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Abstract It is challenging to model a precipitation field due to its intermit-
tent and highly scale-dependent nature. Many models of point rain rates or
areal rainfall observations have been proposed and studied for different time
scales. Among them, the spectral model based on a stochastic dynamical equa-
tion for the instantaneous point rain rate field is attractive, since it naturally
leads to a consistent space-time model. In this paper, we note that the spa-
tial covariance structure of the spectral model is equivalent to the well-known
Matérn covariance model. Using high-quality rain gauge data, we estimate the
parameters of the Matérn model for different time scales and demonstrate that
the Matérn model is superior to an exponential model, particularly at short
time scales.

Keywords Covariance model · Exponential covariance · Matérn covariance ·
Point rain rates · Spectral model · Time scales

1 Introduction

Because of its intermittent nature, high variability, and small length and time
scales, precipitation poses significant challenges for both observations and
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modeling. In addition, rainfall statistics are strongly scale dependent. For ex-
ample, spatial correlation lengths for monthly rain rates are much larger than
for hourly or daily rain rates. Similarly, autocorrelation time scales for area-
averaged rain rates are larger for larger areas. For many precipitation-related
problems, such as estimating area-averaged precipitation from a set of rain
gauges or validating satellite precipitation observations with surface observa-
tions, it is useful to have a statistical model with the characteristics of the
precipitation field. Much progress has been made for precipitation modeling;
[24] reviewed the development of Poisson-cluster processes, [6] investigated
how to calibrate radar measurements via rain gauge data, [23] constructed
separate models for rainfall occurrences and the positive rainfall amounts, and
[7] developed an adaptive spatial model for precipitation data from multiple
satellites.

Many types of inference and estimation problems can be addressed if the
covariance structure of the rain field is known [5]. In this study we analyze the
spatial covariance of high-quality data from a rain gauge network for different
averaging times and compare it with a semi-analytical stochastic model of
rain developed by [17], [21], and [4]. Related problems have been addressed
by [18], who investigated the space-time covariance structure of propagating
precipitation features, and [16], who developed an empirical model of space
and time scaling properties of the occurrence of rain. [22] recently discussed a
similar problem for the surface temperature field. The distribution of non-zero
rain rates is non-Gaussian with a heavy tail at high rain rates. A number of
different distributions have been used to represent the conditional rain rate
(the rain rate when raining), such as the lognormal or gamma distributions
[8] and log-skew-elliptical distributions [19]. The rain model and the resulting
form of the space-time covariance function are described in more detail in
Section 3.

Developing and calibrating such a statistical model requires consistent,
accurate data, particularly when estimating the second moments, e.g., covari-
ances, or even higher moments. In this study we take advantage of high-quality
precipitation data from a network of research rain gauges in Virginia, Mary-
land, and North Carolina that was deployed as part of the NASA Tropical
Rainfall Measuring Mission (TRMM) ground validation effort [25]. We use
the spatial covariance structure of the gauge data to estimate the parameters
of the statistical model of [4] for the purely spatial case, and show that it falls
into the family of covariance models described by [20].

2 Data

The deployment of the rain gauge network is described in detail in [25].
For quality control and reliability, each site in the network has two or three
research-quality 8-inch tipping-bucket rain gauges manufactured by Met One
Inc. These gauges are colocated with at least one rain gauge from an opera-
tional rainfall monitoring network. From the 20 sites in the network, we select
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12 that have essentially complete data for the three-year period from 2004-05-
19 to 2007-05-17. The map in Figure 1 shows the locations of the 12 gauges
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Fig. 1 Locations of the twelve rain gauges used in this study. The solid black lines are
contours of surface elevation in meters. The contour interval is 50 m.

used here. The gauges record the time of each bucket tip; one tip is equal
to 0.254 mm (0.01 inches) of rain. Bucket tips are converted to rain rates by
counting the number of tips within specified intervals. The longitudes and lat-
itudes of the gauge sites and the mean annual rain rate at each gauge for the
period of study are given in Table 1, which shows that the long-term mean
rate is relatively constant across the network.

3 Rain rate covariance model

3.1 Spectral covariance model

[4] developed a spectral stochastic model for rain rates that is a simplification
of the rainfall model in [3]. The analytical properties of a similar model for
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Table 1 Gauge locations and annual mean rain rate at each gauge for the three-year period
of study.

