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Abstract

We study a fractional-order model for the anthrax disease between animals based on

the Caputo–Fabrizio derivative. First, we derive an existence criterion of solutions for

the proposed fractional CF -system of the anthrax disease model by utilizing the

Picard–Lindelof technique. By obtaining the basic reproduction numberR0 of the

fractional CF -system we compute two disease-free and endemic equilibrium points

and check the asymptotic stability property. Moreover, by applying an iterative

approach based on the Sumudu transform we investigate the stability of the

fractional CF -system. We obtain approximate series solutions of this system by

means of the homotopy analysis transform method, in which we invoke the linear

Laplace transform. Finally, after the convergence analysis of the numerical method

HATM, we present a numerical simulation of the CF -fractional anthrax disease model

and review the dynamical behavior of the solutions of this CF -system during a time

interval.
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1 Introduction

Analysis and investigation of various mathematical models of different natural processes

is an applied branch of mathematics in which the researchers study dynamics of desired

systems by means of some logical and computational tools. In this way, new fractional

operators play an important role in modeling such natural phenomena and processes. Re-

cently, the Caputo–Fabrizio fractional operator is utilized by many authors to analyze the

existing systems (see, e.g., [1–8]). Also, there are many works on applications of fractional

calculus (see, e.g., [9–26]). We apply this new fractional operator in the present research

paper and recall its properties in the sequel.

Anthrax is considered as an infectious disease caused by the Bacillus Anthracis bac-

terium. Anthrax disease is categorized under zoonotic diseases and affects both animal
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and human population [27]. Naturally, the anthrax disease can be found in soil andmostly

has influence on herbivores as compared to carnivores [28]. This disease is one of themost

dangerous infectious diseases in the world causing a vast and uncontrolled mortality in

some animal populations such as pigs, sheep, horses, goats, cattle [29, 30]. According to

Gutting et al. [31], this group of animals gets infected with Bacillus Anthracis bacterium

through several ways including the consumption of infected water or grass, the inhalation

of its spores, or contact with infected animals. Note that carcasses of infective animals can

also pollute the environment. Grass and soil are the most important reservoirs of anthrax

spores, which can cause the transmission of this disease between animals, because anthrax

spores persist in the soil or grass for a long time under very extreme weather conditions.

Also, the clinical symptoms of anthrax disease in infective animals take time to manifest

since the incubation period of this disease is about three to eight days before these animals

succumb to death.

The first simple model for dynamics of transmission of anthrax disease is formulated

by Mushayabasa [32] in 2015. In this model the author regards three compartments enti-

tled Susceptible, Contamination, and Pathogens. Mushayabasa does not discuss the role

of infective animals in his model as a key factor in the transmission of anthrax infectious

disease. One year later, Zerihun et al. [33] extended theMushayabasa model and designed

a newmodel of anthrax disease supplemented with four compartments entitled Suscepti-

ble, Contamination, Infective, and Pathogens. The compartment “Infective animals” has

a key importance in this model, in which the clinical symptoms of anthrax transmit to

susceptible animals [33]. After aforementioned works, some authors also studied various

models of anthrax disease furnished with different compartments (see [34–36]).

For the proposed model of anthrax disease, in the present research, we are motivates by

a research paper of Kimathi et al. [37], in which the usefulness of vaccination policy on

SIR model is regarded in the context of a novel fractional modeling. In fact, the novelty

of this work is that the compartment “Vaccinated animals” is added to the existing SIR

model, and we generalize the classical system to a new fractional system based on a new

fractional operator without singular kernel named the Caputo–Fabrizio derivative for the

first time.We observe that the obtained approximate solutions of the fractional CF -model

of anthrax disease approach those of the classical integer-order systemby passing the time.

More precisely, the contents of the paper is as follows. In the first step, we derive an exis-

tence criterion of solutions for the proposed fractional CF -system of the anthrax disease

model by utilizing the Picard–Lindelof technique. Then by obtaining the basic reproduc-

tion number R0 of the fractional CF -system we compute two disease-free and endemic

equilibrium points and check the asymptotic stability property. Moreover, by applying an

iterative approach based on the Sumudu transform we investigate the stability of the frac-

tional CF -system. We obtain the approximate series solutions of this system by means of

the homotopy analysis transform method, in which we invoke the linear Laplace trans-

form [38–40]. Finally, after the convergence analysis of the numerical method HATM, we

present a numerical simulation of the CF -fractional anthrax diseasemodel and review the

dynamical behavior of the solutions of this CF -system during a time interval.

2 Preliminaries

In this part, we review some auxiliary and primitive concepts on the fractional operators.

Assume that ̺ ∈ (n – 1,n] so that n = [̺] + 1. For a function w̆ ∈ AC
(n)
R
([0, +∞)), the frac-



Rezapour et al. Advances in Difference Equations        ( 2020)  2020:481 Page 3 of 30

tional derivative of Caputo type is given by

CD
̺

0 w̆(t) =

∫ t

0

(t – z)n–̺–1

Ŵ(n – ̺)
w̆(n)(z) dz,

provided that the integral is finite-valued [41, 42]. After that, a new fractional operator

with no singular kernel is introduced by two Italian mathematicians Caputo and Fab-

rizio [43]. They assume that a < b and w̆ ∈ H1(a,b). Then the Caputo–Fabrizio or (FC)-

derivative of order ̺ ∈ (0, 1] for a function w̆ is given by

CFD̺
a w̆(t) =

(2 – ̺)M(̺)

2(1 – ̺)

∫ t

a

exp

(

–̺

1 – ̺
(t – z)

)

w̆′(z) dz (t ≥ 0),

where M(̺) is a normalization function depending on the order ̺ with M(0) =M(1) = 1

[43]. Further, for n ≥ 1 and ̺ ∈ (0, 1], we have CFD
̺+n
a w̆(t) = CFD

̺
a (D

nw̆(t)) [3]. In 2015,

Losada and Nieto [44] obtained a new explicit formula for the function M(̺) = 2
2–̺

for

̺ ∈ (0, 1]. In this case the fractional CF -derivative for w̆ is represented by

CFD
̺

0 w̆(t) =
1

1 – ̺

∫ t

0

exp

(

–̺

1 – ̺
(t – z)

)

w̆′(z) dz (t ≥ 0).

It is clear that for each ̺ ∈ (0, 1], the equality CFD
̺

0 w̆(t) = 0 is equivalent to w̆(t) = c∗, where

c∗ is an arbitrary constant. Also, Losada and Nieto defined the fractional CF -integral of

order ̺ ∈ (0, 1] for w̆ as follows:

CFI
̺

0 w̆(t) =
2(1 – ̺)

(2 – ̺)M(̺)
w̆(t) +

2̺

(2 – ̺)M(̺)

∫ t

0

w̆(z) dz

for t > 0 [44]. In this direction the authors prove that the unique solution of the fractional-

order differential equation CFD
̺

0 w̆(t) = h̆(t) is obtained by

w̆(t) = w̆(0) +
2(1 – ̺)

(2 – ̺)M(̺)

(

h̆(t) – h̆(0)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

h̆(z) dz (1)

for t ≥ 0 ([44]). For ̺ ∈ (0, 1], the Laplace transform of the fractional CF -derivative is

defined by

L
[

CFD
̺+n
0 w̆(t)

]

(s) =
sn+1L[w̆(t)] – snw̆(0) – sn–1w̆′(0) – · · · – w̆(n)(0)

s + ̺(1 – s)
,

where n≥ 1 andM(̺) = 1 [44]. In particular, for n = 1 and n = 0, we have

⎧

⎨

⎩

L[CFD
̺+1
0 w̆(t)](s) = s2L[w̆(t)]–sw̆(0)–w̆′(0)

s+̺(1–s)
,

L[CFD
̺

0 w̆(t)](s) =
sL[w̆(t)]w̆(0)
s+̺(1–s)

.

In the light of the classical definition of the Fourier integral, the Sumudu transform can be

derived [45–47]. For this aim, construct the following set

A =

{

w̆ : ∃β , c1, c2 ≥ 0 such that
∣

∣w̆(t)
∣

∣ < β exp

(

t

cj

)

, t ∈ (–1)j × [0,∞)

}

.
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Then the Sumudu transform of a function w̆(t) ∈ A is represented by ST[w̆(t)](s) = W̆ (s)

and is defined as

W̆ (s) = ST
[

w̆(t)
]

(s) =
1

s

∫ ∞

0

exp

(

–t

s

)

w̆(t) dt
(

s ∈ (–c1, c2)
)

for t ≥ 0, and the inverse Sumudu transform of W̆ (s) is denoted by w̆(t) = ST
–1[W̆ (s)] [47].

Moreover, the Sumudu transform of the fractional derivative of the Caputo type is given

by

ST
[

CD
̺

0 w̆(t)
]

(s) =
1

s̺

[

W̆ (s) –

n
∑

j=0

s̺–j
[

CD
̺–j
0 w̆(t)

]

t=0

]

,

where n – 1 < ̺ ≤ n [46]. Now assume that w̆ is a function such that its CF -derivative

of fractional order exists. The Sumudu transform of the fractional CF -derivative for w̆ is

defined by

ST
[

CFD
̺

0 w̆(t)
]

(s) =
M(̺)

1 – ̺ + ̺s

(

ST
[

w̆(t)
]

(s) – w̆(0)
)

for t ≥ 0 [48]. In the following, we review some notions about the stability. Let (W,d) be a

metric space. We say that a self-map � :W→W is the Picard operator if there is p∗ ∈W

such that FIX (�) = {p∗} and, consequently, the convergent sequence {�n(p)}n∈N tends

to p∗ for all p ∈W [49].

