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Abstract

Aquatic ecosystems are observed to follow regular patterns in abundance. The fre-

quency distribution of all individuals across the spectrum of body mass, irrespective

of their taxonomic identity (known as a ’size spectrum’), follows a power law and this

has mathematically been explained by the processes of growth and mortality primar-

ily driven by predation. In this theory of the size spectrum, predation is driven by

body size: as organisms grow bigger the size of their prey also increases. This pro-

cess is thought to be particularly important for marine organisms such as fish, where

individual body size is an important determinant for what they eat because they are

mostly limited by the size of their mouths.

Models need to capture the behaviour of real systems if reliable predictions are to

emerge from them. Here, new equations for size-based predation are derived from a

stochastic process, allowing variability in organism growth. The new equations are

postulated to capture real feeding behaviour better than classical models often used

to simulate size spectra. Marine systems are often perturbed by seasonal processes,

environmental factors and exploitation. I show how models with diffusive growth

stabilise the observed power-law steady state in marine systems, and stability is ex-

plicitly linked to parameters involved in feeding.

Seasonal plankton blooms are introduced into the model, along with time-dependent

reproduction, both of which are widely observed in aquatic systems. The population

dynamics, along with growth and survival rates during blooms are investigated, and

preliminary results are reflected in empirical data. The match/mismatch hypothesis is

tested, with theoretical findings in agreement with observed seasonal trends. Adding

factors such as these will make the behaviour of size-based models more indicative

of real ecosystems, and thus well-informed management decisions about exploitation

can be made.
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General Introduction

The mathematics of ecology

”Ecology: The scientific study of the interrelationships among organisms and be-

tween organisms, and between them and all aspects, living and non-living, of their

environment.”

- Allaby, A dictionary of ecology (2010).

Since the term ”ecology” was coined by Haeckel (1866), the subject has undergone

radical advances and branched out into numerous subdisciplines; examples include

behavioural, community, evolutionary, population and systems ecology (Kot, 2001).

In this thesis population and community ecology of aquatic ecosystems are the main

foci of my work.

Traditionally, when studying ecosystems scientists used one of three separate ap-

proaches: experimental, field or theoretical. Theoretical models originally developed

were deemed too simplified to capture the complexity of nature. However, the last

hundred years have seen a greater overlap between empirical and mathematical ap-

proaches to studying communities (Kingsland, 1995). Models have been expanded

and increased in detail to represent the various biotic and abiotic factors that organ-

isms are subject to more accurately. For example, the advent of computer technology

has allowed complex food web models with many links between species to be con-

structed and analysed (e.g. Cohen et al., 2003; Brose et al., 2005b; Woodward et al.,

2005a). See Kot (2001) for an overview of mathematical applications to ecosystem

processes and dynamics.

Methods for recording empirical data have also become more accurate, with greater

spatial and temporal resolution. In marine communities, abundances of different size

classes of phytoplankton were originally measured using filtration, Coulter counters

and autoanalysis of chlorophyll pigmentation (e.g. Menzel and Ryther, 1960; Sheldon

and Parsons, 1967; Strickland, 1968). In more recent studies water samples have been

collected and analysed using inverted microscopy to count individuals (e.g. Irigoien
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et al., 2005; Cermeño et al., 2006; Wang et al., 2006; Barnes et al., 2011). Environmental

factors have been quantified using more advanced sensors to estimate abiotic factors

such as sea surface temperature, wind speed, turbulence and chlorophyll a concen-

tration (e.g. Cózar and Echevarrı́a, 2005; Reul et al., 2005; Zhou et al., 2010). Satellite

data detailing ocean surfaces have become more widely used, increasing the temporal

resolution and spatial range of available data (e.g Barnes et al., 2010, 2011).

Rising global populations have increased the harvesting of nature for both food and

resources. Excessive fishing has led to collapses of species populations throughout

the world; a famous example is that of cod stocks in Newfoundland (Cook et al., 1997;

Longhurst, 1998), although there are many more cases (Dulvy et al., 2003). The Food

and Agriculture Organization of the United Nations (FAO, 2008) recently announced

that, for the first time in history, more than half of fish consumed by humans was

set to come from aquaculture rather than fishing. This highlights a trend in declin-

ing abundance of fish species in the oceans, as well as increased output from farmed

fish stocks. Approximately 20% of assessed fish populations are thought to be over-

exploited (FAO, 2010), with the majority of stocks of the top ten species either fully

exploited or overexploited (hence unable to increase catches further). Thus, much re-

search has been put into the causes of fish stock collapse; most collapses have been

attributed to exploitation and habitat loss (e.g. Myers et al., 1997; Pauly et al., 2002),

declaring a reduction in fishing pressure needed to aid stock recovery. Subsidiary

factors including climate change and disease have also been investigated for other

possible mechanisms for reduced stock abundances (Hilton-Taylor, 2000).

As the need to model ecosystems has grown, the mathematics to govern the pop-

ulation dynamics has evolved to meet the needs of ecologists. One of the earliest

and most influential models in population ecology is the Lotka integral equation

(Lotka, 1939), in which an age-structured population gives birth to new offspring;

the model solution has been studied in detail since its conception (e.g. Feller, 1941;

Kot, 2001). Another popular approach to age-structured population modelling has

been the Leslie matrix (Leslie, 1945); a matrix containing age-dependent survival and

fecundity rates is used to model the age distribution of female individuals over time.

This approach has been used to model plant and animal populations (Sarukhan and

Gadgil, 1974; Horwood and Shepherd, 1981; Law, 1983), and its stability properties

analysed (Silva and Hallam, 1993). For biological realism, models have been devel-

oped to include spatial structure (Okubo, 1980), to better represent the heterogeneity

in the environment of organisms. For single species models, a partial differential equa-

tion is generally used, containing a term describing the growth rate of the species and

an additional term describing the movement of the individuals in the environment

(Levin and Paine, 1974; Hastings, 1990).

Single species do not exist independent of other species, and the various interactions

12



between species, such as predation and competition, are the basis of community ecol-

ogy. One of the first examples of a community model, and a major milestone in com-

munity ecology, are the Lotka-Volterra equations, derived independently by Lotka

(1925) (one of the first books published on the subject of mathematical biology) and

Volterra (1926). These equations were the first to model the interactions between a

predator species and a prey species, using simple assumptions for the life processes

of the two species. Subsequent models have attempted to address flaws of the model,

with improved functions for prey growth (logistic growth, see Berryman (1992)) and

the feeding behaviour of the predators, namely type II and III functional responses

pioneered by Holling (1959, 1965). Subsequent work has analysed the stability of sys-

tems using different functional responses (e.g. Holling, 1973). The equations have also

been extended to incorporate interactions other than predation, including competition

(Gilpin and Ayala, 1973; Butler et al., 1983) and mutualism (Goh, 1979; Delgado et al.,

2000).

Community ecology has expanded beyond simple two-species predator-prey sys-

tems. In real ecosystems many species interact with each other (for example, pre-

dation and competition for resources and space), and the Lotka-Volterra equations

have been extended to multiple species (see e.g. Hastings, 1978; Post and Pimm, 1983;

Uchida et al., 2007). Food webs are the most familiar and widely studied form of eco-

logical network (Woodward et al., 2005a), where nodes usually represent species (or

taxonomically similar groups of species, see Pimm et al. (1991)), and with links be-

tween nodes indicating inter-species interactions such as predation and competition.

The aggregation of all organisms of a species into an individual data point allows

tractable analyses of potentially complex ecosystem dynamics (Berlow et al., 2004),

leading to complex food webs with large numbers of nodes and interactions between

species (e.g. Woodward et al., 2002; Cohen et al., 2003). However, aggregating all

organisms of a single species can oversimplify population dynamics, as there is no

intra-species variation. Individuals within a species will differ in behavioural traits,

physiology, reproductive output and mortality rates (all of which are often correlated

with size or age). Analyses of real food web data have revealed strong correlations be-

tween prey size and predator size, irrespective of species (Warren and Lawton, 1987;

Cohen et al., 1993; Woodward et al., 2005a). Thus, the importance of variation within

populations has become more recognised (Werner and Gilliam, 1984), and age- and

size-structured multi-species food web models have been developed to disaggregate

individuals within species (e.g. Gurney et al., 1983; Law, 1983; Chase, 1999; Wood-

ward et al., 2005b; Hartvig et al., 2011).

The emergent patterns of communities have often been shown to produce simple and

regular trends over large spatial scales; the study of these correlations is known as

macroecology, a term coined by Brown and Maurer (1989). Abundance - body mass

relationships have been studied in terrestrial systems (Damuth, 1981; Brown and Mau-
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rer, 1989; Nee et al., 1991; Gaston and Blackburn, 2000; White et al., 2007), where an

average body mass is often used to summarise each species. In aquatic systems a

regular power-law relationship between body mass and abundance has often been

observed when organisms are only defined by body mass and not taxonomic identity

(e.g. Boudreau and Dickie, 1992; Jennings and Mackinson, 2003; Barnes et al., 2011).

This form of analysis started when Sheldon et al. (1972) sampled size distributions of

plankton in the ocean and found roughly equivalent abundances of biomass in log-

arithmically increasing weight brackets. The term ”size spectrum” was coined (to

describe the correlation between abundance and body size), and has been the subject

of extensive analysis.

