chooses B in Ii, but B prefers C to A; [c] An

unmatched I\ feature finds a ghost match (triangle) by correlation search; [d] A nearby

unclaimed feature in [2 is accepted in a compromise match; [e] A ghost match coincides

with a claimed corner, so the paths merge.
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cope with male and female subjects, glasses and eye-patches, plasters and nose-casts,
and even facial hair (including beards, mustaches and sideburns). Moreover, it uses to
its advantage any distinctive features that deviate from the norm, such as earrings, acne
and facial scars. This opportunism applies both statically and dynamically; if the speaker
dimples when smiling, or wrinkles his forehead when frowning, the system will utilise the
corners while they are available.

Corners are detected using a corner operator [11], which involves only local operations
and generates a response F which attains a local maximum at the corner location:

—•max, T>R, | V / | 2 > E. (1)

There are four parameters to specify: scale 5, edge strength E, corner response R and mask
size M. Details appear in [11, 6], along with discussion on automatic parameter setting,
the effects of Gaussian smoothing, and the problem of false corners (arising from profile
edges, conjunctions of edges lying at different depths, shadow lines and specularities).

3 The matcher

The two-frame correspondence problem is familiar in computer vision. Seminal work in
this area was done by Ullman [8], and numerous algorithms have since been proposed in
an extensive body of literature. The demand for eventual frame-rate processing places
constraints on our matcher: the algorithm must be parallel in nature and computationally
cheap. The fact that inter-frame motion is small, however, ensures that the intensity
pattern around a corner (its local shape) doesn't change much between frames.

The matcher receives as input two grey-scale images (7i and i-j) along with their
respective sets of corners (having image coordinates p,,i and pj,2 respectively). These
corners are generated automatically as images enter sequentially in time. This section
describes the two-frame matcher in the absence of predictions; the modifications when
predictions are available are discussed in Section 4. An important feature of our matcher
is that it leaves no corner in /] without a pairing, and uses only local operations.

3.1 Strong matches

Consider two sets of corners superimposed on the same system of image axes. For every
corner in I\, we construct a search window centred on it, and all corner points from Ii lying
in this window are candidates for the match (Figure l(a)). We then perform a local patch

correlation between the corner in A (the "template") and each candidate corner in h (the
"patch"). The winning candidate is the one with the highest correlation value, provided
it surpasses a certain minimum threshold; this is necessary since the "best" corner in the
window need not be the correct one (e.g., the actual feature may have disappeared).

We then repeat the procedure, working back from the second image to the first. This
widely-used technique (e.g., [3]) resolves conflicting attractions, where the preference of
one feature for another is not reciprocated (Figure l(b)). We only accept matches which
concur in both directions, and discard the rest. A match that survives this pruning is a
strong (or natural) match, with a confidence value c. The correlation metric we use is the
standard product moment coefficient,

c =
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where {t,} and {p,} are the intensity values of the template and patch, t and p are their
means, and we raster-scan pixels in the blocks of interest to give the two n-point data-
sets. This metric is invariant to a linear change between the data-sets, i.e., c = 1 when
Pi = ati+b, with constants a,b > 0. Hence, c compares the structure of the patches, rather
than their absolute intensities1. Only positive correlation values are considered; negative
c indicates inversion of the intensity values. Since perfect correlation obtains when c = 1,
c serves as a measure of confidence in the match.

3.2 Ghost and compromise matches

There are several reasons why there may still be unmatched corners:

1. A feature may permanently disappear from sight, due to occlusion. Hence, it will

appear in I\ but not in h (a ghost).

2. A previously obscured feature may become visible as new structure sweeps into view
(or previously-seen structure becomes visible once more). Hence, the feature will
appear in h but not in 1\ (an intruder).

3. A feature may appear intermittently ("flash" on and off) due to instability in the
corner detector (e.g., the response V oscillates about the cutoff threshold). This can
result in both ghosts and intruders.

4. A feature may appear once and then disappear, due to noise in the signal. This

leads first to an intruder and then to a ghost.

Although it is impossible to distinguish these scenarios on the basis of only two frames
(and it is precisely the last two problems which have made corner detection unattractive
in the past), sustained observation of the features (coupled with prediction) makes this
task simple.