In this position, let us assume that (W,‖ · ‖) is a Banach space and � :W →W is a self-

map on W. Suppose that FIX (�) = {p ∈ W : �(p) = p} �= ∅ is the collection of all fixed

points of � . Moreover, let {Pn}n≥0 ⊂ W be a sequence generated by the Picard iteration

as follows: Pn+1 = ϕ(� ,Pn) (n = 0, 1, 2, . . . ), where P0 ∈ W is the initial approximation, ϕ is

some function, and also limn→∞ Pn = p ∈FIX (�). Suppose that {f̆n}n≥0 ⊂W and put

εn =
∥

∥f̆n+1 – ϕ(� , f̆n)
∥

∥ (n = 0, 1, 2, . . . ).

Then the recursive algorithm Pn+1 = ϕ(� ,Pn) is said to be Picard �-stable with respect to

� if and only if limn→∞ εn = 0 implies that limn→∞ f̆n = p [49].

Remark 2.1 ([49]) Note that if the sequence {f̆n} has an upper bound, then Pn+1 = �Pn is

Picard �-Stable whenever the Picard iteration Pn+1 = �Pn satisfies all above assumptions.

The following theorem is utilized to prove the stability of the proposed fractional an-

thrax disease model.

Theorem 2.2 ([49]) Suppose that (W,‖ · ‖) is a Banach space and � is a self-map on W

satisfying the inequality

‖�p –�p′‖ ≤ K‖p –�p‖ + k
∥

∥p – p′
∥

∥ (2)

for all p,p′ ∈W, where K ≥ 0 and 0 ≤ k < 1. Then � is Picard �-Stable.
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We further derive an important criterion to confirm the asymptotic stability of a frac-

tional linear system of the Caputo–Fabrizio type at free equilibrium point.

Proposition 2.3 ([50]) Let w̆(t) ∈ R
n and M ∈ R

n×n. Then the characteristic equation re-

lated to the linear system

CFD
̺

0 w̆(t) =Mw̆(t) (3)

supplemented with the Caputo–Fabrizio derivative of order ̺ ∈ (0, 1) is given by

det
[

s
(

In×n – (1 – ̺)M
)

– ̺M
]

= 0. (4)

Theorem 2.4 ([50]) Suppose that the matrix (In×n – (1–̺)M) is invertible. Then the frac-

tional linear CF -system (3) has the asymptotic stability property at a free equilibriumpoint

if and only if all roots of the characteristic equation (4) for CF -system (3) have negative real

parts.

3 Fractional mathematical model of the anthrax disease

In this section, we introduce a new fractional model of the anthrax disease in animals by

applying a novel fractional operator with no singular kernel. In view of the implemented

study by Kimathi and Wainaina [37], the classical first-order SIRV model of the anthrax

disease in animals is formulated by the following four nonlinear differential equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dS
dt

= ω – δS(t)I(t) – (ρ + υ)S(t) + ζR(t) +̟V (t),

dI
dt
= δS(t)I(t) – (ρ + τ + κ)I(t),

dR
dt

= κI(t) – (ρ + ζ )R(t),

dV
dt

= υS(t) – (ρ +̟ )V (t),

(5)

supplemented with initial conditions S(0) = S̆0, I(0) = Ĭ0, R(0) = R̆0, and V (0) = V̆0 [37]. Al-

though human contribution in the transmission of the anthrax disease between animals

is negligible, it becomes a very important subject of discussing the transmission of this

disease in the animal population only. The fractional-order system (FDE) is related to sys-

tems with memory, history, or nonlocal effects, which exist in many biological systems

that show the realistic biphasic decline behavior of infection or diseases but at a slower

rate. In this model, since the internal memory effects of the biological system of the an-

thrax infection are not included, it is better that we extend the proposed ordinary model

to a new fractional model. This shows that the fractional model of this animal disease

yields the approximate results similar to the classical integer-order model. To modify the

existing model, we convert the first-order ordinary derivative into the CF -derivative of

fractional order ̺ ∈ (0, 1] as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

CFD
̺

0S(t) = ω – δS(t)I(t) – (ρ + υ)S(t) + ζR(t) +̟V (t),

CFD
̺

0 I(t) = δS(t)I(t) – (ρ + τ + κ)I(t),

CFD
̺

0R(t) = κI(t) – (ρ + ζ )R(t),

CFD
̺

0V (t) = υS(t) – (ρ +̟ )V (t),

(6)
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furnishedwith initial conditions S(0) = S̆0, I(0) = Ĭ0, R(0) = R̆0, andV (0) = V̆0. In thismath-

ematical framework, S(t) represents the number of animals at risk of the anthrax infec-

tion at time t (Susceptible), I(t) indicates the number of animals with symptoms of this

disease at time t (Infected), R(t) stands for the number of recovered animals from the an-

thrax infection and acquired temporal immunity at time t (Recovered), and V (t) denotes

the number of vaccinated animals against attacks of mentioned anthrax disease at time t

(Vaccinated). In this case, it is obvious that the total number of animals included in these

four classes at time t equals N(t) = S(t) + I(t) + R(t) +V (t).

Moreover, this new fractional model includes eight nonnegative parameters. The pa-

rameter ω denotes the recruitment rate, δ shows the contact rate, ρ indicates the natural

death rate, υ represents the vaccinated rate, ζ is the waning recovery rate,̟ stands for the

waning immunity rate of vaccinated animals, τ indicates the disease-induced death rate,

and the parameter κ represents the recovery rate of animals. Besides, we need to notice

that in the first-order ordinary system (5) of the diseasemodel, the right-hand sides of four

equations have dimensions (time)–1, but when we convert an integer order of these equa-

tions into the fractional order ̺, the dimensions of the left-hand sides of four equations

equal (time)–̺ . To match the dimensions of both sides of these differential equations, we

have to change the dimensions of all nonnegative parameters ω, δ, ρ , υ , ζ , ̟ , τ , and κ . In

this position the modified version of the fractional system of the anthrax disease model

formulated by (6) is as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

CFD
̺

0S(t) = ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t) + ζ ̺R(t) +̟ ̺V (t),

CFD
̺

0 I(t) = δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t),

CFD
̺

0R(t) = κ̺I(t) – (ρ̺ + ζ ̺)R(t),

CFD
̺

0V (t) = υ̺S(t) – (ρ̺ +̟ ̺)V (t).

(7)

Numerical solutions of the modified fractional model (7) are obtained by utilizing the ho-

motopy analysis transform method (HATM). To do this, the fractional differential equa-

tions of the above model are converted into algebraic equations by means of the Laplace

transform. In the next section, we first derive an existence criterion of solutions for the

fractional system (7).

4 The existence criterion by Picard–Lindelof technique

Hereafter, we consider the following fractional model of the anthrax disease by employing

the Caputo–Fabrizio derivative:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

CFD
̺

0S(t) = ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t) + ζ ̺R(t) +̟ ̺V (t),

CFD
̺

0 I(t) = δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t),

CFD
̺

0R(t) = κ̺I(t) – (ρ̺ + ζ ̺)R(t),

CFD
̺

0V (t) = υ̺S(t) – (ρ̺ +̟ ̺)V (t),

(8)

furnished with initial conditions S(0) = S̆0, I(0) = Ĭ0, R(0) = R̆0, andV (0) = V̆0. To check the

existence of solutions for the modified fractional system (8) of the anthrax disease model,

we utilize the Picard–Lindelof technique. To do this, we first need to convert the anthrax
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disease model (8) into a fractional integral equation. In other words, we apply the frac-

tional CF -integral operator defined by Losada and Nieto [44] to both sides of differential

equations (8). Then taking into account (S(0), I(0),R(0),V (0)) = (S̆0, Ĭ0, R̆0, V̆0), we have

S(t) = S̆0

+
2(1 – ̺)

(2 – ̺)M(̺)

(

ω̺ – δ̺S(t)I(t) –
(

ρ̺ + υ̺
)

S(t) + ζ ̺R(t) +̟ ̺V (t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

[

ω̺ – δ̺S(z)I(z) –
(

ρ̺ + υ̺
)

S(z) + ζ ̺R(z) +̟ ̺V (z)
]

dz, (9)

I(t) = Ĭ0 +
2(1 – ̺)

(2 – ̺)M(̺)

(

δ̺S(t)I(t) –
(

ρ̺ + τ ̺ + κ̺
)

I(t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

[

δ̺S(z)I(z) –
(

ρ̺ + τ ̺ + κ̺
)

I(z)
]

dz, (10)

R(t) = R̆0 +
2(1 – ̺)

(2 – ̺)M(̺)

(

κ̺I(t) –
(

ρ̺ + ζ ̺
)

R(t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

[

κ̺I(z) –
(

ρ̺ + ζ ̺
)

R(z)
]

dz, (11)

V (t) = V̆0 +
2(1 – ̺)

(2 – ̺)M(̺)

(

υ̺S(t) –
(

ρ̺ +̟ ̺
)

V (t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

[

υ̺S(z) –
(

ρ̺ +̟ ̺
)

V (z)
]

dz. (12)

Now, due to (9)–(12), we define the Picard iterative algorithm as follows (n = 0, 1, 2, . . . ):

S0(t) = S̆0, I0(t) = Ĭ0, R0(t) = R̆0, V0(t) = V̆0, (13)

and

Sn+1(t) =
2(1 – ̺)

(2 – ̺)M(̺)

×
(

ω̺ – δ̺Sn(t)In(t) –
(

ρ̺ + υ̺
)

Sn(t) + ζ ̺Rn(t) +̟ ̺Vn(t)
)

+
2̺

(2 – ̺)M(̺)

×

∫ t

0

[

ω̺ – δ̺Sn(z)In(z) –
(

ρ̺ + υ̺
)

Sn(z) + ζ ̺Rn(z) +̟ ̺Vn(z)
]

dz, (14)

In+1(t) =
2(1 – ̺)

(2 – ̺)M(̺)

(

δ̺Sn(t)In(t) –
(

ρ̺ + τ ̺ + κ̺
)

In(t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

[

δ̺Sn(z)In(z) –
(

ρ̺ + τ ̺ + κ̺
)

In(z)
]

dz, (15)

Rn+1(t) =
2(1 – ̺)

(2 – ̺)M(̺)

(

κ̺In(t) –
(

ρ̺ + ζ ̺
)

Rn(t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

[

κ̺In(z) –
(

ρ̺ + ζ ̺
)

Rn(z)
]

dz, (16)
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Vn+1(t) =
2(1 – ̺)

(2 – ̺)M(̺)

(

υ̺Sn(t) –
(

ρ̺ +̟ ̺
)

Vn(t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

[

υ̺Sn(z) –
(

ρ̺ +̟ ̺
)

Vn(z)
]

dz. (17)

Nowwe assume thatwe can obtain the exact solutions of the fractional system (8) by taking

the limits of both sides of (14)–(17) as n tends to infinity. In other words, the solutions are

obtained as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

limn→∞ Sn(t) = S(t),

limn→∞ In(t) = I(t),

limn→∞ Rn(t) = R(t),

limn→∞ Vn(t) = V (t).