Gauge Longitude Latitude Mean
(mm)

G01 -77.00 36.98 1309
G04 -75.92 37.29 966
G05 -75.96 37.13 1195
G06 -76.78 37.98 1334
G08 -76.76 37.52 1141
G09 -76.43 37.43 1318
G11 -76.70 37.30 1258
G12 -76.49 37.13 1287
G13 -77.39 37.23 1267
G17 -75.91 36.67 1358
G18 -76.76 36.68 1308
G21 -76.17 36.25 1305

temperature are discussed in more detail in [22]. The surface rain rate R(x, t)
at location x and time t is written as a sum of spatial Fourier modes with
amplitudes a(k, t) of the rain field fluctuation defined as the deviation from
the mean, where k is the spatial frequency. If we assume isotropy, then k = |k|,
and the amplitude of each mode is given by a first-order differential equation
of the form

da(k, t)

dt
= −

1

τk
a(k, t) + fk(t), (1)

where fk(t) is a white-noise forcing. The damping time scale for each mode τk
is taken to have the form

τk =
τ0

(1 + k2β2
0)

1+η
, (2)

where τ0 is the correlation time scale of the area-averaged field (k = 0), and
β0 is a characteristic length scale. The exponent η affects the scale dependence
of the damping timescale τk, which provides additional control over the shape
of the covariance function.

From (1), [4] found that the power spectrum of the stochastic rain field R
can be shown to be

c̃(k, ω) =
F0τ

2
0

τ20ω
2 + (1 + k2β2

0)
2+2η

, (3)

where ω is the temporal frequency and F0 is the magnitude of the white-noise
forcing, which determines the total variance of the rain field. The space-time
covariance of the point rain rate at distance r = |r| and time lag s implied by
this model is given by the inverse transform of the power spectrum

c(r, s) = (2π)−3/2

∫

dω

∫

dk e(ikr−ωs)c̃(k, ω). (4)
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This is a stationary spatio-temporal covariance model for instantaneous point
rain rates with four parameters: F0, τ0, β0 and η. The covariance of the time-
averaged or the area-averaged rain rates can be expressed as suitable integrals
over the spectrum for a given set of parameters that are fixed across different
time or spatial scales.

For point rain rates, integration of (4) over ω gives

c(r, s) = (2π)−1

∫

dk eikrc(k, s), (5)

where

c(k, s) =

√

π

2
F0τke

−|s|/τk . (6)

[4] noticed that [1] gives the result

c(r, 0) = γ0 Cη

(

r

β0

)

, (7)

where Cη(z) = ( z2 )
ηKη(z), with Kη(z) denoting the modified Bessel function

of order η, and γ0 is related to F0 by

F0 =

√

2

π
Γ (1 + η)

(

β2
0

τ0

)

γ0.

3.2 Matérn covariance model

Among many available covariance models, the Matérn family [20] has gained
widespread interest in recent years. [14] introduced the Matérn form of spatial
correlations into statistics as a flexible parametric class with one parameter
determining the smoothness of the underlying spatial random field. The varied
history of this family of models can be found in [12]. The Matérn form also
naturally arises as the correlation for temperature fields described by simple
energy balance climate models [22]. The Matérn class of covariance functions
is defined as

c(r) =
2σ2

Γ (ν)

(

r

2L0

)ν

Kν

(

r

L0

)

, (8)

where ν > 0 depends upon the smoothness of the random field, with larger
values of ν corresponding to smoother fields; and L0 > 0 is a spatial range
parameter that measures how quickly the correlation of the random field de-
cays with distance, with larger L0 corresponding to a slower decay (keeping
ν fixed). When ν = 1/2, the Matérn covariance function reduces to the ex-
ponential covariance model and describes a rough field. The value ν = ∞
corresponds to a Gaussian covariance model which describes a very smooth
field, in fact a field which is infinitely differentiable.

The spatial covariance function of the spectral model in (7) is a Matérn
form, with η = ν, γ0 = 2σ2/Γ (ν) and β0 = L0. Thus, (1) in the spatial domain
is equivalent to the Matérn class of covariance models defined in (7).
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4 Methods

We analyze the spatial covariance structure of rainfall over the gauge network
by first computing average rainfall rates at each gauge at time resolutions vary-
ing from 5 minutes to 3 weeks. The covariances between each pair of gauges are
then computed for each time resolution. Specifically, for each time resolution,
we use the observed rain rates within the three-year period to compute the
sample correlation between any two sites from the 12 selected gauges. The re-
sulting

(

12
2

)

= 66 correlation estimates can be plotted as a function of distance
between the two corresponding gauges. The minimum and maximum distances
between the gauges in the network are 18 and 200 km, respectively. To describe
and model the spatial correlation patterns, we fit the general Matérn and the
exponential (special case of ν = 1/2) spatial correlation models to the corre-
lation estimates. Parameters are estimated by ordinary least squares (OLS).
The general Matérn model fits two parameters, L0 and ν. For the exponential
model the only adjustable parameter is L0. In principle the correlation should
go to 1 as the separation between instruments goes to zero, but instrumental
error, for example, would cause correlations to be less than 1 even for instru-
ments at the same location. Both models are fit without accounting for these
so-called nugget effects by forcing the correlation to go to 1 at r = 0 since
the high-quality colocated gauges do not suggest measurement errors. We aim
to show that the flexible Matérn covariance model is more appropriate than
choosing the exponential model with an unrealistic nugget effect.