It is, however, important that the matcher doesn't deprive the tracker of potentially
useful information (which could always be overridden or discarded later). We therefore
require the matcher to generate a best position estimate for every remaining corner in I\.

The assumption here is that the third scenario has happened, i.e., the corner has flashed
off and will soon flash on again. If indeed this has happened, the "bridging" estimate will
be good, since the feature is still visible and does have some second-order structure. If
the assumption is incorrect and the feature has disappeared, the tracker will soon realise
this (since the corner won't reappear and the ghost matches will be poor).

The best position estimate is computed via a correlation test over the whole search
window, using every location as a candidate. The location with highest correlation (£„«)
is accepted (Figure l(c)). If there is a real corner close to the estimated position (with
correlation cot), we accept it if it is sufficiently similar to £ „ „ (Figure l(d)). This is a
compromise match, and its objective is to reduce the number of intruders and ghosts. If
the ghost point coincides with an li corner already claimed by a different point, we merge
their paths, destroying the ghost and its trajectory (Figure l(e)).

If there is no corner nearby the optimum correlation position, we settle for the ghost

match. The new position assigned to the unmatched corner is thus decided purely by
correlation, with no actual corner being there. On the next cycle (I? —> I3), this ghost
corner will be treated as a real corner in / j , in the hope that it will find a strong match

'Assuming the albedo of the patch doesn't change over time, a accounts for automatic gain control

of the camera, uniform changes in scene lighting and changes of object pose relative to a constant light

source, while 6 accounts for a uniform intensity offset [6].
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Figure 2: Two-frame matches (markers indicate corners in the first frame, and vectors are

drawn double their true length for clarity): [top to bottom, left to right] "Curl"; "Div";

"Salesman" (CCITT); "Car".

in / j (signalling reappearance). We refer collectively to ghost, compromise and merge
matches as forced matches.

This search procedure is expensive, since an n x n window yields n2 possible positions.
However, the operation can be done in parallel, and is performed only for the unmatched
points. Moreover, n2 is the worst-case scenario; when predictions are available, the search
space is substantially reduced (see Section 4.2).

3.3 Results

The algorithm was implemented in sequential form in C and run on SUN SPARC-1 work-
stations. An 11x11 search window was used for initial candidates, and a 3 x 3 window for
compromise matches(see [6]). We have tested this algorithm on a wide range of sequences,
under different lighting conditions and facial poses.
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Figure 2 shows several two-frame matches, combining the natural and forced pairings
(camera is stationary). The "Curl" sequence shows a head (LSS) rotating about an axis
parallel to the optic axis, while the "Div" sequence shows a subject looming towards the
camera amidst a cluttered background (a diverging flow pattern). The CCITT "Salesman"
sequence is a challenging one, for the speaker moves his arms, flexes his fingers, turns
the object he is demonstrating and ripples his shirt. The corners accurately reflect this
movement; his head moves left while his right arm moves right and upwards. Finally, we
show a car accelerating forwards, indicating that the algorithm is transportable to other
application domains. Similar results have been obtained when the camera moves as well
as the scene (paper in preparation).

These results illustrate that the motion vectors give a clear indication of where in
the image (and in what direction) movement occurs. This testifies both to the temporal
consistency of the corners (strong and compromise matches), and to the suitability of
corner locations for computing flow (ghost matches). The accuracy of the motion vectors
despite the small motion indicates how well the corners are localised; this will prove a
solid foundation for trajectories spanning multiple frames.

4 The tracker

The tracker has two responsibilities. Firstly, it maintains an image trajectory for each
feature, charting its motion through successive frames. Secondly, it oversees the matcher,
feeding it predictions and obtaining a set of matches in return. This also involves super-
vising the initial startup (boot mode) and securing the transition to normal operation (run
mode).

4.1 Trajectory maintenance

Every feature has a record in the "world" database, describing its general details (e.g.,
when it first appeared) and its frame-specific information (e.g., position and velocity).
Maintaining these spatio-temporal trajectories comprises various subtasks, e.g., instanti-

ate new features, retire features which have disappeared, and update the records of tracked
features. The number of tracked corners grows for the first few frames and then reaches an
approximate equilibrium, once the instantiation of new points is offset by the retirement
program.