(18)

Here we are ready to derive the existence criterion and the uniqueness of the solutions

based on the Picard–Lindelof approach. To reach this goal, define the following operators:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ϒ1(t,S) := ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t) + ζ ̺R(t) +̟ ̺V (t),

ϒ2(t, I) := δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t),

ϒ3(t,R) := κ̺I(t) – (ρ̺ + ζ ̺)R(t),

ϒ4(t,V ) := υ̺S(t) – (ρ̺ +̟ ̺)V (t),

(19)

where ϒ1(t,S), ϒ2(t, I), ϒ3(t,R), and ϒ4(t,V ) are contractions with respect to S, I , R, and

V for the first, second, third, and fourth functions, respectively. Furthermore, we consider

the following product spaces:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Ia,b1 := [t – a, t + a]× [S – b1,S + b1] = A× B1,

Ia,b2 := [t – a, t + a]× [I – b2, I + b2] = A× B2,

Ia,b3 := [t – a, t + a]× [R – b3,R + b3] = A× B3,

Ia,b4 := [t – a, t + a]× [V – b4,V + b4] = A× B4.

(20)

Take

ϒ∗
1 = sup

(t,S)∈Ia,b1

∥

∥ϒ1

(

t,S(t)
)
∥

∥, ϒ∗
2 = sup

(t,I)∈Ia,b2

∥

∥ϒ2

(

t, I(t)
)
∥

∥,

ϒ∗
3 = sup

(t,R)∈Ia,b3

∥

∥ϒ3

(

t,R(t)
)
∥

∥,

and

ϒ∗
4 = sup

(t,V )∈Ia,b4

∥

∥ϒ4

(

t,V (t)
)
∥

∥.

In this position, we define the Picard operator

O : C(A,B1,B2,B3,B4) → C(A,B1,B2,B3,B4)
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as follows:

O
(

W(t)
)

=W0(t) +
2(1 – ̺)

(2 – ̺)M(̺)
G
(

t,W(t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

G
(

z,W(z)
)

dz, (21)

so thatW(t) = {S(t), I(t),R(t),V (t)},W0(t) = {S̆0, Ĭ0, R̆0, V̆0}, and

G
(

t,W(t)
)

=
{

ϒ1

(

t,S(t)
)

,ϒ2

(

t, I(t)
)

,ϒ3

(

t,R(t)
)

,ϒ4

(

t,V (t)
)}

. (22)

To apply the Picard theorem, we define the uniform norm on the space

C(A,B1,B2,B3,B4)

as ‖W‖∞ = supt∈[t–a,t+a]=A |W(t)|. In the following, we assume that all solution functions

are bounded during a time interval, that is,

‖W‖∞ ≤ max{b1,b2,b3,b4} = b. (23)

Moreover, let us assume that ϒ∗ = max{ϒ∗
1 ,ϒ

∗
2 ,ϒ

∗
3 ,ϒ

∗
4 } and that there is t0 with t ≤ t0.

Then we have

∥

∥OW(t) –W0(t)
∥

∥

=

∥

∥

∥

∥

2(1 – ̺)

(2 – ̺)M(̺)
G
(

t,W(t)
)

+
2̺

(2 – ̺)M(̺)

∫ t

0

G
(

z,W(z)
)

dz

∥

∥

∥

∥

≤
2(1 – ̺)

(2 – ̺)M(̺)

∥

∥G
(

t,W(t)
)
∥

∥ +
2̺

(2 – ̺)M(̺)

∫ t

0

∥

∥G
(

z,W(z)
)
∥

∥dz

≤

[

2(1 – ̺)

(2 – ̺)M(̺)
+

2̺t0

(2 – ̺)M(̺)

]

ϒ∗ = μ∗ϒ∗ ≤ b,

where we assume that μ∗ < b
ϒ∗ and also μ∗ = 2(1–̺)

(2–̺)M(̺)
+ 2̺t0

(2–̺)M(̺)
. Finally, we intend to

show that the Picard operator O is a contraction. Since the functions ϒ1, ϒ2, ϒ3, and ϒ4

are contractions, for allW1,W2 ∈ C(A,B1,B2,B3,B4), we can write

∥

∥G
(

t,W1(t)
)

– G
(

t,W2(t)
)
∥

∥ ≤ λ∗
∥

∥W1(t) –W2(t)
∥

∥, (24)

where λ∗ < 1 is the contraction constant. At thismoment, using the definition of the Picard

operatorO given in (21), inequality (24), and the equality

‖OW1 –OW1‖ = sup
t∈A

∣

∣W1(t) –W2(t)
∣

∣,

we get

∥

∥O
(

W1(t)
)

–O
(

W2(t)
)
∥

∥ =

∥

∥

∥

∥

2(1 – ̺)

(2 – ̺)M(̺)

[

G
(

t,W1(t)
)

– G
(

t,W2(t)
)]

+
2̺

(2 – ̺)M(̺)

∫ t

0

[

G
(

z,W1(z)
)

– G
(

z,W2(z)
)]

dz

∥

∥

∥

∥
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≤
2(1 – ̺)

(2 – ̺)M(̺)

∥

∥G
(

t,W1(t)
)

– G
(

t,W2(t)
)
∥

∥

+
2̺

(2 – ̺)M(̺)

∫ t

0

∥

∥G
(

z,W1(z)
)

– G
(

z,W2(z)
)
∥

∥dz

≤
2(1 – ̺)λ∗

(2 – ̺)M(̺)

∥

∥W1(t) –W2(t)
∥

∥

+
2̺λ∗

(2 – ̺)M(̺)

∫ t

0

∥

∥W1(z) –W2(z)
∥

∥dz

≤

[

2(1 – ̺)

(2 – ̺)M(̺)
+

2̺t0

(2 – ̺)M(̺)

]

λ∗
∥

∥W1(t) –W2(t)
∥

∥

= μ∗λ∗
∥

∥W1(t) –W2(t)
∥

∥.

Thus we obtain

‖OW1 –OW2‖∞ ≤ μ∗λ∗‖W1 –W2‖∞,

which indicates that the operator O is a contraction with constant μ∗λ∗ < 1 since λ∗ < 1.

Hence the Banach fixed point theorem implies that the fractional system (8) of the anthrax

disease model has a unique solution.

5 Equilibrium points of the fractional CF -model (8)

In this section, we intend to obtain the equilibrium points of the fractional anthrax disease

CF -model (8). For this aim, we first solve the following homogeneous equations:

CFD
̺

0S(t) =
CFD

̺

0 I(t) =
CFD

̺

0R(t) =
CFD

̺

0V (t) = 0. (25)

Consequently, a disease-free equilibrium point of the fractional CF -system (8) is given by

E0 = (S0, I0,R0,V 0), where

S0 =
(ρ̺ +̟ ̺)ω̺

ρ̺(ρ̺ +̟ ̺ + υ̺)
, I0 = 0, R0 = 0, V 0 =

υ̺ω̺

ρ̺(ρ̺ +̟ ̺ + υ̺)
. (26)

To find the endemic equilibrium point for the fractional CF -system (8), we need to de-

termine a basic reproduction number R0. This quantity appears by applying the next-

generation matrix process introduced by Van den Driessche [51]. To obtain the basic re-

production numberR0, set

A =

⎡

⎢

⎢

⎢

⎣

δ̺SI

0

0

0

⎤

⎥

⎥

⎥

⎦

and B =

⎡

⎢

⎢

⎢

⎣

(ρ̺ + τ ̺ + κ̺)I

–ω̺ + δ̺SI + (ρ̺ + υ̺)S – ζ ̺R –̟ ̺V

–κ̺I + (ρ̺ + ζ ̺)R

–υ̺S + (ρ̺ +̟ ̺)V

⎤

⎥

⎥

⎥

⎦

.
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Then the Jacobian matrices of both matrices A and B at disease-free equilibrium point E0

given in (26) are defined as follows:

[

J(A)
](

E0
)

=

⎡

⎢

⎢

⎢

⎣

0 δ̺ω̺(ρ̺+̟̺)
ρ̺(ρ̺+̟̺+υ̺)

0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

(27)

and

[

J(B)
](

E0
)

=

⎡

⎢

⎢

⎢

⎣

0 ρ̺ + τ ̺ + κ̺ 0 0

0 δ̺ω̺(ρ̺+̟̺)
ρ̺(ρ̺+̟̺+υ̺)

–ζ ̺ –̟ ̺

0 –κ̺ ρ̺ + ζ ̺ 0

–υ̺ 0 0 ρ̺ +̟ ̺

⎤

⎥

⎥

⎥

⎦

. (28)

In view of (27) and (28), by some routine computations we obtain

[

J(A)
](

E0
)

·
[

J(B)
]–1(

E0
)

=

⎡

⎢

⎢

⎢

⎣

δ̺ω̺(ρ̺+̟̺)
ρ̺(ρ̺+τ̺+κ̺)(ρ̺+̟̺+υ̺)

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

.