The importance of body size in food webs

Body size influences many life processes in multi-cellular organisms. One of the basic

physiological processes of all organisms is metabolism, where a power-law relation-

ship with body mass (or any other parameter parameterising organism body size) has

been established from small microbes up to large terrestrial and aquatic organisms

(Gillooly et al., 2001; Enquist et al., 2003; Brown et al., 2004). Other size-dependent life

processes include movement, food consumption (Ware, 1978), growth (Gillooly et al.,

2002), fecundity (Wootton, 1977; Duarte and Alcaraz, 1989), and mortality (Andersen

and Ursin, 1977).

Food web models are commonplace in modelling interactions between species within

ecosystems (e.g. Paine, 1966; Fry, 1988; Hall and Raffaelli, 1991; Cohen et al., 2003;

Brose et al., 2005b). It has been shown in food web data that body size is nega-

tively correlated with numerical abundance, in terrestrial species such as mammals

and birds (Damuth, 1981; Nee et al., 1991) and aquatic species (Boudreau and Dickie,

1992; Cohen et al., 2003). Data is often aggregated by taxonomic group (Brown et al.,

2004), and average masses are used to produce a node for each species in food webs

(e.g. Brose et al., 2006a). It has been shown that predator size tends to increase with

prey size (Cohen et al., 1993, 2003; Brose et al., 2006a), and predators are orders of mag-

nitude both larger, and less common, than their prey (Petchey et al., 2004; Reuman and

Cohen, 2004).

In aquatic systems, the body size - abundance trend is observed at the community

level, where organisms are only defined by body weight and not taxonomic identity

(known as the size spectrum, see Sheldon et al. (1972)). A negative power-law rela-

tionship between body mass and abundance was established when sampling plank-

ton abundances in different size classes (Sheldon et al., 1972); this pattern has been ob-

served over different size ranges, from phytoplankton (San Martin et al., 2006; Huete-

Ortega et al., 2010; Barnes et al., 2011) up to large fish species (Boudreau and Dickie,
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1992; Jennings and Mackinson, 2003; Jennings et al., 2007). Transient predator-prey

relationships and cannibalism are common in aquatic species, due to the fact that

aquatic organisms can grow more than five orders of magnitude over the course of

their lives (Cushing, 1975), for example, Atlantic cod (Knijn et al., 1993). Thus trophic

level is strongly dependent on size, as opposed to species, for aquatic organisms (Jen-

nings et al., 2001). The body size of an aquatic individual determines its potential

predators and prey (Ursin, 1973; Andersen and Ursin, 1977; Cohen et al., 1993), along

with the rates of life processes such as mortality (Beyer, 1989; Jennings et al., 1998),

reproduction (Wootton, 1977; Duarte and Alcaraz, 1989) and growth (von Bertalanffy,

1957; Kooijman, 1986). A linear relationship has been found between the mass of or-

ganisms and their preferred prey mass (i.e. the predator : prey mass ratio), which

is approximately constant over the weight range 2-2048g (Jennings et al., 2002b), al-

though a recent study which aggregated data across the whole size spectrum from 21

locations across the world found that body mass and the predator : prey mass ratio

had a power-law relationship (Barnes et al., 2010).

The concept of the size spectrum (Sheldon et al., 1972) has led to an entire sub-branch

of community ecology dealing with body size - abundance relationships in aquatic

ecosystems. The attraction for modelling whole ecosystems using individual body

size as the only trait for organisms is that it allows examination of very complex food

webs without taking into account species-based interactions. Rather, the emergent

patterns of the size distribution can be analysed for possible justifications for the ob-

served power-law shape of body size - abundance relationships.

The existence of a power-law steady state in aquatic ecosystems has led to much the-

oretical work to explain the dynamics behind the phenomenon, using the size-based

feeding strategy observed in aquatic organisms (Ursin, 1973; Andersen and Ursin,

1977). Platt and Denman (1977) first hypothesised a model incorporating weight-

dependent growth and metabolism to give a power-law steady state (although pre-

dation was not explicitly modelled here). Since then, models incorporating size-

dependent feeding have also been shown to produce power-law steady states: using

a fixed predator : prey mass ratio (Silvert, 1980), allowing organisms to feed upon all

smaller prey (Camacho and Solé, 2001) and, more recently, over a restricted weight

range dependent on the predator weight (Benoı̂t and Rochet, 2004; Andersen and

Beyer, 2006; Law et al., 2009; Blanchard et al., 2009).

Inspired by the size-based approach, previously obtained population-level food web

data sets (e.g. Tuesday Lake, U.S.A. (Carpenter et al., 1987) and Broadstone Stream,

U.K. (Woodward et al., 2002)) have more recently been re-examined to draw conclu-

sions about size-based interactions between organisms in the ecosystem, using novel

approaches such as a trivariate description of the community incorporating food web

structure, body mass and abundance (Cohen et al., 2003; Jonsson et al., 2005) and
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metabolic theory (Woodward et al., 2005a). Berlow et al. (2004) state how food webs

”provide tractable abstractions of the complexity and interconnectedness of natural

communities that potentially transcend system-specific detail”; the paper then goes

on to highlight issues with classic food web ecology, in particular differentiating be-

tween species-specific dynamics and community-level patterns when interpreting re-

sults. More recent work has attempted to incorporate population dynamics into food

web models (Uchida et al., 2007), or relaxed the assumptions of interaction strengths

between nodes in food webs in favour of optimal foraging strategies which are less

dependent on specific species (Petchey et al., 2008); the latter model successfully pre-

dicts 65% of links in the studied food webs. Woodward et al. (2010) contrasted size-

based models and species-based models to explain trophic links in real ecosystems,

with body size accounting for a higher proportion of predator-prey interactions in

some systems. Recent work has also developed multi-species size spectrum models,

in order to allow both species-based and size-based feeding interactions within com-

munities (Andersen et al., 2009; Andersen and Pedersen, 2010; Hartvig et al., 2011). In

conclusion, food web ecology has seen a shift in focus in the last decade, with more

emphasis placed on the behaviour of individuals rather than population-level inter-

actions. The abstraction of species-based networks are being reconsidered in light of

increasing evidence of size-based processes occurring at the individual level.

Scaling processes from individuals to the population level

The recognition that population level models may be too simplified has led to the

development of individual based models (IBMs). The motivation behind IBMs was

to relax the assumption that all organisms within a species are identical, by allow-

ing environmental and density-dependent factors to vary depending on the age of

organisms (e.g. Lomnicki, 1978). Modelling at the individual level has its advantages:

individuals within a species vary in traits such as vital rates and age, and allowing

variation allows more detailed conclusions to be drawn from the model than averag-

ing over all organisms for construction of population models (Uchmaski and Grimm,

1996). The rise of IBMs, due to the increasingly recognised importance of local interac-

tions between individuals, and the ability to produce larger scale IBMs thanks to the

advances of computer power and software, is discussed in a review by Judson (1994).

Working at the individual level allows further detail such as explicit spatial and tem-

poral heterogeneity to be modelled (McCauley et al., 1993). For further examples of

IBMs and their use in ecology, see e.g. De Roos et al. (1991); Hinckley et al. (1996);

Hermann et al. (2001).

Of course, all ecological models (individual based or otherwise) are abstractions of

real ecosystems, constructed to simulate various life processes of organisms. In doing
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so, the hope is that emergent phenomena from empirical data may be attributed to bi-

ological properties of organisms. Interpreting individual based models is difficult, as

the models used are often complex to construct, and difficult to analyse (Grimm et al.,

1999). IBMs are often very specific to the ecological problem that they are tackling,

and as such, their uses in constructing mathematical models to describe population

behaviour can be limited (Uchmaski and Grimm, 1996; Grimm, 1999). Scaling up from

individual level processes to population level dynamics is not trivial, with numerous

pitfalls (see Lomnicki, 1999). Examples of mathematically rigorous approaches for

producing age-structured population models from individual biological rates are not

common; for example, see Nisbet and Gurney (1983); Gurney et al. (1983); Nisbet et al.

(1989). To summarise, individual level processes have been recognised to be an im-

portant part of population behaviour, and subsequently integrated into models by

explicitly modelling individuals (commonly in age- or size-structured populations).

However, IBMs are limited in their ability to answer questions about population ecol-

ogy, and a more theoretical groundwork is needed for individual-based modelling to

account for emergent community patterns in nature (Grimm, 1999).

A method for deriving deterministic models from basic stochastic processes at the in-

dividual level is the master equation approach. The method has often been adopted

in physics and chemistry, as a probabilistic approach to the time-evolution of a sys-

tem (van Kampen, 1992). The system generally occupies one of a discrete number of

states, with Markov processes determining the probabilities of moving between states.

An example could be a chemical reaction, where reactant molecules are present in a

container (the system), and upon collision there is a chance that they will combine to

form new molecules. With the exception of simple linear processes, master equations

cannot be solved explicitly, and approximations must be derived. One such approx-

imation involves an expansion method around a system parameter, details of which

are given in van Kampen (1992). In short, the highest order terms of the expansion

give the macroscopic model, which describes the deterministic behaviour of the sys-

tem. The next-to-highest order terms give the distribution of fluctuations around the

macroscopic value. For examples of the uses of master equations see Schnakenberg

(1976); Gillespie (2000); McKane and Newman (2005).