5 Results

Figure 2 shows the correlations of time-averaged rain rates between each pair of
rain gauges as a function of station separation for four different time-averaging
windows ranging from 10 minutes to 1 day. Results for averaging windows
longer than 1 day are very similar to those for 1 day (panel d). The solid lines
are the least-squares fits to the data using the Matérn model, while the dashed
lines are for the exponential model. [15] plotted similar figures for long-term
seasonally-averaged precipitation values, while [13] examined correlations at
station separations less than 10 km. As expected, the correlations between
gauges are larger for gauges that are closer to one another and for longer
averaging windows. The model fits also show that as the aggregation time
increases, the spatial correlation becomes stronger for a certain distance. In
other words, the spatial range L0 is larger for longer averaging times.

The parameter estimates and the resulting mean squared errors (MSEs)
from the Matérn and exponential model fittings are given in Table 2. For
each averaging time window, the smaller MSE of the Matérn model indicates
a better fit compared to the exponential model. Although the exponential
model always has a bigger MSE than the Matérn model does, the difference
generally decreases as the averaging time window increases. The quality of the
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Fig. 2 Correlation as a function of site separation distance for different gauge averaging
times. Parameters shown are for the Matérn fits. Solid lines: least-squares fit to Matérn
function; dashed lines: least-squares fit to exponential.

fits can be seen graphically in Figure 2, which shows that the Matérn model
better captures the shape of the correlation function than the exponential
model, particularly for shorter averaging times.

For the Matérn model the MSE becomes bigger for longer time-averaging
windows. This is not surprising because for a fixed record length, the number
of rain rate samples within the record becomes smaller as the averaging time
window gets longer. Moreover, the parameter estimates of the Matérn model in
Table 2 show that when the time-averaging window increases beyond 6 hours,
the length scale becomes larger than the maximum separation between the
gauges (202 km). This can also be seen in the plots in Figure 2. For longer
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Table 2 Parameter estimates and mean squared errors (MSEs).

Averaging Matérn Model Exponential Model
window L0 (km) ν MSE (×103) L0 (km) MSE (×103)
5 minutes 125 0.080 0.85 42 14.04
10 minutes 144 0.083 0.91 45 13.49
15 minutes 159 0.087 0.93 48 12.96
30 minutes 173 0.105 1.14 54 11.06
1 hour 150 0.168 1.48 64 7.15
3 hours 165 0.268 2.05 91 3.87
6 hours 201 0.322 2.22 124 3.04
1 day 383 0.323 2.50 206 3.15
1 week 396 0.320 2.50 207 3.16
3 weeks 267 0.390 5.06 189 5.80

time scales, therefore, the gauge network is probably too small to accurately
estimate the natural length scale of variability of the rain field.

Figure 3 shows graphically the parameter estimates of L0 and ν from the
Matérn model shown in Table 2 for the given averaging time windows (unit:
hour). For time scales out to a day, the spatial range parameter L0 increases
approximately linearly. The value of L0 does not have an increase from 30
minutes to 1 hour or 3 hours because the spatial correlation depends on both
L0 and ν in the Matérn model, unlike the exponential model where L0 itself
controls the spatial range. Indeed, up to 1 week, L0 in the exponential model
always increases as the averaging time window gets longer. However, the value
of L0 becomes smaller for the 3 weeks time window, possibly due to the fact
that fewer available observations make the estimation less accurate. Therefore,
we need a period of time longer than 3 years to estimate the parameters
for the averaging time window greater than 1 week. Moreover, the limiting
value for very short averaging times appears to be near 100 km, but it is
important to keep in mind that the estimates of the parameter ν indicate that
the precipitation field is very non-smooth. The smoothness parameter itself
increases from a value less than 0.1 to around 0.3 for longer averaging times.
In all cases the estimates of the exponent ν from fitting the Matérn model
are less than the value for the exponential model (0.5). This indicates that
rain fields are rougher than a random field that has an exponential spatial
covariance. At short time scales the rain field appears to be much rougher
than exponential, but this conclusion is limited by the fact that the minimum
separation of the rain gauges is 18 km, so it is not possible to directly observe
the variability at length scales shorter than that. The smoothness parameter
ν increases as the averaging time increases, indicating a smoother random
field. This is not surprising, as time averaging would be expected to reduce
the variability of the rain field.