In the final step, we find the eigenvalue of the characteristic equation

det
[

I4×4 – λ
([

J(A)
](

E0
)

·
[

J(B)
]–1(

E0
))]

= 0,

and so the basic reproduction numberR0 is obtained as follows:

R0 = λ =
ρ̺(ρ̺ + τ ̺ + κ̺)(ρ̺ +̟ ̺ + υ̺)

δ̺ω̺(ρ̺ +̟ ̺)
. (29)

The basic reproduction numberR0 is a metric to measure the transmission potential of a

infectious disease over the time. When the value of R0 is greater than one, the fractional

CF -system (8) has an endemic equilibrium point E∗ = (S∗, I∗,R∗,V ∗). More precisely, to

obtain an endemic equilibrium point E∗, we have to solve equations (25) assuming that all

variables S(t), I(t), R(t), and V (t) are nonzero. Equations (25) can be rewritten as follows:

ω̺ – δ̺S(t)I(t) –
(

ρ̺ + υ̺
)

S(t) + ζ ̺R(t) +̟ ̺V (t) = 0, (30)

δ̺S(t)I(t) –
(

ρ̺ + τ ̺ + κ̺
)

I(t) = 0, (31)

κ̺I(t) –
(

ρ̺ + ζ ̺
)

R(t) = 0, (32)

υ̺S(t) –
(

ρ̺ +̟ ̺
)

V (t) = 0. (33)

From equation (31) we have I(t)[δ̺S(t) – (ρ̺ + τ ̺ + κ̺)] = 0. Since I(t) �= 0, we can obtain

S∗(t) = ρ̺+τ̺+κ̺

δ̺ . Moreover, from equation (33) we have V ∗(t) = υ̺(ρ̺+τ̺+κ̺)
δ̺(ρ̺+̟̺)

. Finally, if we

combine equations (30) and (31), then by solving the obtained system we get

R∗(t) =
κ̺[ω̺δ̺(ρ̺ +̟ ̺) – ρ̺(ρ̺ + τ ̺ + κ̺)(ρ̺ + υ̺ +̟ ̺)]

δ̺(ρ̺ +̟ ̺)[ρ̺(ρ̺ + τ ̺ + κ̺ + ζ ̺) + ζ ̺τ ̺]
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and

I∗(t) =
(ρ̺ + ζ ̺)[ω̺δ̺(ρ̺ +̟ ̺) – ρ̺(ρ̺ + τ ̺ + κ̺)(ρ̺ + υ̺ +̟ ̺)]

δ̺(ρ̺ +̟ ̺)[ρ̺(ρ̺ + τ ̺ + κ̺ + ζ ̺) + ζ ̺τ ̺]
.

Hence the components of an endemic equilibrium point E∗ = (S∗, I∗,R∗,V ∗) for the frac-

tional CF -system (8) are obtained as before.

In this position, we want to check the asymptotic stability property of the disease-free

equilibrium point E0 obtained in (26) for the fractional CF -system (8) of the anthrax dis-

easemodel. By some simple computations we get that the Jacobianmatrix of the fractional

CF -system (8) at disease-free equilibrium point E0 is defined by

J
(

E0
)

=

⎡

⎢

⎢

⎢

⎣

–(ρ̺ + υ̺) – δ̺ω̺(ρ̺+̟̺)
ρ̺(ρ̺+̟̺+υ̺)

ζ ̺ ̟ ̺

0 δ̺ω̺(ρ̺+̟̺)
ρ̺(ρ̺+̟̺+υ̺)

– (ρ̺ + τ ̺ + κ̺) 0 0

0 κ̺ –(ρ̺ + ζ ̺) 0

υ̺ 0 0 –(ρ̺ +̟ ̺)

⎤

⎥

⎥

⎥

⎦

.

Hence the characteristic equation of the mentioned CF -system (8) is given by

det
[

s
(

I4×4 – (1 – ̺)J
(

E0
))

– ̺J
(

E0
)]

= 0. (34)

Then we can state the following theorem and confirm that the disease-free equilibrium

point E0 of CF -system (8) is asymptotically stable.

Theorem 5.1 The disease-free equilibrium point E0 of the fractional CF -system of the

anthrax disease model (8) has the asymptotic stability property whenever real parts of all

roots of the characteristic equation (34) are negative.

Proof In view of the Jacobian matrix J (E0), applying the matrix equation (34), we obtain

the characteristic equation of the fractional CF -system (8)

[

s
(

1 – (1 – ̺)P∗
)

– ̺P∗
][

s
(

1 + (1 – ̺)
(

ρ̺ + ζ ̺
))

+ ̺
(

ρ̺ + ζ ̺
)]

×
([

s
(

1 + (1 – ̺)
(

ρ̺ + υ̺
))

+ ̺
(

ρ̺ + υ̺
)]

×
[

s
(

1 + (1 – ̺)
(

ρ̺ +̟ ̺
))

+ ̺
(

ρ̺ +̟ ̺
)]

–
[

s(1 – ̺)υ̺ – ̺υ̺
][

s(1 – ̺)̟ ̺ – ̺̟ ̺
])

= 0, (35)

where P∗ = δ̺ω̺(ρ̺+̟̺)
ρ̺(ρ̺+̟̺+υ̺)

– (ρ̺ + τ ̺ + κ̺). The eigenvalues of this characteristic equation

are

s1 =
̺P∗

1 – (1 – ̺)P∗
, s2 =

–̺(ρ̺ + ζ ̺)

1 + (1 – ̺)(ρ̺ + ζ ̺)
,

and the roots of the equation s2 + B∗s +C∗ = 0 where

B∗ =
̺(2ρ̺ +̟ ̺ + υ̺) + 2̺(1 – ̺)[ρ2̺ + ρ̺̟ ̺ + ρ̺υ̺ + 2υ̺̟ ̺]

1 + (1 – ̺)[(ρ̺ +̟ ̺)(ρ̺ + υ̺)] + (1 – ̺)2[ρ̺(ρ̺ +̟ ̺ + υ̺)]
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and

C∗ =
̺2[ρ̺(ρ̺ +̟ ̺ + υ̺)]

1 + (1 – ̺)[(ρ̺ +̟ ̺)(ρ̺ + υ̺)] + (1 – ̺)2[ρ̺(ρ̺ +̟ ̺ + υ̺)]
.

If (1–̺)P∗ > 1, then since ̺ ∈ (0, 1], P∗ > 0, and so δ̺ω̺(ρ̺+̟̺)
ρ̺(ρ̺+̟̺+υ̺)

> (ρ̺+τ ̺+κ̺). Thismeans

that s1 is a root with negative sign. Also, as we said before, all parameters are positive, so

it is clear that s2 is negative. Moreover, the roots of equation s2 + B∗s + C∗ = 0 must also

be negative. To reach this goal, since ̺ ∈ (0, 1], B∗ > 0 and C∗ > 0, and thus by the Routh–

Hurwitz criterion we find that all roots of the characteristic equation (35) are negative.

Hence if (1 – ̺)P∗ > 1, then the disease-free equilibrium point E0 of the fractional CF -

system of the anthrax disease model (8) has the asymptotic stability property, and the

proof is completed. �

6 Stability analysis via iterative approach

To analyze the stability of the fractional anthrax disease model (8), we provide an iterative

formula by means of the Sumudu transform. For this aim, we get

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ST[CFD
̺

0S(t)](s) = ST[ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t) + ζ ̺R(t) +̟ ̺V (t)](s),

ST[CFD
̺

0 I(t)](s) = ST[δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t)](s),

ST[CFD
̺

0R(t)](s) = ST[κ̺I(t) – (ρ̺ + ζ ̺)R(t)](s),

ST[CFD
̺

0V (t)](s) = ST[υ̺S(t) – (ρ̺ +̟ ̺)V (t)](s).

(36)

By the definition of the Sumudu transform for the fractional CF -derivative we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M(̺)
1–̺+̺s

(ST[S(t)](s) – S(0))

= ST[ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t) + ζ ̺R(t) +̟ ̺V (t)](s),

M(̺)
1–̺+̺s

(ST[I(t)](s) – I(0)) = ST[δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t)](s),

M(̺)
1–̺+̺s

(ST[R(t)](s) – R(0)) = ST[κ̺I(t) – (ρ̺ + ζ ̺)R(t)](s),

M(̺)
1–̺+̺s

(ST[V (t)](s) –V (0)) = ST[υ̺S(t) – (ρ̺ +̟ ̺)V (t)](s).

(37)

By rewriting the formulas we obtain the following equalities:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ST[S(t)](s)

= S(0) + 1–̺+̺s
M(̺)

ST[ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t) + ζ ̺R(t) +̟ ̺V (t)](s),

ST[I(t)](s) = I(0) + 1–̺+̺s
M(̺)

ST[δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t)](s),

ST[R(t)](s) = R(0) + 1–̺+̺s
M(̺)

ST[κ̺I(t) – (ρ̺ + ζ ̺)R(t)](s),

ST[V (t)](s) = V (0) + 1–̺+̺s
M(̺)

ST[υ̺S(t) – (ρ̺ +̟ ̺)V (t)](s).