In Chapter 1, a similar approach to the example of a chemical reaction is taken to

model the predation process: at an individual level, two organisms collide and (by

the predator swallowing the prey) produce one larger organism, where the biomass

feeding efficiency dictates what portion of the mass is assimilated from the prey or-

ganism. This stochastic process can be written as a master equation, but not solved

explicitly due to the nonlinearity of the predation process. To make progress, the ex-

pansion method of van Kampen (1992) is followed to derive the macroscopic model

for the stochastic process (which is labelled the deterministic jump-growth equation).

This is with the assumption that the system size is large, which is reasonable in most
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aquatic ecosystems, where communities exist in large volumes of water. The next-to-

highest order terms of the expansion form a linear Fokker-Planck equation to describe

the fluctuations around the deterministic model. The new model, like other size spec-

trum models, is mostly based on fish or pelagic predators but is also applicable to

other marine animals that feed in a size-based way, such as zooplankton.

The power-law steady state, often observed in aquatic ecosystems (e.g. Boudreau and

Dickie, 1992; Jennings and Mackinson, 2003; San Martin et al., 2006), is derived analyt-

ically for the deterministic jump-growth equation. The jump-growth model is com-

pared to the classical model often used to describe growth via predation in aquatic

ecosystems, the McKendrick-von Foerster equation (e.g. Benoı̂t and Rochet, 2004; An-

dersen and Beyer, 2006; Law et al., 2009; Blanchard et al., 2011). It is found that

the McKendrick-von Foerster equation is the first-order approximation to the jump-

growth equation, and a suitable approximation when predators feed upon prey sig-

nificantly smaller than themselves, and the system is close to the power-law steady

state. Thus the jump-growth equation is postulated to simulate the feeding process in

marine systems more robustly than the classical model. The McKendrick-von Foer-

ster equation has its roots in age-based distributions (McKendrick, 1926; von Foerster,

1959), and has subsequently been adapted into weight-based systems. Its applicability

compared to the jump-growth equation is discussed in Chapter 1.

Stability in community models

Ecologists are often interested in the long-term behaviour of communities. Food webs

can have many nodes and links (for example, see Cohen et al., 2003; Woodward et al.,

2005a), leading to high levels of complexity (i.e. average number of trophic links per

species) in food web data. A recent analysis of complex food webs concluded that on

average any two species are two links from each other (Williams et al., 2002), meaning

community dynamics are extremely complex. Modelling these intricate ecosystems

is challenging, and theoretical studies often deal with reduced numbers of species

and broad assumptions to reach conclusions (e.g. Brose et al., 2006b). On top of these

difficulties, there has been a paradigm shift away from species-specific traits and to-

wards individual behaviour. Montoya et al. (2006) conclude that species are not as

separate as once conceived, and interdependent factors of body size, nested diets and

connectance strength all affect the dynamics of food webs. Emmerson and Raffaelli

(2004) note that calculating the interaction strength for all the links in complex food

webs is unfeasible, and Berlow et al. (2004) conclude that interaction strengths alone

are not enough to combine food webs and population dynamics successfully, and are

”a useful conduit for discussion but not an endpoint”.

Stability in food web models is a wide subject with a vast range of published litera-
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ture. Much research has been performed since the pivotal works of MacArthur (1955)

and May (1972) contested whether increasing complexity (i.e. the number of links be-

tween nodes in food webs) made systems more or less stable. Varying definitions of

stability are used, as scientists working with food webs come from a range of back-

grounds (including theoretical physics, mathematics and the more traditional roots of

ecology). The term ”stability” most often refers to the tendency for a community of

species at equilibrium, when perturbed slightly by altering the number density of one

or more species, to return to that equilibrium (Pimm, 1979). This tests local stability or

Lyapunov stability (e.g. Krabs and Pickl, 2010). That is, a system is defined as stable

if, when initiated in a neighbourhood of the fixed point, it remains in the neighbour-

hood indefinitely. Asymptotic stability requires that as time t → ∞, a system initiated

in the neighbourhood of the fixed point tends to the fixed point. A stronger stability

condition is global stability; a comparison between the two, highlighting limitations of

the former approach, is given by Chen and Cohen (2001).

Alternative tests for stability have also been incorporated in models. Species deletion

stability (e.g. Paine, 1966; Pimm, 1979; Post and Pimm, 1983) investigates the effect of

removing one species from a stable food web on the dynamics of the resulting commu-

nity. This concept is closer to the type of stability described by MacArthur (1955). On

the other hand, studies have modelled adding species to existing stable food webs, to

test whether invasion is possible and, if so, the resulting distribution of species (Post

and Pimm, 1983; Drake, 1991; Law and Morton, 1996). As well as qualitative tests

for stability, theoretical work has investigated the speed at which a perturbed system

returns to equilibrium (Pimm, 1977), termed resilience in later studies (Pimm, 1984;

Montoya et al., 2006). It has been argued that real communities may not always reach

an equilibrium, but rather co-exist in cyclic or chaotic systems; to test for this in mod-

els, the concept of ”permanence” has been introduced, which only requires biomasses

of all species present to be positive and finite, rather than reaching fixed values (Law

and Morton, 1996; Petchey et al., 2004). For a summary of different methods used for

testing stability in theoretical models, see Pimm (1984).

In this thesis the dynamics of aquatic communities is studied. The power-law steady

state in aquatic communities appears to be ubiquitous, repeatedly observed at differ-

ent scales, seasons and locations globally (see e.g. Sheldon et al., 1972; Boudreau and

Dickie, 1992; San Martin et al., 2006; Barnes et al., 2011). The stability and persistence

of aquatic communities is of paramount interest from both a scientific and economic

viewpoint when considering the impact of fishing on ecosystems; fishing is a global

industry, providing livelihoods for 43.5 million people, and producing an estimated

per capita supply of 16.7kg (Jennings et al., 1999; Mullon et al., 2005; FAO, 2008). Fish-

ing generally removes the largest organisms in the system, as valuable species are

often large, and minimum size limits are frequently used in fisheries management

(Rochet and Benoı̂t, 2011). This removal of large individuals causes high variability

19



in size-truncated populations (Hsieh et al., 2006; Anderson et al., 2008). At the com-

munity level, the size spectrum slope and intercept can provide information about the

effects of exploitation on the abundance and size distribution of the resulting ecosys-

tem (Bianchi et al., 2000); as a consequence, fishing effects on size spectrum dynamics

have been studied numerically (e.g. Blanchard et al., 2005; Rochet and Benoı̂t, 2011).

A deeper mathematical understanding of the stability of the power-law steady state

has been limited thus far. A departure from the power-law steady state was observed

by Law et al. (2009) in numerical simulations, with waves of abundance forming and

moving up the size spectrum; this bifurcation was linked to the feeding behaviour of

individuals, with travelling waves appearing as the diet breadth was made narrower.

This behaviour is also observed when the jump-growth equation is used to model

predation in Chapter 1. One of the only known analyses of the power-law steady

state in marine size spectra is by Arino et al. (2004), although in the model dynamics

predation and organism growth are not explicitly linked, which misses a vital feed-

back present in real ecosystems. Recently, Rossberg (2011) derived for the first time

an approximate analytic description of the power-law steady state and behaviour of

perturbations, using a model which accounted for multiple species.

Chapter 2 of this thesis shows the first local stability analysis performed analytically

on the power-law steady state observed in marine ecosystems. Three equations for

modelling the predation process are analysed, and with certain parameter constraints

the eigenvalue spectrum for the linearised evolution operator is derived. It is shown

analytically that the steady state of the McKendrick-von Foerster equation is always

unstable, whereas adding a diffusion term can stabilise the steady state, and gives

eigenvalue spectra closer to those for the jump-growth equation. Stability of the

steady state is shown to be more likely with a low preferred predator : prey mass ra-

tio, large diet breadth and high feeding efficiency. The work has since been expanded

upon by Capitan and Delius (2010) by including the effects of metabolism and repro-

duction on the stability of the steady state, and these are found to be stabilising.

Seasonal trends in aquatic ecosystems

The power-law distribution in size spectra is well-documented. However, many em-

pirical studies involve averaging spatially or temporally (e.g. Li, 2002; Jennings and

Mackinson, 2003). Studies with more frequent sampling (Boudreau and Dickie, 1992;

Heath, 1995; Huete-Ortega et al., 2010) show the variation that can occur throughout

the year due to changing environmental conditions; this detail is lost when aggregat-

ing size spectra. Thus, the power-law ”steady state” may not exist at any specific time,

but only as an emergent phenomenon over large timescales.

Seasonality in aquatic systems causes deviations away from the power-law steady
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state. An annual cycle of nutrient upwelling, temperature gradients and sunlight

causes phytoplankton blooms in the springtime and, to a lesser extent, the autumn

(Kaiser et al., 2005). This extra abundance (normally lasting several weeks or months,

see Menzel and Ryther (1960); Navarro and Thompson (1995); Irigoien et al. (2000))

causes a rise in the zooplankton population, the organisms that predate most upon

the phytoplankton (Heath, 1995; Zhou et al., 2010), which in turn provides a higher

prey abundance for newborn fish larvae. Many fish species spawn only over a specific

period of the year (Knijn et al., 1993; Hutchings and Myers, 1994; Mertz and Myers,

1994; Buckley and Durbin, 2006), and so the timing of reproduction in relation to the

phyto- and zooplankton peaks can be important for recruitment in fish species.