The results in Table 2 can be compared with Table 1 in [5]. They fit a
single consistent space-time covariance model of [4], and the parameters of
the covariance model are estimated using radar rainfall maps from the several
different tropical field experiments. The model in [4] describes the covariance
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Fig. 3 Top panel: the plot of parameter estimates of L0 from the Matérn model (shown in
Table 2) as a function of averaging time (unit: hour). Bottom panel: the plot of parameter
estimates of ν from the Matérn model (shown in Table 2) as a function of averaging time
(unit: hour).

structure of the instantaneous point rain rates, so that the covariance of the
time-averaged rain gauge measurements and the area-averaged radar observa-
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tions can be expressed as suitable integrals. Therefore, its parameters are scale
independent. In our analysis, we fit independent spatial covariance models for
different time scales and obtain different parameter estimates, which are thus
dependent on time scales.

In [5], the spatial and temporal resolution of the radar data from those ex-
periments is typically ∼4 km and ∼15 minutes, respectively. They found values
of β0 from 61 to 104 km for instantaneous rain rates. In our analysis, when
averaging the rain gauge data with windows of 15 minutes or less, the param-
eter L0 in the Matérn model ranges from 125 to 159 km, which corresponds
reasonably well to the radar data with a slightly larger spatial range due to
the short-time aggregation. The greatest differences between this study and
[5] are found for the values of the smoothness parameter. [5] estimated η to be
in the range −1/2 ≤ η < 0, arguing that negative values of η fit the data best.
Although for the space-time spectrum in (3), the part, (1 + k2β2

0)
2+2η, in the

denominator still makes the spectrum integrable with respect to k, the purely
spatial model, which is a Matérn form with the spectrum having (1+k2β2

0)
1+η

in the denominator, has infinite variance at the origin. In our fitting procedure,
however, we only fit a purely spatial covariance model, therefore, we constrain
the values of ν to be positive, which results in a finite variance at the origin
and a valid covariance model.

6 Discussion

In geostatistics, it is common to treat observations in time as replicates and fit
a spatial exponential covariance model to precipitation data. In this paper, we
aimed to show that the flexible Matérn covariance model is more appropriate
than the exponential model for characterizing the spatial dependence of the
precipitation especially on short time scales. Although maximum likelihood
estimates have better properties, it is not trivial to apply the maximum like-
lihood method due to the fact that the distribution of precipitation is usually
non-Gaussian with rainfall zeros. Therefore, the least squares method is a rea-
sonable alternative, widely used in the precipitation literature, in the sense
that we do not have to assume distributions and temporal replicates are avail-
able in our setting. In the least squares method, the MSE plays the same role
as the negative likelihood function, where a smaller MSE indicates a better
model. We have shown that the spatial component of the spectral covariance
model for precipitation developed by [4], [5], is equivalent to the family of
covariance models introduced by [20]. We used high-quality, high-frequency
rain rate data from a network of research rain gauges [25] to estimate the
parameters of the Matérn covariance model for a range of different rain-rate
averaging times (accumulation times). The results indicated that for averag-
ing times less than a few weeks, the rain field is rougher than is the case for
a random field with an exponential spatial covariance structure. The rough-
ness increases as the averaging time decreases. In contrast to [5], our model is
time scale dependent. We estimate the parameters of the Matérn model using
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the rain gauge data with different aggregation to characterize the precipita-
tion field at different time scales in terms of the smoothness and the spatial
correlation range.

The datasets described in this paper have many interesting features to
explore. We have focused on estimating the spatial correlation of the precip-
itation using the Matérn covariance model to compare the roughness of the
spatial fields on different time scales. Considering the relatively small geo-
graphic region in this study, the spatial stationarity of the precipitation pro-
cess was assumed. If the spatio-temporal dependence is of interest, one may
further develop more complicated spatio-temporal models for each given time
scales. However, the stationarity assumption in time is unlikely to be realistic
as precipitation usually shows seasonal trend. Consequently, a longer period
of data will be needed to study the long-term characteristics.

It is also worth noting that in addition to the Matérn class, there are other
available covariance families that one can choose from, depending on the prop-
erties of the precipitation field. For example, the generalized Cauchy family
proposed by [10] is suitable to model the long-range dependence in a pro-
cess. Whether such a covariance family may arise from a stochastic differential
equation similar to (1) is an open problem. Further extensions to multiple
variables and multivariate Matérn cross-covariance functions [11,2,9] would
be of interest too.
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