4.2 Correspondence control strategy

When there are n frames in the sequence rather than just two, there are n — 1 pairs of
images to process in temporal order: I\ and I2,1? and I3, etc. The algorithm in Section 3
operates until the predictor kicks in, whereafter the algorithm presented below is used.
Hereafter, I\ will refer to the "previous" image, and I2 to the "current" image.

4.2.1 The prediction philosophy

Finding a suitable role for prediction in long-term tracking is a tricky problem. On the
one hand, past behaviour can be a valuable indicator of future behaviour, since physical
objects moving in the world build up inertia; to ignore these "motion trends" is therefore
to discard useful information. On the other hand, predictors require a model of object
motion: when the model is valid, the predictor works well, but when the model fails, do
does the predictor (often badly). Typically, tracking systems match directly from predicted
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(b) (c)

0 Image 1 D Prediction

Figure 3: [left] Vafaf /acia/ motion patterns, which one might reject under the rigidity

assumption (eyes move and mouth opens); [right] Strong matches versus predictions: [a]
Match wins; [b] Prediction wins and is nearby, so we get a compromise match; [c] Predic-

tion wins and is far away, so the comer is discarded (a wimp^.

positions to the data in the new frame. This approach only has merit when the prediction
takes you closer to the true position; when it moves you further away, you are worse off
than if you had used the raw data. Often, the problem of what to do when prediction
fails is bypassed by using other cues [3], solved via adaptive filters [5], or even ignored.

However, the question is not whether to use the predictor, but when to use it; we need to
distinguish between a predictor which is working well (and can be trusted) and a predictor
which is failing (and should be restarted). Occasional predictor failure is inevitable; in
videophony, for instance, heads can change direction rapidly (e.g., a nodding action). A
mechanism for graceful degradation is thus of fundamental importance.

Our solution is to maintain a predictor (in image coordinates) for every corner, and
use local patch correlation as an indicator of predictor success. When the predictor fails,
we simply revert to the original image data. We use a simple model of feature motion,
eschewing the use of (2D or 3D) global (or semi-global) motion models at this early stage
of processing; such motion models can slot in at a higher stage. Thus, we avoid having
to first segment the scene into differently moving objects; indeed, this is one purpose
for which the trajectories are intended. Furthermore, we are able to track independent
and non-rigid motions. Faces, for instance, are not only non-rigid themselves, but also
contain non-rigid objects (e.g., the mouth). Consequently, the corners simply don't move
in a locally consistent way (Figure 3).

Although our system has much in common with DROID [3] (which broke new ground
in tracking corner features), we differ from it in several important ways. For example,
DROID catered only for an observer moving through a static (hence rigid) world. A
detailed comparison between the systems is provided in [6].

4.2.2 Strong matches

Predictions are initially held in abeyance while we obtain a set of mutually consenting
matches from the raw data (Section 3.1). For every corner in Ii, we then compare its
prediction against its strong match. If the strong match wins (Figure 3(a)), it is accepted
as the correct solution. If the prediction is better than the match, then the course of action
depends on how far apart these two locations are. If they are close together, we accept the
corner but downgrade the match to a compromise (Figure 3(b)). If, they are far apart, we
have an I\ corner being strongly pulled by two very different image locations (Figure 3(c)).
Such wimp corners arise in areas of uniform texture, caused either by a poor corner in a



313

region without much structure (e.g., a cheek), or a good corner in a highly (but similarly)
textured area (e.g., chin stubble or hair). Either way, the corner is an unsuitable feature
and is destroyed.

4.2.3 Compromise and ghost matches

Now the unmatched corners remain. If a prediction is available, we search a small region
around the prediction and see whether the best correlation value there is good enough
to be accepted. If not, we do a full correlation search starting from the original corner.
Thus, when the predictor works, we save greatly on time, but when it fails, we revert
to the full search method. The reason for not searching in a gradually expanding region
around the prediction (e.g., radially) is that once the predictor has failed, a more accurate
result obtains by ignoring it completely. Note that if the prediction correlates well but is
incorrect, this becomes apparent in several frames' time when no match reappears, and
the corner is retired.