This has led to the concept of the match/mismatch hypothesis (Hjort, 1914; Cush-

ing, 1969, 1975), which hypothesises a link between the synchrony of the zooplankton

abundance peak and the reproductive period of a fish species, and the recruitment

success of larvae later in the year. Much theoretical and empirical research has been

carried out to test the validity of the hypothesis (e.g. Bradford, 1992; Cushing and

Horwood, 1994; Gotceitas et al., 1996; Johnson, 2000; Platt et al., 2003; Durant et al.,

2005), while other research has investigated the importance of predation mortality

in determining the survival rate of offspring born at different times (Anderson, 1988;

Rice et al., 1993). Models have commonly used a predetermined larval prey period be-

fore testing the growth success of larvae born at different times relative to this period

(e.g. Mertz and Myers, 1994; Pope et al., 1994; Burrow et al., 2011). Empirical data has

shown varying levels of agreement with the match/mismatch hypothesis (see Bollens

et al., 1992; Buckley and Durbin, 2006). There is still some way to go before the causes

of recruitment success/failure are fully understood, probably because of many dif-

ferent processes at play, natural variability and difficulties in sampling in time and

space.

This thesis extends knowledge of the behaviour of a size spectrum model under sea-

sonal forcing and the timing and duration of reproduction. In Chapter 3 the dynamics

of a community size spectrum are investigated when annual phytoplankton blooms

are incorporated into the model. A range of bloom amplitudes, durations and dynam-

ics are simulated to test the resulting dynamics in the consumer spectrum. In Chapter

4 reproduction is then explicitly added to this seasonal environment as a function of

time, to examine the consequences of altering both the timing and duration of repro-

duction. The match/mismatch hypothesis proposed by Cushing (1975) is then tested.

It is found that both the growth rate and mortality rate of fish larvae increase during

the plankton bloom, and fish species face a trade-off between numbers remaining and

body weight of the surviving offspring.

Observed data shows only the end results of many different dynamical processes oc-

curring simultaneously. To understand trends seen in empirical data, it is important
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to disaggregate different life processes, so that the consequences of environmental or

human changes to an ecosystem may be understood. Throughout the thesis I use an-

alytical methods wherever possible in order to attempt to explain observed patterns

in aquatic systems, allowing investigation of the importance of different parameters

on the system. Numerical simulations are used to support and extend the knowledge

acquired from the mathematical analyses contained in the thesis.

Structure of thesis

In Chapter 1, I derive a new model for predation in marine systems, and perform both

analytical and numerical analyses while comparing it to the classical equation used to

model predation. In Chapter 2, a stability analysis of the power-law steady state is

carried out for three models, and stability is explicitly linked to parameters that gov-

ern feeding. In Chapter 3, I add seasonal phytoplankton blooms to a community size

spectrum model, in order to investigate the dynamics caused further up the spectrum

by increased prey abundance. In Chapter 4, a time-dependent reproduction term is

also added, and the match/mismatch hypothesis is tested in the presence of plankton

blooms; numerical integrations show that less biomass is conserved by being born

away from the bloom. I conclude with a discussion about the methods used within

the thesis, the uses and drawbacks of size-based approaches for modelling aquatic

systems, limitations of the research I have carried out, and possible future avenues for

further study.
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Abstract

This paper investigates the dynamics of biomass in a marine ecosystem. A stochastic

process is defined in which organisms undergo jumps in body size as they catch and

eat smaller organisms. Using a systematic expansion of the master equation, we de-

rive a deterministic equation for the macroscopic dynamics, which we call the deter-

ministic jump-growth equation, and a linear Fokker-Planck equation for the stochas-

tic fluctuations. The McKendrick–von Foerster equation, used in previous studies, is

shown to be a first-order approximation, appropriate in equilibrium systems where

predators are much larger than their prey. The model has a power-law steady state

consistent with the approximate constancy of mass density in logarithmic intervals

of body mass often observed in marine ecosystems. The behaviours of the stochastic

process, the deterministic jump-growth equation and the McKendrick–von Foerster

equation are compared using numerical methods. The numerical analysis shows two

classes of attractors: steady states and travelling waves.

Keywords: growth diffusion; marine ecosystem; master equation; McKendrick–von

Foerster equation; predator-prey; size spectrum; stochastic process; systematic expan-

sion

1.1 Introduction

Marine and freshwater ecosystems exhibit a remarkable regularity in the relation be-

tween abundance of organisms and their body masses. Treating organisms simply as

particles of different size, i.e. ignoring taxonomic identity, the total biomass (abun-

dance × body mass) in logarithmic intervals of body mass is observed to be approx-

imately constant (Sheldon et al., 1972, 1977; Boudreau and Dickie, 1992; Kerr and

Dickie, 2001). Equivalently, the logarithm of abundance expressed as a function of

the logarithm of body mass, often referred to as a size spectrum, is approximately lin-

ear with a gradient close to −1. Removing the logarithms, this is equivalent to density

in mass space being a power function of mass with an exponent −2. This approximate

regularity applies over a wide range of body size from micro-organisms to large verte-
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brates, and has been the subject of much research and discussion in ecology (Sheldon

et al., 1972; Platt and Denman, 1978; Heath, 1995; Marquet et al., 2005).

Understanding of the dynamics of biomass flow that lead to this regularity is im-

portant: the biomass of most marine ecosystems supports major fisheries that play a

significant role in the economies of maritime countries. The dynamics are often stud-

ied by means of a partial differential equation (PDE), in which abundance is taken as

a function of both body mass and time. The PDE is motivated by a model of McK-

endrick (1926) and von Foerster (1959), in which abundance is a function of age and

time. We will follow the convention of calling this PDE the McKendrick–von Foerster

equation, notwithstanding the change in variable from age to size.

The McKendrick–von Foerster equation was first adopted by Silvert and Platt (1978) in

a model allowing growth and mortality to be functions of body mass. Following this,

Silvert (1980) coupled growth at one size to death at another, because organisms grow

in size spectra by eating smaller organisms. More recently, the approach has been

extended, first to allow organisms to eat those at all smaller sizes (Camacho and Solé,

2001), and second, by using a feeding-kernel function, to allow them to eat organisms

in a restricted size range (Benoı̂t and Rochet, 2004). PDEs of this kind are now being

used quite extensively to understand processes in marine ecosystems (Andersen and

Beyer, 2006; Maury et al., 2007a; Andersen et al., 2009). It can, for instance, be shown

in numerical analyses that the PDE at steady state gives size spectra with gradients

which are similar to those in marine ecosystems (Blanchard et al., 2009).

The McKendrick–von Foerster equation is implicitly assumed to be an appropriate

approximation for an underlying stochastic process in which individual organisms

grow by eating prey items. A first investigation of the relationship between the PDE

and the stochastic process (Law et al., 2009) showed that the PDE could describe the

approach to a steady-state size spectrum. However, the stochastic process could also

develop travelling-waves; although these were also possible in the PDE, the properties

of these waves were somewhat different. The research described in the present paper

was motivated by these discrepancies.

A possible source of these discrepancies is that the McKendrick–von Foerster equation

was originally conceived of as a model for organisms indexed by age, rather than

by weight. Age and weight do not change in quite the same way over time. An

organism grows older continuously, whereas its weight grows in jumps each time it

finds a prey item to feed upon. As time progresses, organisms which start at the same

age clearly remain the same age as each other, whereas organisms which start at the

same weight in general do not remain the same weight as each other. Pfister and

Stevens (2002) stressed the importance of growth variability in cohorts of organisms.

Motivated by this, Gurney and Veitch (2007) considered the consequences of allowing

growth to be both a random variable and also size-dependent, in a von Bertalanffy
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growth model. However, the emphasis in dynamic size spectra is somewhat different

because variation in body weight here emerges from random encounters with prey

items of various weights.

In this paper we therefore start from a stochastic process in which organisms un-

dergo jumps in body size as they catch and eat smaller organisms. We introduce this

individual-based stochastic process in Section 1.2.1 and describe it as a population-

level model in Section 1.2.2. In Section 1.2.3 we use a systematic expansion of the mas-

ter equation (van Kampen, 1992) to derive an equation for the macroscopic dynam-

ics (which we call the the deterministic jump-growth equation (1.12)) and a Fokker-

Planck equation for the stochastic fluctuations. We also provide an appendix with

an alternative derivation of a Langevin equation, following Gillespie (2000), to clar-

ify an issue unresolved by the systematic expansion. Section 1.2.5 shows that the

McKendrick–von Foerster equation is a first-order approximation of the deterministic

jump-growth equation, which applies at steady state when predators are much larger

than their prey. In Section 1.2.6 we show that our model has a power-law steady state

and we derive an approximate analytic expression for its exponent, thereby show-

ing that the steady state is consistent with the approximate regularity seen in marine

ecosystems. However, the steady state is not necessarily an attractor. In Section 1.3

the behaviour of the deterministic models and of the stochastic model are compared

using numerical methods. As in the case of the McKendrick–von Foerster equation

(Law et al., 2009), certain parts of parameter space allow a travelling-wave solution.