(38)
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Now, after taking the inverse Sumudu transformonboth sides of system (38), thewe obtain

the following recursive equations for the fractional CF -model (8):

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Sn+1(t)

= Sn(0) + ST
–1[ 1–̺+̺s

M(̺)
ST[ω̺ – δ̺Sn(t)In(t) – (ρ̺ + υ̺)Sn(t) + ζ ̺Rn(t) +̟ ̺Vn(t)](s)],

In+1(t) = In(0) + ST
–1[ 1–̺+̺s

M(̺)
ST[δ̺Sn(t)In(t) – (ρ̺ + τ ̺ + κ̺)In(t)](s)],

Rn+1(t) = Rn(0) + ST
–1[ 1–̺+̺s

M(̺)
ST[κ̺In(t) – (ρ̺ + ζ ̺)Rn(t)](s)],

Vn+1(t) = Vn(0) + ST
–1[ 1–̺+̺s

M(̺)
ST[υ̺Sn(t) – (ρ̺ +̟ ̺)Vn(t)](s)].

(39)

On the other hand, we obtain the approximate solutions of this CF -system by

S(t) = lim
n→∞

Sn(t), I(t) = lim
n→∞

In(t),

R(t) = lim
n→∞

Rn(t), V (t) = lim
n→∞

Vn(t).
(40)

Now we can check the stability of the fractional CF -system by considering the above

notions and relations.

Theorem 6.1 Suppose that � is a self-map defined as follows:

�
(

Sn(t)
)

= Sn+1(t) = Sn(t)

+ ST
–1

[

1 – ̺ + ̺s

M(̺)
ST

[

ω̺ – δ̺Sn(t)In(t)

–
(

ρ̺ + υ̺
)

Sn(t) + ζ ̺Rn(t) +̟ ̺Vn(t)
]

(s)

]

,

�
(

In(t)
)

= In+1(t) = In(t)

+ ST
–1

[

1 – ̺ + ̺s

M(̺)
ST

[

δ̺Sn(t)In(t) –
(

ρ̺ + τ ̺ + κ̺
)

In(t)
]

(s)

]

,

�
(

Rn(t)
)

= Rn+1(t) = Rn(t)

+ ST
–1

[

1 – ̺ + ̺s

M(̺)
ST

[

κ̺In(t) –
(

ρ̺ + ζ ̺
)

Rn(t)
]

(s)

]

,

�
(

Vn(t)
)

= Vn+1(t) = Vn(t)

+ ST
–1

[

1 – ̺ + ̺s

M(̺)
ST

[

υ̺Sn(t) –
(

ρ̺ +̟ ̺
)

Vn(t)
]

(s)

]

. (41)

Then the iteration fractional CF -system (41) is �-stable in L1(a,b) whenever we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 – δ̺K∗
1�1(t) – δ̺K∗

2�2(t) – (ρ̺ + υ̺)�3(t) + ζ ̺�4(t) +̟ ̺�5(t) < 1,

1 + δ̺K∗
1�6(t) + δ̺K∗

2�7(t) – (ρ̺ + τ ̺ + κ̺)�8(t) < 1,

1 + κ̺�9(t) – (ρ̺ + ζ ̺)�10(t) < 1,

1 + υ̺�11(t) – (ρ̺ +̟ ̺)�12(t) < 1,

(42)

where the functions �j, j = 1, 2, . . . , 12, are introduced further.
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Proof To begin the proof, we intend to prove that the operator � has a fixed point. For all

n,m ∈N, we may write

∥

∥�
(

Sn(t)
)

–�
(

Sm(t)
)
∥

∥

=
∥

∥Sn+1(t) – Sm+1(t)
∥

∥

=

∥

∥

∥

∥

Sn(t) + ST
–1

[

1 – ̺ + ̺s

M(̺)

× ST
[

ω̺ – δ̺Sn(t)In(t) –
(

ρ̺ + υ̺
)

Sn(t) + ζ ̺Rn(t) +̟ ̺Vn(t)
]

(s)

]

– Sm(t) – ST
–1

[

1 – ̺ + ̺s

M(̺)

× ST
[

ω̺ – δ̺Sm(t)Im(t) –
(

ρ̺ + υ̺
)

Sm(t) + ζ ̺Rm(t) +̟ ̺Vm(t)
]

(s)

]
∥

∥

∥

∥

≤
∥

∥Sn(t) – Sm(t)
∥

∥ +

∥

∥

∥

∥

ST
–1

[

1 – ̺ + ̺s

M(̺)
ST

[

–δ̺
(

Sn(t)In(t) – Sm(t)Im(t)
)

–
(

ρ̺ + υ̺
)(

Sn(t) – Sm(t)
)

+ ζ ̺
(

Rn(t) – Rm(t)
)

+̟ ̺
(

Vn(t) –Vm(t)
)]

(s)

]∥

∥

∥

∥

≤
∥

∥Sn(t) – Sm(t)
∥

∥ + ST
–1

[

1 – ̺ + ̺s

M(̺)
ST

[
∥

∥–δ̺Sn(t)
(

In(t) – Im(t)
)
∥

∥

+
∥

∥–δ̺Im(t)
(

Sn(t) – Sm(t)
)
∥

∥

+
∥

∥–
(

ρ̺ + υ̺
)(

Sn(t) – Sm(t)
)
∥

∥ +
∥

∥ζ ̺
(

Rn(t) – Rm(t)
)
∥

∥

+
∥

∥̟ ̺
(

Vn(t) –Vm(t)
)
∥

∥

]

(s)

]

. (43)

Because of the same role of all four solutions, we will consider

∥

∥Sn(t) – Sm(t)
∥

∥ ≃
∥

∥In(t) – Im(t)
∥

∥ ≃
∥

∥Rn(t) – Rm(t)
∥

∥ ≃
∥

∥Vn(t) –Vm(t)
∥

∥. (44)

Then from (43) and (44) we have

∥

∥�
(

Sn(t)
)

–�
(

Sm(t)
)
∥

∥ ≤
∥

∥Sn(t) – Sm(t)
∥

∥

+ ST
–1

[

1 – ̺ + ̺s

M(̺)
ST

[
∥

∥–δ̺Sn(t)
(

Sn(t) – Sm(t)
)
∥

∥

+
∥

∥–δ̺Im(t)
(

Sn(t) – Sm(t)
)
∥

∥ +
∥

∥–
(

ρ̺ + υ̺
)(

Sn(t) – Sm(t)
)
∥

∥

+
∥

∥ζ ̺
(

Sn(t) – Sm(t)
)
∥

∥ +
∥

∥̟ ̺
(

Sn(t) – Sm(t)
)
∥

∥

]

(s)

]

.

Since Sn, Im, Rn, and Vn are convergent sequences, they are bounded. Hence there are

constants K∗
1 , K

∗
2 , K

∗
3 , and K∗

4 such that for all t andm,n ∈N, we have

∥

∥Sn(t)
∥

∥ ≤ K∗
1 ,

∥

∥Im(t)
∥

∥ ≤ K∗
2 ,

∥

∥Rn(t)
∥

∥ ≤ K∗
3 ,

∥

∥Vn(t)
∥

∥ ≤ K∗
4 .
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Therefore we obtain

∥

∥�
(

Sn(t)
)

–�
(

Sm(t)
)
∥

∥

≤
∥

∥Sn(t) – Sm(t)
∥

∥

+ ST
–1

[

1 – ̺ + ̺s

M(̺)
ST

[

–δ̺K∗
1

∥

∥Sn(t) – Sm(t)
∥

∥

– δ̺K∗
2

∥

∥Sn(t) – Sm(t)
∥

∥ –
(

ρ̺ + υ̺
)
∥

∥Sn(t) – Sm(t)
∥

∥

+ ζ ̺
∥

∥Sn(t) – Sm(t)
∥

∥ +̟ ̺
∥

∥Sn(t) – Sm(t)
∥

∥

]

(s)

]

=
(

1 – δ̺K∗
1�1(t) – δ̺K∗

2�2(t) –
(

ρ̺ + υ̺
)

�3(t) + ζ ̺�4(t) +̟ ̺�5(t)
)

×
∥

∥Sn(t) – Sm(t)
∥

∥,

where �j, j = 1, 2, . . . , 5, are functions arising from ST
–1[ 1–̺+̺s

M(̺)
ST[·]]. In the same manner,

we get

∥

∥�
(

In(t)
)

–�
(

Im(t)
)
∥

∥ ≤
(

1 + δ̺K∗
1�6(t) + δ̺K∗

2�7(t) –
(

ρ̺ + τ ̺ + κ̺
)

�8(t)
)

×
∥

∥In(t) – Im(t)
∥

∥,

∥

∥�
(

Rn(t)
)

–�
(

Rm(t)
)
∥

∥ ≤
(

1 + κ̺�9(t) –
(

ρ̺ + ζ ̺
)

�10(t)
)
∥

∥Rn(t) – Rm(t)
∥

∥,

and

∥

∥�
(

Vn(t)
)

–�
(

Vm(t)
)
∥

∥ ≤
(

1 + υ̺�11(t) –
(

ρ̺ +̟ ̺
)

�12(t)
)
∥

∥Vn(t) –Vm(t)
∥

∥.

Under hypotheses (42), the self-map� is a contraction, and thus it possesses a fixed point.

Nowwe claim that� satisfies all assumptions of Theorem 2.2. To prove this claim, we can

easily assume that K = (0, 0, 0) and

k =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 – δ̺K∗
1�1(t) – δ̺K∗

2�2(t) – (ρ̺ + υ̺)�3(t) + ζ ̺�4(t) +̟ ̺�5(t),

1 + δ̺K∗
1�6(t) + δ̺K∗

2�7(t) – (ρ̺ + τ ̺ + κ̺)�8(t),

1 + κ̺�9(t) – (ρ̺ + ζ ̺)�10(t),

1 + υ̺�11(t) – (ρ̺ +̟ ̺)�12(t).