A comparison (over a long sequence) between the cases with and without a predictor
show interesting results. Firstly, the total number of corners being tracked is very similar
in the two cases, and we also get almost identical matches; prediction simply speeds up the

process. This differs from many prediction schemes where, in the absence of prediction,
the number of unmatched points grows due to the large uncertainty. Because we force
unmatched corners in I\ to find "virtual" partners in / j , we contain the uncertainty in the
system. Secondly, the number of strong matches is fairly constant over time, suggesting
that a fixed percentage of the corners are very robust [6].

4.2.4 Prediction strategies

We examined two fixed-coefficient predictors (constant velocity and constant acceleration).
At best these model could only be approximate since they operate on image data, without
modelling 3D motion (or camera projection). However, our goal here is not to deduce the
world motion parameters, but rather to utilise trends in image motion to improve efficiency
and reject unsuitable matches. For the constant velocity case (in finite difference notation),
x(k + 1) = x(k), so x(k + 1) = 2x(k) — x(k - 1). Two frames are needed for a prediction,
and distance changes linearly in time. (We treat z and y coordinates independently.)

For the constant acceleration case, x(k + 1) = x(ifc), so x(Jfc + 1) = Zx(k) - Zx(k - 1) +
x(k — 2). Here, three frames are needed for prediction, and distance changes quadratically
in time. Li et al. [5] also used these filters but favoured the adaptive coefficient forms.
However, accurate tracking was crucial to their system since they matched from predictions
to data; it is far less critical in our approach.

Experiments have shown that the "linear" predictor often outperforms the "quadratic"
one, because the smallness of the inter-frame motion often leads to locally linear trajecto-
ries. Also, since the motion is small relative to the quantisation errors, the noise introduced
by "second temporal derivatives" has a detrimental effect.

4.3 Results

Figure 4 shows image trajectories obtained over several frames. "Richard" (bespectacled)
nods his head downwards, "Clair" moves her head round in a circular motion, and "Dave"
(bearded) performs a "curl" motion while his body sways slightly in the opposite direction.

When the camera is still, it is simple to distinguish stationary from moving points
on the basis of their velocity history. For each feature, we compute the mean (s) and
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standard deviation (a,) of its speed over several frames. Classification as a stationary
point requires small s and small a, (with a minimum number of sightings). Figure 4
shows the segmentation for the "Dave" sequence, with the stationary points removed.

5 Conclusions

We have presented an algorithm to track moving objects in the image, using local oper-
ations. A key strength of this algorithm is the use of low-level "corner" features. These
corners are stable and well-localised, making them suitable for tracking - even in appli-
cations where there aren't "physical" corners, such as human faces. Furthermore, being
entirely image-driven, the corners differ from scene to scene, giving the powerful advan-
tages of generality and opportunism. We further ensure robustness by means of temporal

I*.

Figure 4: Image trajectories, each spanning an equal number of frames (true-length vec-

tors, markers show corner positions in final frame): [top to bottom, left to right] "Richard"

(8 frames); "Clair" (6 frames); "Dave" (6 frames); moving points for "Dave".
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integration, which overcomes the problems of "flashing" corners, noise, and occlusion and
disocclusion of 3D structure.

Our matcher-tracker verifies matches by correlating local image structure, and limits
uncertainty by assigning ghost matches to unmatched points. Use of a simple predictor
(per point) speeds up the matching process significantly, though we take care to degrade
gracefully when predictors fail (by reverting to the raw data). The image trajectories that
finally emerge give a strong impression of "what motion occurs where".

The matcher-tracker forms only the first level of our motion analysis system, and
there are several directions of research to pursue. Firstly, by forming clusters of corners
having similar motion, we aim to segment the scene into coherently-moving objects and
then compute 3D motion parameters. Secondly, as the "Salesman" sequence illustrates,
edge information will be very useful for eliciting motion boundaries. We therefore plan to
combine edge motion with corner motion. Thirdly, the usefulness of point features other
than the ones we have described here (e.g., distinguished points from invariant theory)
will be explored. Finally, we plan to implement the tracker in parallel.
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