1.2 A dynamical model of size-dependent predation

1.2.1 An individual-based stochastic process

We model predation as a Markov process. The primary stochastic event comprises a

predator of weight wa consuming a prey of weight wb and, as a result, increasing to

become weight wc (Figure 1.1). Predation is inefficient and, in keeping with ecological

convention, we assume that a fixed proportion K of prey mass is assimilated by the

predator so that wc = wa + Kwb (the assumption of constant K could be relaxed). We

call this model the ’jump-growth model’ because the changes in the weight distribu-

tion are caused by discrete steps in body size as predators eat prey, and the mortality

that comes with this predation.

It would be easy to add additional events to the jump-growth model to account for

natural death and for birth (recruitment) but, as we will see, for the purpose of this

paper of explaining the observed power law size spectrum these additional events are

not required, and we will therefore restrict our attention to the pure predation events.

The next three subsections will be concerned with the derivation of equations de-
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Figure 1.1: The primary predation event replaces an individual predator and prey by a new,
larger predator individual. Taking some arbitrary weight w, there are two ways in which an
individual can change from this weight: by feeding and thereby increasing in weight, and
by being eaten and so disappearing altogether. There is also one way in which an individual
can become weight w: by being of smaller weight and feeding on a prey of just the right size
to become weight w. These events are reflected in the three terms of the deterministic jump-
growth equation (1.12) in Section 1.2.4.

scribing the time evolution of the weight distribution that follows from this stochastic

process. The main result from these sections that we will use further in this paper is

the deterministic jump-growth equation (1.12) given in Section 1.2.4. That equation

has an intuitive explanation in Figure 1.1 and is enough to follow the remainder of the

paper.

A mathematically rigorous treatment of the individual-based model may be possible

following the techniques developed for stochastic processes on configuration-space,

see for example (Finkelshtein et al., 2009). In this paper we will instead pursue a

heuristic treatment of a corresponding population-level model.

1.2.2 A population-level master equation

Instead of keeping track of the weight of each individual, we aggregate individu-

als of similar weights into weight brackets, and follow the the number of individ-

uals in each bracket. We introduce a set of weights wi and corresponding weight

27



brackets [wi, wi+1), with i ∈ Z. In practice, the size of the weight brackets should

be chosen small enough so that discretisation errors are small. The weight distribu-

tion of organisms in a large fixed volume Ω is described by a sequence of numbers

”[. . . , n−1, n0, n1, . . . ], where ni is the number of organisms in Ω with weights in the

i-th weight bracket between wi and wi+1.

Let kij/Ω denote the rate constants for the predation events, where the indices of k

are ordered: predator before feeding, prey. Then the probability in an infinitesimal

time interval dt for any one of ni organisms in weight bracket i to eat any one of the

nj organisms of weight bracket j is kijΩ
−1ninjdt. The time evolution of the probability

P(n, t) that the system is in the state n at time t is then given by the master equation

∂P(n, t)

∂t
= ∑

i,j

kij

Ω

[

(ni + 1)(nj + 1)P(n − νij, t)− ninjP(n, t)
]

, (1.1)

where n − νij = (. . . , nj + 1, . . . , ni + 1, . . . , nl − 1, . . . ), and l is the index of the weight

bracket wl ≤ wi + Kwj < wl+1. The first (positive) term in (1.1) corresponds to having

one extra predator in weight bracket (i), one extra prey in (j), and one less predator

in (l), so that one predation event will move the system from state n − νij into state n.

The second (negative) term corresponds to another such predation event that moves

the system out of state n. Hence the master equation is commonly referred to as a

“gain-loss” equation.

1.2.3 Separation of macroscopic behaviour and fluctuations

The master equation (1.1) has non-linear coefficients and is difficult to solve analyt-

ically. We therefore make use of the property that, in systems of sufficiently large

volume Ω, the fluctuations are relatively small because they are suppressed by a fac-

tor of the square root of Ω; the conditions required for this to be true are given in

Appendix 1.5. In this section we adopt the approach of van Kampen (1992), carrying

out an expansion of (1.1) in Ω, and collecting together the highest-order terms in Ω.

To do this, it helps to rewrite the master equation (1.1) using a step-operator notation:

∂P(n, t)

∂t
= ∑

i,j

kij

Ω

(

EiEjE
−1
l − I

)

(

ninjP(n, t)
)

. (1.2)

Here Ei is a step operator that acts on a function f (n) to give Ei f ([. . . , ni, . . . ]) =

f ([. . . , ni + 1, . . . ]); similarly Ej acts on a function f (n) to give Ej f ([. . . , nj, . . . ]) =

f ([. . . , nj + 1, . . . ]); conversely E
−1
l acts on a function f (n) to give E

−1
l f ([, . . . , nl , . . . ])

= f ([. . . , nl − 1, . . . ]). Thus (1.2) is just an alternative notation for (1.1). For further

explanation of the step-operator notation, see van Kampen (1992, page 139).

Following the method used by van Kampen (1992), we separate each random variable
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ni into a deterministic component φi(t) which describes the density of individuals in

weight bracket i, and a random fluctuation component ξi(t) as

ni = Ωφi(t) + Ω
1
2 ξi(t). (1.3)

On average the number of individuals will be proportional to the system size Ω, by

the law of large numbers, and that is the reason for the factor of Ω multiplying φi(t).

That the fluctuations are proportional to the square root of the system size should

be justified by some sort of central limit theorem. A heuristic justification is given in

Appendix 1.5. Thus disaggregating ni in this way leaves two variables φi and ξi which

no longer scale with the system size. We assume that Ω is so large that the discrete

nature of n is no longer noticeable at the level of φ and ξ and we can treat them as

continuous variables.

The new random variables ξi are described by a probability distribution Π(ξ, t) =

Ω1/2P(n, t). An equation for the time evolution of this probability distribution is ob-

tained by substituting the change of variables (1.3) into the master equation (1.2). Care

needs to be taken because this change of variables is time-dependent. This has the

consequence that

∂P(n, t)

∂t
= Ω−1/2 ∂Π(ξ, t)

∂t
− ∑

i

dφi

dt

∂Π(ξ, t)

∂ξi
. (1.4)

Here we used the property that Ω−1/2dξ/dt = −dφ/dt when we keep n fixed. The

operators Ei which change ni to ni + 1 now change ξi to ξi + Ω−1/2 and can therefore

be expanded as

Ei = 1 + Ω−1/2 ∂

∂ξi
+

1

2
Ω−1 ∂2

∂ξ2
i

+ · · · . (1.5)

Substituting all this into the master equation (1.2) gives an equation with terms con-

taining various different powers of the system size Ω.

The highest order terms are at order Ω0. They only contain the macroscopic variables

φi and vanish if these satisfy the deterministic equation

dφi

dt
= ∑

j

(

−kijφiφj − k jiφjφi + kmjφmφj

)

, (1.6)

where m is an index for the weight bracket: wm ≤ wi − Kwj < wm+1. The three

terms in (1.6) are in keeping with the intuition given by Figure 1.1. Losses from

weight bracket i (the negative terms) occur because individuals in this bracket eat

prey and become heavier, and because these individuals are themselves eaten. Gains

into weight bracket i (the positive term) occur through smaller predators growing into

this bracket by eating prey. Imposing the deterministic equation (1.6) is not the only

possible way to make the terms of order Ω0 vanish, but it is the most natural and is
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independently derived in Appendix 1.5.

Terms at the next order, Ω−1/2, give the linear Fokker-Planck equation for the proba-

bility distribution Π(ξ) of the fluctuations,

∂Π

∂t
= −∑

ij

Aij
∂

∂ξi

(

ξ jΠ
)

+
1

2 ∑
ij

Bij
∂2

∂ξi∂ξ j
Π, (1.7)

where the coefficients Aij and Bij are independent of the fluctuations ξ. If we introduce

the objects kijl and fijk by

kijl =

{

kij if wl ≤ wi + Kwj < wl+1

0 otherwise
, (1.8)

fijl =
1

2

(

kijl + k jil

)

(1.9)

then we can give the succinct expressions

Aii = ∑
jl

fijlφj, Aij = ∑
l

(

fijlφi − fl jiφl

)

, (1.10)

Bii = ∑
jl

f jliφjφl , Bij = ∑
l

(

fijlφiφj − fil jφiφl − fl jiφlφj

)

. (1.11)

Because the fluctuations are damped by a factor of Ω1/2, in the remainder of this paper

we concentrate on studying the deterministic equation (1.6).

1.2.4 The deterministic jump-growth equation

For analytical calculations and also for conceptual considerations it is convenient to

work with the continuum limit of the macroscopic equations (1.6). This limit is ob-

tained by writing the size of the weight brackets as ∆i = wi+1 − wi = µi∆ and taking

the limit ∆ → 0. The discrete set of variables φi is replaced by a continuous density

function φ(w) satisfying φ(wi) = φi/∆i. This function φ(w) describes the density per

unit mass per unit volume as a function of mass w at time t; it therefore has dimen-

sions M−1 L−3. The sum over weights in (1.6) is replaced by an integral, ∑i ∆i →
∫

dw.