(45)

Then all assumptions of Theorem 2.2 are fulfilled, and so � is Picard �-stable, and the

proof is completed. �

7 Analytical solutions of model (8) by HATMmethod

In this section, we implement the homotopy analysis transformmethod (HATM) to solve

the fractional anthrax disease model (8). This method is an elegant combination of the

standard Laplace transformmethod [38] and homotopy analysis method [39]. The advan-

tage of this well-developed method is its flexible capability of combining two powerful

methods to obtain exact and approximate analytical solutions for the existing fractional

nonlinear equations. To solve the CF -fractional anthrax disease model (8) by means of
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HATM, we first take the Laplace transform of both sides of fractional differential equa-

tions of CF -system (8). Thus we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

L[CFD
̺

0S(t)](s) = L[ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t) + ζ ̺R(t) +̟ ̺V (t)](s),

L[CFD
̺

0 I(t)](s) = L[δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t)](s),

L[CFD
̺

0R(t)](s) = L[κ̺I(t) – (ρ̺ + ζ ̺)R(t)](s),

L[CFD
̺

0V (t)](s) = L[υ̺S(t) – (ρ̺ +̟ ̺)V (t)](s).

Now by the definition of the Laplace transform of the fractional CF -derivative we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

sL[S(t)]–S(0)
s+̺(1–s)

= L[ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t) + ζ ̺R(t) +̟ ̺V (t)](s),

sL[I(t)]–I(0)
s+̺(1–s)

= L[δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t)](s),

sL[R(t)]–R(0)
s+̺(1–s)

= L[κ̺I(t) – (ρ̺ + ζ ̺)R(t)](s),

sL[V (t)]–V (0)
s+̺(1–s)

= L[υ̺S(t) – (ρ̺ +̟ ̺)V (t)](s).

Rewriting these equalities, we get

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L[S(t)] – S̆0
s
– s+̺(1–s)

s
L[ω̺ – δ̺S(t)I(t) – (ρ̺ + υ̺)S(t)

+ ζ ̺R(t) +̟ ̺V (t)](s) = 0,

L[I(t)] – Ĭ0
s
– s+̺(1–s)

s
L[δ̺S(t)I(t) – (ρ̺ + τ ̺ + κ̺)I(t)](s) = 0,

L[R(t)] – R̆0
s
– s+̺(1–s)

s
L[κ̺I(t) – (ρ̺ + ζ ̺)R(t)](s) = 0,

L[V (t)] – V̆0
s
– s+̺(1–s)

s
L[υ̺S(t) – (ρ̺ +̟ ̺)V (t)](s) = 0.

(46)

By utilizing the homotopy analysis method we further find series solutions for the CF -

fractional anthrax disease model (8). To reach this goal, we consider q ∈ [0, 1] as the em-

bedding parameter. The HAM technique is based on continuous mappings

Q1(t;q) → S(t), Q2(t;q) → I(t), Q3(t;q) → R(t), Q4(t;q) → V (t),

so that as q increases from 0 to 1,Qj(t;q) (j = 1, 2, 3, 4) vary from the initial approximation

to the exact solution. To observe this subject, we define the following nonlinear operators:

K1

(

Q1(t;q),Q2(t;q),Q3(t;q),Q4(t;q)
)

:= L
[

Q1(t;q)
]

–
S̆0

s
–
s + ̺(1 – s)

s

×L
[

ω̺ – δ̺Q1(t;q)Q2(t;q) –
(

ρ̺ + υ̺
)

Q1(t;q) + ζ ̺Q3(t;q) +̟ ̺Q4(t;q)
]

(s),

K2

(

Q1(t;q),Q2(t;q),Q3(t;q),Q4(t;q)
)

:= L
[

Q2(t;q)
]

–
Ĭ0

s
–
s + ̺(1 – s)

s

×L
[

δ̺Q1(t;q)Q2(t;q) –
(

ρ̺ + τ ̺ + κ̺
)

Q2(t;q)
]

(s),

K3

(

Q1(t;q),Q2(t;q),Q3(t;q),Q4(t;q)
)

:= L
[

Q3(t;q)
]

–
R̆0

s
–
s + ̺(1 – s)

s
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×L
[

κ̺Q2(t;q) –
(

ρ̺ + ζ ̺
)

Q3(t;q)
]

(s),

K4

(

Q1(t;q),Q2(t;q),Q3(t;q),Q4(t;q)
)

:= L
[

Q4(t;q)
]

–
V̆0

s
–
s + ̺(1 – s)

s

×L
[

υ̺Q1(t;q) –
(

ρ̺ +̟ ̺
)

Q4(t;q)
]

(s).

Then we construct the following collection of zero-order deformation equations [39]:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(1 – q)L[Q1(t;q) – S̆0] = qhH(t)K1(Q1(t;q),Q2(t;q),Q3(t;q),Q4(t;q)),

(1 – q)L[Q2(t;q) – Ĭ0] = qhH(t)K1(Q1(t;q),Q2(t;q),Q3(t;q),Q4(t;q)),

(1 – q)L[Q3(t;q) – R̆0] = qhH(t)K1(Q1(t;q),Q2(t;q),Q3(t;q),Q4(t;q)),

(1 – q)L[Q4(t;q) – V̆0] = qhH(t)K1(Q1(t;q),Q2(t;q),Q3(t;q),Q4(t;q)),

(47)

supplemented with initial conditions

Q1(0;q) = S̆0, Q2(0;q) = Ĭ0, Q3(0;q) = R̆0, Q4(0;q) = V̆0,

where q ∈ [0, 1] is the embedding parameter, h is a nonzero auxiliary parameter, H is an

auxiliary nonzero function, S̆0, Ĭ0, R̆0, and V̆0 are initial guesses of S(t), I(t), R(t), and V (t),

Qj(t;q) (j = 1, 2, 3, 4) are unknown functions, and L is the Laplace linear operator. It is

necessary to have great freedom to choose auxiliary things in HAM. It is obvious that by

letting q = 0 and q = 1 we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Q1(t; 0) = S̆0, Q1(t; 1) = S(t),

Q2(t; 0) = Ĭ0, Q2(t; 1) = I(t),

Q3(t; 0) = R̆0, Q3(t; 1) = R(t),

Q4(t; 0) = V̆0, Q4(t; 1) = V (t).

Then we can observe that by increasing q from 0 to 1 the solutions Q1(t;q), Q2(t;q),

Q3(t;q), and Q4(t;q) vary from the initial guesses S̆0, Ĭ0, R̆0, and V̆0 to S(t), I(t), R(t), and

V (t), respectively. In this step, we expand the functions Q1(t;q), Q2(t;q), Q3(t;q), and

Q4(t;q) by using Taylor’s series with respect to q. Then we get

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Q1(t;q) = S̆0 +
∑∞

r=1 Sr(t)q
r ,

Q2(t;q) = Ĭ0 +
∑∞

r=1 Ir(t)q
r ,

Q3(t;q) = R̆0 +
∑∞

r=1 Rr(t)q
r ,

Q4(t;q) = V̆0 +
∑∞

r=1Vr(t)q
r ,

(48)

where Sr(t) =
1
r!

∂rQ1(t;q)
∂qr

|q=0, Ir(t) =
1
r!

∂rQ2(t;q)
∂qr

|q=0, Rr(t) =
1
r!

∂rQ3(t;q)
∂qr

|q=0, and Vr(t) =
1
r!

×
∂rQ4(t;q)

∂qr
|q=0 are the constant coefficients of the series (48). If we choose a suitable auxiliary

linear operator, suitable initial guesses, a suitable auxiliary parameter h, and a suitable aux-

iliary function H , then the series (48) is convergent at q = 1, as proved by Liao [39] (also
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see [52, 53]). Thus we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Q1(t;q) = S̆0 +
∑∞

r=1 Sr(t),

Q2(t;q) = Ĭ0 +
∑∞

r=1 Ir(t),

Q3(t;q) = R̆0 +
∑∞

r=1 Rr(t),

Q4(t;q) = V̆0 +
∑∞

r=1Vr(t),

�⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

S(t) = S̆0 +
∑∞

r=1 Sr(t),

I(t) = Ĭ0 +
∑∞

r=1 Ir(t),

R(t) = R̆0 +
∑∞

r=1 Rr(t),

V (t) = V̆0 +
∑∞

r=1Vr(t),

(49)

which must be the solutions of the CF -fractional anthrax disease model (8). Now we pro-

duce the following rth-order deformation equations. Define the vectors

�Sr(t) =
{

S0(t),S1(t), . . . ,Sr(t)
}

(r = 1, 2, 3, . . . ),

�Ir(t) =
{

I0(t), I1(t), . . . , Ir(t)
}

(r = 1, 2, 3, . . . ),

�Rr(t) =
{

R0(t),R1(t), . . . ,Rr(t)
}

(r = 1, 2, 3, . . . ),

�Vr(t) =
{

V0(t),V1(t), . . . ,Vr(t)
}

(r = 1, 2, 3, . . . ).

We differentiate the zero-order deformation equations (47) r times with respect to the

embedding parameter q. Next, we take q = 0 and finally divide them by r!. In this case, we

obtain the following rth-order linear deformation equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

L[Sr(t) – σrSr–1(t)] = hHRS,r(�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)) (r = 1, 2, 3, . . . ),

L[Ir(t) – σrIr–1(t)] = hHRI,r(�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)) (r = 1, 2, 3, . . . ),

L[Rr(t) – σrRr–1(t)] = hHRR,r(�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)) (r = 1, 2, 3, . . . ),

L[Vr(t) – σrVr–1(t)] = hHRV ,r(�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)) (r = 1, 2, 3, . . . ),

(50)

furnished with initial values

S0(t) = S̆0, I0(t) = Ĭ0, R0(t) = R̆0, V0(t) = V̆0, (51)

where

σr =

⎧

⎨

⎩

0, r ≤ 1,

1, r > 1,

and

RS,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= L
[

Sr–1(t)
]

–
S̆0

s
(1 – σr) –

s + ̺(1 – s)

s

×L
[

ω̺ – δ̺Sr–1(t)Ir–1(t) –
(

ρ̺ + υ̺
)

Sr–1(t)

+ ζ ̺Rr–1(t) +̟ ̺Vr–1(t)
]

(s),

RI,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= L
[

Ir–1(t)
]

–
Ĭ0

s
(1 – σr) –

s + ̺(1 – s)

s
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×L
[

δ̺Sr–1(t)Ir–1(t) –
(

ρ̺ + τ ̺ + κ̺
)

Ir–1(t)
]

(s),

RR,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= L
[

Rr–1(t)
]

–
R̆0

s
(1 – σr) –

s + ̺(1 – s)

s

×L
[

κ̺Ir–1(t) –
(

ρ̺ + ζ ̺
)

Rr–1(t)
]

(s),

and

RV ,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= L
[

Vr–1(t)
]

–
V̆0

s
(1 – σr) –

s + ̺(1 – s)

s

×L
[

υ̺Sr–1(t) –
(

ρ̺ +̟ ̺
)

Vr–1(t)
]

(s).