The rate constants kij are replaced by a feeding rate k(w, w′) satisfying k(wi, wj) = kij.

The macroscopic equation (1.6) becomes

∂φ(w)

∂t
=
∫

(− k(w, w′)φ(w)φ(w′)

− k(w′, w)φ(w′)φ(w)

+ k(w − Kw′, w′)φ(w − Kw′)φ(w′))dw′. (1.12)
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We call this equation the ’deterministic jump-growth’ equation. The three terms in

(1.12) are equivalent to those in (1.6), and correspond to the idea in Figure (1.1) that

there are two ways to leave weight w and one way to enter it. The terms represent,

in order: feeding on prey to become larger than weight w, being fed upon and re-

moved from the system entirely, and feeding on prey of exactly the right size to be-

come weight w.

Following Benoı̂t and Rochet (2004) we assume that the feeding rate takes the form

k(w, w′) = Awαs
(

w/w′) . (1.13)

This states that the rate at which a particular predator of weight w eats a particular

prey of weight w′ is a product of the volume searched per unit time and a dimension-

less feeding preference function s. The volume searched per unit time Awα depends

on the predator’s body weight w, raised to the constant power α. A is a constant

volume searched per unit time per unit massα. The feeding preference function s

depends only on the ratio w/w′ between predator weight and prey weight. In prac-

tice this feeding preference function will be peaked around a preferred predator:prey

weight ratio B.

When the parameter K, that describes which proportion of the prey mass is assimi-

lated by the predator, is equal to 1, the deterministic jump-growth equation (1.12) re-

duces to the Smoluchowski coagulation equation (Smoluchowski, 1916), that is used

to describe the clumping together of particles, for example in aerosols. However the

rate kernels used to describe coagulation differ greatly from our localised feeding rate

kernel (1.13). Typical choices in the coagulation equation are k(x, y) = x + y or xy

or other homogeneous expressions and these lead to very different behaviour such as

the formation of one giant cluster (gelation); see for example Aldous (1999).

1.2.5 Relation to the McKendrick–von Foerster equation

The deterministic jump growth equation (1.12) is not the same as the McKendrick–

von Foerster equation which has been widely used to describe the dynamics of size

spectra (Silvert and Platt, 1978; Silvert, 1980; Benoı̂t and Rochet, 2004; Maury et al.,

2007a; Blanchard et al., 2009; Law et al., 2009) and which reads

∂φ

∂t
= −φD − ∂

∂w
(φG), (1.14)

where D is the per capita death rate at weight w from predation by larger organisms,

D(w) =
∫

k(w′, w)φ(w′)dw′, (1.15)
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and G is the growth rate at weight w from feeding on smaller organisms,

G(w) =
∫

Kw′k(w, w′)φ(w′)dw′. (1.16)

Here we show that (1.14) emerges as an approximation to (1.12) in the case where

the typical prey is small in size compared with the predator. Such an assumption is

reasonable in many cases, because predators tend to be of an order 102 to 103 times

the body mass of their prey (Cohen et al., 1993; Jennings and Mackinson, 2003). So the

feeding kernel is strongly peaked around w′ = w/B with B large. Taking into account

further the inefficiency with which prey mass is assimilated (K ≈ 10−1) (Paloheimo

and Dickie, 1966), there is some justification for treating Kw′
<< w in the last term of

(1.12). This motivates a Taylor expansion of this term around w,

k(w − Kw′, w′)φ(w − Kw′) = k(w, w′)φ(w)

+ (−Kw′)
∂

∂w

(

k(w, w′)φ(w)
)

(1.17)

+
(−Kw′)2

2!

∂2

∂w2

(

k(w, w′)φ(w)
)

+ · · ·

Substituting this back into (1.12) gives

∂φ(w)

∂t
=−

∫

k(w′, w)φ(w)φ(w′)dw′

− ∂

∂w

∫

Kw′k(w, w′)φ(w)φ(w′)dw′ (1.18)

+
1

2

∂2

∂w2

∫

(Kw′)2k(w, w′)φ(w)φ(w′)dw′

+ R,

where the remainder term R is given by

R =
∞

∑
n=3

(−1)n

n!

∂n

∂wn

∫

(Kw′)nk(w, w′)φ(w)φ(w′)dw′. (1.19)

The first two terms in (1.18) correspond to those in the McKendrick–von Foerster

equation (1.14). For ecosystems near to steady state, where φ(w) is close to a power

law (as we will see in the next section), the higher order terms are suppressed by fac-

tors of K/B and are therefore small. Thus the McKendrick–von Foerster equation is a

good approximation for (1.12) near the steady state and when prey are typically much

smaller than their predators. But the higher order terms are not necessarily small in

non-equilibrium ecosystems. In particular, the McKendrick–von Foerster equation is

a less good approximation if there is a travelling wave attractor, see Section 1.3.2.

One way to understand the difference between (1.12) and (1.14) is that (1.12) mod-
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els the discrete, variously-sized jumps in predator mass as predators feed and grow.

This captures the property of the stochastic model that individuals, starting at a given

weight, are able to develop a range of weights over the course of time. In contrast to

this, the McKendrick–von Foerster equation (1.14) assumes smooth growth along the

weight axis. Spreading of body size can be incorporated in (1.14) by introducing the

diffusion term, the third term in (1.18). The source of such diffusion is the determin-

istic jump-growth equation (i.e. terms of order Ω0), so diffusion is attributable to the

deterministic, as opposed to the stochastic, component of the full process.

1.2.6 Steady-state solution

In marine ecosystems, abundance of organisms within body mass classes averaged

over space and seasons often changes rather little, suggesting that they may be close

to a steady state. In such circumstances and when abundance and mass are both ex-

pressed as logarithms (i.e. as a power spectrum) the relationship is approximately

linear with a gradient often close to -1, which implies a power-law with an exponent

-2 in the untransformed variables. This leads to the important regularity of marine

ecosystems that the total biomass is approximately constant when expressed in loga-

rithmic intervals of body mass.

Benoı̂t and Rochet (2004) found that the McKendrick–von Foerster equation has steady

state solutions of the power-law form φ̂(w) ∝ w−γ (see also Platt and Denman, 1978;

Camacho and Solé, 2001), and we will show that the same is true for the deterministic

jump-growth equation (1.12). Of course in the real world such a power-law will have

to break down for very small weights (where otherwise the power-law would predict

an infinite number of very small individuals) and for very large weights (where the

power-law would predict a non-zero density of arbitrarily large individuals). Indeed,

in a real system with a finite number of individuals, a model just having predation

events could not have a non-trivial steady state because the number of individuals

would continue to decrease. A non-zero steady state is possible only if there is an

inexhaustible reservoir of small individuals. In our model the power-law spectrum

provides this reservoir automatically, with φ(w) → ∞ as w → 0. In a more realistic

model one would need to model the plankton as well as recruitment.

A steady state solution φ̂(w) of (1.12) has to satisfy the equation

0 = −
∫

k(w, w′)φ̂(w)φ̂(w′)dw′

−
∫

k(w′, w)φ̂(w′)φ̂(w)dw′ (1.20)

+
∫

k(w − Kw′, w′)φ̂(w − Kw′)φ̂(w′)dw′,

If we substitute the power law Ansatz φ̂(w) ∝ w−γ into this equation, use the form
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(1.13) for the feeding rate, change to a new integration variable r = wpredator/wprey and

cancel some overall factors, we obtain an equation for the exponent γ,

0 = f (γ) =
∫

s(r)

(

− rγ−2 − rα−γ + rα−γ(r + K)−α+2γ−2

)

dr. (1.21)

The existence of a power law steady state can now be proven using the same argument

as that given by Benoı̂t and Rochet (2004) in the case of the McKendrick–von Foerster

equation2. The argument goes as follows. If we assume that predators are bigger

than their prey, then for γ < 1 + α/2, f (γ) is less than zero. Also, f (γ) increases

monotonically for γ > 1 + α/2, and is positive for large positive γ. Therefore there

will always be a unique γ for which f (γ) is zero and thus a unique steady state of the

form φ̂(w) ∝ w−γ. If we allow predators to be smaller than their prey, situations with

no power law steady state or multiple power law steady states can be found.

The numerical value of the power law exponent γ is of particular interest because γ

is known to have a value close to 2 in marine ecosystems (see Section 1.1). In the

special case that K = 1, and α = 1, a value γ = 2 does in fact satisfy (1.21). A value

of α close to 1 is biologically reasonable as this means that the volume searched by a

predator is proportional to its body weight (see Equation (1.13)), although the limited

information available suggests a value slightly lower than α = 1 (Ware, 1978). More

generally, γ = (3 + α)/2 will satisfy (1.21) for any α, with K = 1.

A value of K close to 1 is unrealistic: K ≈ 0.1 would be more appropriate (Paloheimo

and Dickie, 1966) because only a small proportion of food ingested is assimilated into

extra body weight. To treat this case analytically we make the assumption that preda-

tors feed only on prey of their preferred size, i.e., we set the feeding preference func-

tion in (1.21) to the delta function s(r) = δ(r − B). In that case (1.21) reduces to

0 = −Bγ−2 − Bα−γ + Bα−γ(B + K)−α+2γ−2. (1.22)

A Taylor expansion in K/B gives

0 ≈ (2γ − α − 2)
K

B
− B−2γ+α+2, (1.23)

and the Lambert W function can be used to express γ explicitly as a function of the

other variables

γ ≈ 1

2

(

2 + α +
W
(

B
K log B

)

log B

)

. (1.24)

At K = 1 and α = 1, (1.24) produces γ = 2 because W(B log B) = log B. For K < 1,

the exponent γ increases as either K or B decrease, because in either case less mass is

2We thank one of the referees for pointing this out.
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transferred to larger organisms. Notice however that the dependence of γ on K and

B is weak; for instance, if K = 0.1 and B = 100 (still with α = 1), the exponent only

increases to γ = 2.21. Thus if K and B are given biologically reasonable values the

steady-state of the model is broadly consistent with the empirical property of marine

ecosystems that γ is close to 2.

The ecological literature contains a relationship between the parameter γ, and K and

B based on a quite different premise, that the metabolic rate of organisms scales with

body weight as w3/4. It can be shown from this scaling that

γ = 1 +
3

4
− log K

log B
(1.25)

in the absence of any consideration of dynamics (Brown et al., 2004). There is some

resemblance between this equation and (1.24), which becomes evident from taking the

asymptotic approximation for the Lambert W function

W(z) = log z − log log z + · · · (1.26)

in (1.24), giving an expansion in which the leading terms are

γ ≈ 1

2

(

3 + α − log K

log B
− log log

(

B
K log B

)

log B
+

log log B

log B
+ · · ·

)

. (1.27)

Both (1.25) and (1.27) contain the term (log K)/(log B), but are not the same. From a

biological standpoint the equations have the important difference that the relation-

ship in (1.27) follows simply from dynamical bookkeeping of biomass, without any

assumption about metabolic rates being made (see also Law et al. (2009)).

We stress that, although some properties of the steady state have been described

here, we have not investigated analytically the region of parameter space in which

the steady state is an attractor. The next Section (1.3) shows by means of numerical

methods two classes of attractor: a steady state of the kind described above and a

travelling wave.

1.3 Numerical results

Here we use numerical methods to compare some properties of the stochastic jump-

growth model (1.2), the deterministic jump-growth equation (1.12) and the McKendrick–

von Foerster equation (1.14).

Body sizes can span at least ten orders of magnitude in real ecosystems, and it is help-

ful in computations to discretise weight into logarithmic bins, such that the weight
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bracket [wi, wi+1) is the range [wi, (1 + ∆)wi). We adopt a notation: x = log(w/w0),

for some arbitrary weight w0, and use the function u(x) = Ωwφ(w). Thus, integrat-

ing u(x) over the range [xi, xi + ∆), returns the total number of individuals in this size

range.

Some further biological details have to be specified to do the numerical analysis; Ta-

ble 1.1 summarises the information, and Section 1.3.1 describes this in more detail.

We have chosen the parameters not for biological realism but in order to highlight the

differences between the stochastic jump-growth model and the McKendrick–von Fo-

erster equation. In particular we have chosen a smaller predator:prey mass ratio than

is realistic.

term meaning value
Fig 1.2 Fig 1.3 Fig 1.4

x min wt of phytoplankton 0 0 0
xb min wt of consumers 2 2 2
xd max wt of newborn consumers 2.1 2.1 2.1
xs wt at start of senescent death 5 7 8
x max wt of consumers 7.5 9 10
K mass conversion efficiency 0.2 0.2 0.2
B preferred pred:prey mass ratio e1 e1 e1

A volume searched mass−α 50 50 50
α search volume exponent 1 1 1
σ width of feeding kernel 0.3 0.35 variable
µ intrinsic mortality rate 0.1 0.1 0.1
ρ growth of senescent death 5 5 5

stochastic realisation
Np number of phytoplankton 25000 50000 -
N0 initial number of consumers 2000 4000 -
x0 initial upper bd of consumers 4 7 -

γ∗ − 1 exponent for fixed spectra 1.3 1.3 -
∆′ weight bracket for stochastic bins 0.1 0.1 -

numerical integration
∆ wt bracket for integration 0.01 0.01 0.01
δt time increment for integration 0.0001 0.0001 0.0001

Table 1.1: Parameter meanings and values used in computations for figures.

1.3.1 Model specification for numerics

The numerical results describe an ecosystem with two types of organism: phytoplank-

ton which do not feed on other organisms, and consumers which feed on each other

and on phytoplankton. In more detail, the full range of body weights [x, x) is subdi-

vided into the following regions with different ecological properties.

• [x, xb) is reserved for phytoplankton. These organisms are self-supporting; they

36



do not change in mass, and do not form part of the dynamics. Their densities are

held constant, which is equivalent to assuming that, as soon as they are eaten,

they are replaced. Such organisms have to be present to provide a supply of

food for small consumers.

• [xb, xd) is a range reserved for renewal of consumers, i.e. a range over which con-

sumers are born. Renewal is essential: without this, consumers would gradually

die out. Biological realism requires this range to be distinguished from [x, xb),

because newborn consumers may grow in size. When consumers leave this

range (by growth or by death), they are immediately replaced, which amounts

to an assumption of perfect density-dependent compensation in the nursery.

• [xd, xs) is the range in which consumers experience the standard predation, growth

and death processes described in Section 1.2. We include in this range intrinsic

mortality at a per-capita rate µ, which takes into account the fact that organisms

can die for reasons other than being eaten.

• [xs, x) is a range in which the per-capita mortality rate of consumers increases

according to the function

d(x) =

{

µ exp (ρ(x − xs)) if x ≥ xs

µ otherwise
(1.28)

where ρ scales how fast mortality increases beyond size xs. The purpose of this

is to ensure that consumers cannot continue to grow indefinitely, in keeping

with biological constraints on body size. The upper bound x is set such that the

density of organisms at this size is very close to zero.

For numerical studies, the predation-rate function k(x, x′) needs to be made explicit.

In keeping with (1.13), this function is taken to consist of a volume searched per unit

time by predators, together with a feeding preference function, which is assumed to

have a Gaussian shape. In logarithmic variables, the function is:

k(x, x′) =

{

Aeαx

σ
√

2π
exp

(

− 1
2σ2 (x − x′ − log B)2

)

if x > x′

0 otherwise
(1.29)

where parameters A, α, B remain as defined in Section 1.2.6, and σ measures the range

of prey sizes likely to be eaten relative to the size of the predator. We have introduced

the assumption here that predators must be larger than their prey.

In stochastic realisations, the fixed phytoplankton population was initialised with Np

individuals taken from an exponential distribution with parameter γ∗ − 1 over the

range [x, xb). The consumer spectrum was initialised with N0 individuals taken from

an exponential distribution with parameter γ∗− 1 over a range [xb, x0). N0 was chosen

to make the discontinuity between the two spectra small, the upper weight limit being
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initially x0 in the consumers. After the start, consumers dying or growing out of the

renewal range were replaced with newborn individuals, using the same exponential

distribution so that the number of consumers in this range would remain constant. We

carried out realisations of the individual-based stochastic process (Subsection 1.2.1)

using the Gillespie algorithm (Gillespie, 1976). Body sizes were aggregated into bins

of width ∆′ only for visualisation of the size spectra.

Numerical integrations of the deterministic models were carried out using the explicit

Euler method, with a bin width ∆ and a time step δt; consumer spectra were held at

their initial values in the renewal range. Integrations were initialised with assump-

tions equivalent to those of the corresponding stochastic realisations. For graphical

comparison with stochastic results, u(x) was scaled such that
∫

u(x, 0)dx was Np and

N0 for the phytoplankton and consumers respectively, and displayed as the number

n(x) = u(x)∆′ over size intervals ∆′.

1.3.2 Travelling waves

Figure 1.2 compares time series from the deterministic jump-growth equation (1.12)

and from the McKendrick–von Foerster equation (1.14) against a realisation of the

stochastic process. Parameter values are the same for all three time series, and were

chosen to contrast the two deterministic models, by making the difference between

predator and prey body sizes relatively small, and by ensuring the steady state would

not be an attractor. Initial conditions were chosen well away from the steady state, to

induce large oscillations in the size spectra from the start.

Large sustained waves in density develop over time in all three models. These waves

move along the size spectra from small to large body size as organisms grow. Peaks

of the waves are associated with slow growth (prey relatively rare) and low mortality

(predators relatively rare). As expected, the deterministic jump-growth time series

gives a better match to the stochastic series than the McKendrick–von Foerster one, in

terms of the period and shape of the waves (although they are not identical).

1.3.3 Variable growth

The jump-growth model and the McKendrick–von Foerster equation differ in that the

former describes a process in which organisms, starting at the same weight, develop

different weights over the course of time. In so doing, the jump-growth model cap-

tures an important feature of growth: when two organisms of the same weight eat

prey items of different weights, the two organisms must subsequently have different

weights.
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Figure 1.2: Size spectra expressed as logarithm of numbers log n(x) with logarithm of
weights x over time t, constructed from (a) the stochastic jump-growth process, (b) the deter-
ministic jump-growth equation, (c) the McKendrick–von Foerster equation. Parameter values
given in Table 1.1.