Applying the inverse Laplace transform to both sides of (50), we obtain

Sr(t) = σrSr–1(t) + hHL
–1
[

RS,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)]

, (52)

Ir(t) = σrIr–1(t) + hHL
–1
[

RI,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)]

, (53)

Rr(t) = σrRr–1(t) + hHL
–1
[

RR,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)]

, (54)

Vr(t) = σrVr–1(t) + hHL
–1
[

RV ,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)]

(55)

for r = 1, 2, 3, . . . . For convenience, we can consider the nonzero auxiliary functionH to be

equal to unity. Now, if we solve equation (52) for r = 1, then in view of initial conditions

(51), we have

S1(t) = σ1S0(t) + hHL
–1
[

RS,1

(

�S0(t),�I0(t), �R0(t), �V0(t)
)]

= hHL
–1

[

L[S̆0] –
S̆0

s
(1 – σ1)

–
s + ̺(1 – s)

s
L
[

ω̺ – δ̺S̆0 Ĭ0 –
(

ρ̺ + υ̺
)

S̆0 + ζ ̺R̆0 +̟ ̺V̆0

]

]

= –hHL
–1

[

s + ̺(1 – s)

s2

(

ω̺ – δ̺S̆0 Ĭ0 –
(

ρ̺ + υ̺
)

S̆0 + ζ ̺R̆0 +̟ ̺V̆0

)

]

= –�̂1hHL
–1

[

s + ̺(1 – s)

s2

]

= –�̂1hH
(

1 + ̺(t – 1)
)

, (56)

where �̂1 = ω̺ – δ̺S̆0 Ĭ0 – (ρ̺ + υ̺)S̆0 + ζ ̺R̆0 + ̟ ̺V̆0. Hence, continuing similar compu-

tations on equations (53)–(55), we get

⎧

⎪

⎪

⎨

⎪

⎪

⎩

I1(t) = –�̂2hH(1 + ̺(t – 1)),

R1(t) = –�̂3hH(1 + ̺(t – 1)),

V1(t) = –�̂4hH(1 + ̺(t – 1)),

(57)
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where �̂2 = δ̺S̆0 Ĭ0–(ρ
̺ +τ ̺ +κ̺)Ĭ0, �̂3 = κ̺ Ĭ0–(ρ

̺ +ζ ̺)R̆0, and �̂4 = υ̺S̆0–(ρ
̺ +̟ ̺)V̆0.

Again, if we solve equation (52) for r = 2, then in view of (56)–(57), we have

S2(t) = S1(t) – �̂1h
2H2

(

1 + ̺(t – 1)
)

– hHω̺
(

1 + ̺(t – 1)
)

+ �̂1�̂2h
3H3δ̺

(

1 + 3̺(t – 1)

+ ̺2
(

2t2 – 6t + 3
)

+ ̺3

(

t3

3
– 2t2 + 3t – 1

))

– �̂1h
2H2

(

ρ̺ + υ̺
)

(

1 + 2̺(t – 1) + ̺2

(

t2

2
– 2t + 1

))

+ �̂3h
2H2ζ ̺

(

1 + 2̺(t – 1) + ̺2

(

t2

2
– 2t + 1

))

+ �̂4h
2H2̟ ̺

(

1 + 2̺(t – 1) + ̺2

(

t2

2
– 2t + 1

))

. (58)

Similarly, by solving the equations (53)–(55) for r = 2 we get the following functions with

respect to t:

I2(t) = I1(t) – �̂2h
2H2

(

1 + ̺(t – 1)
)

– �̂1�̂2h
3H3δ̺

(

1 + 3̺(t – 1)

+ ̺2
(

2t2 – 6t + 3
)

+ ̺3

(

t3

3
– 2t2 + 3t – 1

))

– �̂1h
2H2

(

ρ̺ + τ ̺ + κ̺
)

(

1 + 2̺(t – 1) + ̺2

(

t2

2
– 2t + 1

))

, (59)

R2(t) = R1(t) – �̂3h
2H2

(

1 + ̺(t – 1)
)

+ �̂2h
2H2κ̺

(

1 + 2̺(t – 1) + ̺2

(

t2

2
– 2t + 1

))

– �̂3h
2H2

(

ρ̺ + ζ ̺
)

(

1 + 2̺(t – 1) + ̺2

(

t2

2
– 2t + 1

))

, (60)

and

V2(t) = V1(t) – �̂4h
2H2

(

1 + ̺(t – 1)
)

+ �̂1h
2H2υ̺

(

1 + 2̺(t – 1) + ̺2

(

t2

2
– 2t + 1

))

– �̂4h
2H2

(

ρ̺ +̟ ̺
)

(

1 + 2̺(t – 1) + ̺2

(

t2

2
– 2t + 1

))

. (61)

According to the series (49), if we continue this precess and solve equations (52)–(55) for

r = 3, 4, . . . , then by (56)–(61) the series solutions for the CF -fractional anthrax disease
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model (8) are given by

S(t) = S̆0 +

∞
∑

r=1

Sr(t) = S̆0 + S1(t) + S2(t) + · · · = S̆0 – �̂1hH
(

1 + ̺(t – 1)
)

+ · · · ,

I(t) = Ĭ0 +

∞
∑

r=1

Ir(t) = Ĭ0 + I1(t) + I2(t) + · · · = Ĭ0 – �̂2hH
(

1 + ̺(t – 1)
)

+ · · · ,

R(t) = R̆0 +

∞
∑

r=1

Rr(t) = R̆0 + R1(t) + R2(t) + · · · = R̆0 – �̂3hH
(

1 + ̺(t – 1)
)

+ · · · ,

V (t) = V̆0 +

∞
∑

r=1

Vr(t) = V̆0 +V1(t) +V2(t) + · · · = V̆0 – �̂4hH
(

1 + ̺(t – 1)
)

+ · · · , (62)

where the constants �̂1, �̂2, �̂3, and �̂4 were introduced above.

8 Convergence analysis of HATM for the CF -model

In this section, we prove the convergence of HATM method utilized for the fractional

CF -system (46) of the anthrax disease model.

Theorem 8.1 Let
∑∞

r=0 Sr(t),
∑∞

r=0 Ir(t),
∑∞

r=0 Rr(t), and
∑∞

r=0Vr(t) be uniformly conver-

gent series approaching to S(t), I(t), R(t), and V (t), respectively,where Sr(t), Ir(t), Rr(t), and

Vr(t) belonging to L(R+) are produced by the rth-order deformation equations (50), and,

in addition,
∑∞

r=0
CFD

̺

0Sr(t),
∑∞

r=0
CFD

̺

0 Ir(t),
∑∞

r=0
CFD

̺

0Rr(t), and
∑∞

r=0
CFD

̺

0Vr(t) also

are convergent series. Then the functions S(t), I(t), R(t), and V (t) are exact solutions of the

fractional CF -system (46) of the anthrax disease model.

Proof Suppose that
∑∞

r=0 Sr(t) is an uniformly convergent series approaching to S(t). Then,

it is evident that limr→∞ Sr(t) = 0 for any t ∈ R
+. Since the Laplace operator is linear, we

have

n
∑

r=1

L
[

Sr(t) – σrSr–1(t)
]

=

n
∑

r=1

(

L
[

Sr(t)
]

– σrL
[

Sr–1(t)
])

= L
[

S1(t)
]

+
(

L
[

S2(t)
]

–L
[

S1(t)
])

+ · · · +
(

L
[

Sn(t)
]

–L
[

Sn–1(t)
])

= L
[

Sn(t)
]

.

Therefore we get

∞
∑

r=1

L
[

Sr(t) – σrSr–1(t)
]

= lim
n→∞

L
[

Sn(t)
]

= L

[

lim
n→∞

Sn(t)
]

= 0,

and so

∞
∑

r=1

L
[

Sr(t) – σrSr–1(t)
]

= hH

∞
∑

r=1

RS,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= 0.
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Since h �= 0 and H �= 0, this yields

∞
∑

r=1

RS,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= 0. (63)

Similarly, we can prove that

∞
∑

r=1

RI,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= 0, (64)

∞
∑

r=1

RR,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= 0, (65)

∞
∑

r=1

RV ,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

= 0. (66)

Now, from Equation (63) we have

0 =

∞
∑

r=1

RS,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

=

∞
∑

r=1

(

L
[

Sr–1(t)
]

–
S̆0

s
(1 – σr) –

s + ̺(1 – s)

s

×L
[

ω̺ – δ̺Sr–1(t)Ir–1(t) –
(

ρ̺ + υ̺
)

Sr–1(t)

+ ζ ̺Rr–1(t) +̟ ̺Vr–1(t)
]

(s)

)

= L

[

∞
∑

r=1

Sr–1(t)

]

–
S̆0

s

∞
∑

r=1

(1 – σr) –
s + ̺(1 – s)

s

×L

[

∞
∑

r=1

(

ω̺ – δ̺Sr–1(t)Ir–1(t)

–
(

ρ̺ + υ̺
)

Sr–1(t) + ζ ̺Rr–1(t) +̟ ̺Vr–1(t)
)

]

(s)

= L
[

S(t)
]

–
S̆0

s
–
s + ̺(1 – s)

s
L
[

ω̺ – δ̺S(t)I(t)

–
(

ρ̺ + υ̺
)

S(t) + ζ ̺R(t) +̟ ̺V (t)
]

(s).

Similarly, from (64)–(66) we have

0 =

∞
∑

r=1

RI,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

=

∞
∑

r=1

(

L
[

Ir–1(t)
]

–
Ĭ0

s
(1 – σr) –

s + ̺(1 – s)

s

×L
[

δ̺Sr–1(t)Ir–1(t) –
(

ρ̺ + τ ̺ + κ̺
)

Ir–1(t)
]

(s)

)
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= L

[

∞
∑

r=1

Ir–1(t)

]

–
Ĭ0

s

∞
∑

r=1

(1 – σr) –
s + ̺(1 – s)

s

×L

[

∞
∑

r=1

(

δ̺Sr–1(t)Ir–1(t) –
(

ρ̺ + τ ̺ + κ̺
)

Ir–1(t)
)

]

(s)

= L
[

I(t)
]

–
Ĭ0

s
–
s + ̺(1 – s)

s
L
[

δ̺S(t)I(t) –
(

ρ̺ + τ ̺ + κ̺
)

I(t)
]

(s),

0 =

∞
∑

r=1

RR,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

=

∞
∑

r=1

(

L
[

Rr–1(t)
]

–
R̆0

s
(1 – σr) –

s + ̺(1 – s)

s

×L
[

κ̺Ir–1(t) –
(

ρ̺ + ζ ̺
)

Rr–1(t)
]

(s)

)

= L

[

∞
∑

r=1

Rr–1(t)

]

–
R̆0

s

∞
∑

r=1

(1 – σr) –
s + ̺(1 – s)

s

×L

[

∞
∑

r=1

(

κ̺Ir–1(t) –
(

ρ̺ + ζ ̺
)

Rr–1(t)
)

]

(s)

= L
[

R(t)
]

–
R̆0

s
–
s + ̺(1 – s)

s
L
[

κ̺I(t) –
(

ρ̺ + ζ ̺
)

R(t)
]

(s),

and

0 =

∞
∑

r=1

RV ,r

(

�Sr–1(t),�Ir–1(t), �Rr–1(t), �Vr–1(t)
)

=

∞
∑

r=1

(

L
[

Vr–1(t)
]

–
V̆0

s
(1 – σr) –

s + ̺(1 – s)

s

×L
[

υ̺Sr–1(t) –
(

ρ̺ +̟ ̺
)

Vr–1(t)
]

(s)

)

= L

[

∞
∑

r=1

Vr–1(t)

]

–
V̆0

s

∞
∑

r=1

(1 – σr) –
s + ̺(1 – s)

s

×L

[

∞
∑

r=1

(

υ̺Sr–1(t) –
(

ρ̺ +̟ ̺
)

Vr–1(t)
)

]

(s)

= L
[

V (t)
]

–
V̆0

s
–
s + ̺(1 – s)

s
L
[

υ̺S(t) –
(

ρ̺ +̟ ̺
)

V (t)
]

(s).

Therefore S(t), I(t), R(t), and V (t) are solutions of the fractional CF -system (46) of the

anthrax disease model. The proof is completed. �

9 Numerical simulations

In this section, we present the results of numerical simulations based on the theoretical

findings for the fractional anthrax disease CF -system (8) over a period of t = 50 months.

In other words, we numerically calculate S(t), I(t), R(t), andV (t) at integer and noninteger

orders ̺ = 1, ̺ = 0.99, ̺ = 0.97, and ̺ = 0.95. These solution functions for the fractional
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Figure 1 An illustration of the total number of each class of animal populations S(t), I(t), R(t), and V(t) for order

̺ = 0.99

Figure 2 An illustration of the total number of susceptible animals S(t) for different orders ̺ = 1, ̺ = 0.99,

̺ = 0.97, and ̺ = 0.95 during 50 months

anthrax disease CF -model (8) are obtained by implementing HATM technique. We use

distinct values of nonnegative parameters ω = 200, δ = 0.0001, ρ = 0.001, υ = 0.1, ζ = 0.02,

̟ = 0.003, and κ = 0.01 and select the initial values S̆0 = 2000, Ĭ0 = 100, R̆0 = 300, and

V̆0 = 500. Note that these numerical values for parameters are taken from the existing

data given in [29, 33, 35, 36].

Figure 1 shows the total number of each class of animal populations S(t), I(t), R(t), and

V (t) during a time interval including 25 months for the fractional order ̺ = 0.99. Based
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Figure 3 An illustration of the total number of infected animals I(t) for different orders ̺ = 1, ̺ = 0.99,

̺ = 0.97, and ̺ = 0.95 during 50 months

Figure 4 An illustration of the total number of recovered animals R(t) for different orders ̺ = 1, ̺ = 0.99,

̺ = 0.97, and ̺ = 0.95 during 50 months

on the observations of this figure, we see that the total number of the susceptible animals

increases by passing the time, this animal class is highly infected by anthrax disease, and

the transmission rate of this disease remains high. In Figs. 2, 3, 4, 5, we plot the three-term

approximate solutions of the fractional anthrax disease model by applying the homotopy

analysis transform method (HATM) with auxiliary parameter h = –1 and auxiliary func-

tion H(t) = 1 for different values of order ̺. In each diagram, the solid red line illustrates

the solution functions for integer order ̺ = 1. These four Figs. 2, 3, 4, 5 indicate that by
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Figure 5 An illustration of the total number of vaccinated animals V(t) for different orders ̺ = 1, ̺ = 0.99,

̺ = 0.97, and ̺ = 0.95 during 50 months

Table 1 Values of S(t) for four different orders of CFD
̺
0

̺ t = 0 t = 3 t = 6 t = 9 t = 12 t = 15 t = 18 t = 21 t = 24

1 2000 2565.3 3148.6 3750 4369.8 5008.5 5666.3 6343.5 7040.4

0.99 2001.6 2489.2 3010.9 3567.7 4160.6 4790.6 5458.7 6165.9 6913

0.97 2003.2 2347.5 2759.6 3243.5 3803 4441.9 5164 5973.2 6873.2

0.95 2002.9 2218.6 2539.1 2974.2 3533.5 4226.8 5063.8 6054.3 7208.1

Table 2 Values of I(t) for four different orders of CFD
̺
0

̺ t = 0 t = 3 t = 6 t = 9 t = 12 t = 15 t = 18 t = 21 t = 24

1 100 122.15 165.01 228.27 311.63 414.77 537.4 679.2 839.88

0.99 100.06 139.14 222.51 349.19 518.19 728.54 979.23 1269.3 1597.8

0.97 100.29 174.81 338.35 587.07 917.15 1324.8 1806 2357.2 2974.4

0.95 100.73 213.06 455.07 817.03 1289.2 1861.8 2525.1 3269.4 4084.9

Table 3 Values of R(t) for four different orders of CFD
̺
0

̺ t = 0 t = 3 t = 6 t = 9 t = 12 t = 15 t = 18 t = 21 t = 24

1 300 284.78 270.91 258.39 247.22 237.41 228.95 221.84 216.09

0.99 299.94 284.36 270.35 257.91 247.04 237.74 230.02 223.86 219.27

0.97 299.82 283.54 269.36 257.27 247.28 239.38 233.58 229.87 228.26

0.95 299.68 282.74 268.57 257.16 248.51 242.62 239.5 239.13 241.53

letting ̺ → 1 the approximate solutions approach the classic integer solution with ̺ = 1.

More precisely, we provide Tables 1, 2, 3 and 4 for solutions S(t), I(t), R(t), andV (t), which

represent a comparison between the obtained values for the fractional order CF -model

(8) with ̺ = 0.99, ̺ = 0.97, and ̺ = 0.95 and the integer-order model (5) with ̺ = 1. Based

on this data, we find that the impact of the vaccination rate to control the spread of the an-
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Table 4 Values of V(t) for four different orders of CFD
̺
0

̺ t = 0 t = 3 t = 6 t = 9 t = 12 t = 15 t = 18 t = 21 t = 24

1 500 1083.9 1647.6 2191.2 2714.6 3217.8 3700.8 4163.6 4606.3

0.99 502.03 1085.4 1633 2144.8 2620.9 3061.1 3465.6 3834.3 4167.3

0.97 506.35 1088.3 1603.5 2052 2433.9 2749.1 2997.6 3179.5 3294.7

0.95 511.06 1090.8 1573.1 1958 2245.4 2435.5 2528.2 2523.4 2421.3

thrax disease between animals is vital, and hence this implies that the vaccination policies

should be considered seriously to overcome this animal infection.

10 Conclusions

In this research work, we provide a fractional-order modeling of the anthrax disease be-

tween animals based on the Caputo–Fabrizio derivative. In the first step, we derive an

existence criterion of solutions for proposed fractional CF -system of the anthrax disease

model by utilizing the Picard–Lindelof technique. Then by obtaining the basic reproduc-

tion number R0 of the fractional CF -system we compute two disease-free and endemic

equilibrium points and check the asymptotic stability. Moreover, by applying an iterative

approach based on the Sumudu transform, we investigate the stability of the fractional

CF -system. The approximate series solutions of this system are obtained by means of the

homotopy analysis transformmethod, inwhichwe invoke the linear Laplace transform. Fi-

nally, after the convergence analysis of numerical method HATM, we present a numerical

simulation of the CF -fractional anthrax diseasemodel and review the dynamical behavior

of the solutions of this CF -system during a time interval.
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