Figure 1.3 illustrates this feature of the models, using parameter values that highlight

the differences between them. The results show the fate of a set of organisms that all

start with very similar weights in the range [xd, xd + ∆′); the set can be thought of as

a cohort which grows older without renewal. In the stochastic jump-growth model,

organisms were tagged individually, and the size distribution of the cohort over time

was monitored. In the deterministic jump-growth model we assumed a tagged cohort

u∗(x) at a density low enough relative to u(x) for changes in u∗(x) to come just from

feeding on and being fed upon by u(x), without any reciprocal effect of u∗(x) on

u(x). In the McKendrick–von Foerster simulation, differential equations for survival

and growth in weight in the cohort were solved using the growth and death rates

(1.15) and (1.16) respectively, as described in Law et al. (2009).

The stochastic realisation (Figure 1.3a) shows the number of tagged individuals de-

clining as time goes on (they are being eaten by larger organisms); it also shows the

distribution of body weights spreading out. The behaviour of the deterministic jump-

growth equation matches the stochastic cohort closely (Figure 1.3b). However, the

McKendrick–von Foerster equation (Figure 1.3c) retains its initial spike-like distribu-

tion, because the growth trajectory from any size is fixed.

The average growth trajectories of all three models are close together (Figure 1.3d). As

time goes on and the number of individuals in the stochastic cohort becomes small,

fluctuations in the stochastic growth trajectory can be seen. Also, growth according

to the McKendrick–von Foerster equation is slightly slower than in the deterministic

jump-growth equation. However, these differences are small, and it is only when the

second moments of growth are considered that the spreading in body sizes, missing

from the McKendrick–von Foerster equation, becomes evident.

Adding the second-order diffusion term of (1.18) to the McKendrick–von Foerster

equation (1.14) would recover the tendency for body size to spread. However, this

still leaves out higher order terms of the Taylor expansion (1.18) which do not neces-

sarily become small unless the steady state is an attractor.
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Figure 1.3: Number n(x) of organisms with log weight x over time t in tagged cohorts em-
bedded in size spectra. Cohorts start in a weight range 2.1 ≤ x < 2.2 at t = 0. (a) Stochastic
jump-growth process; (b) deterministic jump-growth equation; (c) McKendrick–von Foerster
equation; (d) mean weights over time computed for the cohorts shown in (a), (b), (c), and
labelled correspondingly. Parameter values given in Table 1.1.

1.3.4 Dynamical stability

Figure 1.4 gives examples of the steady states and stability properties of the jump-

growth and McKendrick–von Foerster models. The breadth of diet σ decreases from

top to bottom in the figure.

At steady-state, the size spectra have similar shapes in the two models, and diet

breadth has little effect on them. For the most part the steady states are close to

linear under the log transformation of both axes. This linearity applies until near

x = 8, where the extra size-dependent mortality starts to take effect. In the region

2.1 ≤ x < 7 which is close to linear, the slopes are approximately −1.42 in the deter-

ministic jump-growth equation and −1.47 in the McKendrick–von Foerster equation,

equivalent to exponents γ = 2.42 and γ = 2.47 respectively. These values are close

to the value 2.47 predicted from analysis of the delta-function version of the feeding

preference equation (1.24).

Figure 1.4 shows the existence of a bifurcation point at which the system flips from

one dynamical regime to another as σ changes. For large enough σ the steady state is

an attractor, i.e. the Jacobian matrix evaluated at the steady state has max(Re(λ)) < 0:
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Figure 1.4: Steady-state size spectra (dashed lines), and transient size spectra (continuous
lines) after a period of 5 time units has elapsed starting from the same initial function. Column
1 (a, c, e) obtained from the deterministic jump-growth equation; column 2 (b, d, f) obtained
from the McKendrick–von Foerster equation. Diet breadths σ: 0.5 (a, b), 0.4 (c, d), 0.3 (e, f);
other parameters given in Table 1.1. Steady states obtained by Newton-Raphson iteration,
which also gives the Jacobian matrix at steady state (Press et al., 1992); numbers given for
each graph are max(Re(λ)) where λ is an eigenvalue of the Jacobian.
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size spectra initialised away from the steady state move towards it. For small enough

σ this ceases to be the case, i.e. max(Re(λ)) > 0; instead, the size spectra develop

travelling waves like those seen in Figure 1.2. Importantly, the bifurcation point oc-

curs at a smaller value of σ in the jump-growth equation. This may be because of

the lack of spreading in body size in the McKendrick–von Foerster equation: such

spreading would tend to dampen oscillations. A consequence of the difference is that

a stability analysis of the McKendrick–von Foerster equation could be misleading; see

for instance Law et al. (2009). Although not shown here, the bifurcation to a travel-

ling wave can also be induced by increasing the preferred ratio B of the predator:prey

body mass (Law et al., 2009).

1.4 Discussion

The starting point for our analysis was a simple, mechanistic, stochastic process in

which a larger organism feeds on a smaller one, thereby causing the death of the

prey and increment in its own weight. From the master equation of the process, a

macroscopic model for the dynamics of size spectra was derived, which we call the

deterministic jump-growth model. The equation is related to the Smoluchowski coag-

ulation equation (Smoluchowski, 1916), which describes how the size-distribution of

inanimate coagulating particles changes over time. However, the jump-growth equa-

tion has to deal with special features of living organisms, such as their ability to choose

the size of their prey, and their inefficiency in turning these prey into their own body

mass. To cope with the vagaries of the animate world, the deterministic jump-growth

equation is necessarily more general.

The expression for the steady state derived from the deterministic jump-growth equa-

tion is consistent with the approximate constancy of biomass in logarithmic intervals

of body mass often observed in marine ecosystems. So the basic empirical regularity

evidently follows from the bookkeeping of biomass, as it passes through the ecosys-

tem. However, the steady state may or may not be an attractor. As one might an-

ticipate from the general oscillatory nature of predator-prey systems, another non-

equilibrium attractor exists, here comprising waves of abundance that travel from

small to large body size. These waves have practical as well as theoretical interest

in view of the large, often unexplained, fluctuations in exploited marine fish stocks

(Hsieh et al., 2006; Anderson et al., 2008; Blanchard et al., 2009, personal communica-

tion).

The jump-growth model is not the same as the McKendrick–von Foerster equation

widely used in the study of dynamic size spectra. This is because it allows organ-

isms, starting at the same size, to become different through eating prey of different

sizes. The McKendrick–von Foerster equation, with its roots in age distributions
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(McKendrick, 1926; von Foerster, 1959) does not allow this: organisms which start

at the same age must always remain the same age. An age-dependent McKendrick–

von Foerster equation has been extended to allow for variable size at age (Gurney

and Veitch, 2007), but this was by adding variability to a specified model of growth,

the von Bertalanffy equation. Growth of organisms in dynamic size spectra comes

about in a quite different way, because it emerges directly from the action of predators

feeding on prey. This is not to suggest that variation in prey size is the only cause of

variation in predator size; in reality, a variety of extrinsic and intrinsic factors are most

likely involved.

Although the deterministic jump-growth model is different from the McKendrick–

von Foerster equation, the latter can be derived from it using the lowest-order terms

in a Taylor approximation. The approximation requires that prey size is small relative

to that of the predator, which will often apply in practice. Thus for many purposes the

McKendrick–von Foerster equation should work well, notwithstanding the numerical

examples used in Section 1.3 (deliberately chosen to contrast the two models). This

is with the caveat that higher-order terms in the Taylor expansion are not necessarily

small when the attractor is a travelling-wave rather than a steady state, or when look-

ing at spiky perturbations away from the steady state, even if prey are much smaller

than their predators. To describe such non-equilibrium solutions accurately, the jump-

growth model is needed.

When solving the jump-growth equation numerically, some care is needed in the dis-

cretisation of log w. Unlike the McKendrick–von Foerster equation, there is no guar-

antee that feeding will generate non-zero rate terms for growth. If the multiplicative

weight brackets ∆ are too large relative to prey size, weight increments from feed-

ing do not register, and an erroneous solution is obtained. For a Gaussian feeding

preference function (1.29), a rule of thumb is that ∆ needs to be of an order K/(Be2σ)

to capture properly the rate term due to growth of organisms. Values of the order

B = 102, σ = 0.5 log B and K = 0.1 are realistic (Paloheimo and Dickie, 1966; Co-

hen et al., 1993; Jennings and Mackinson, 2003), requiring ∆ to be of an order 10−5.

With marine size spectra encompassing ten orders of magnitude, numerical analyses

clearly become demanding. A small value of B was used for the illustrations in Section

1.3, but it would be much harder to do the computations in a more realistic setting.

Faced with this difficulty, a halfway house would be to use the McKendrick–von Fo-

erster equation with the diffusion term from the expansion in (1.18). We are not aware

of a previous derivation of the diffusion term for growth in body size, although dif-

fusion in physical space has been considered in the context of the McKendrick–von

Foerster equation (Okubo and Levin, 2001). Nor have we seen the use of a diffusion

term in the McKendrick–von Foerster equation applied to size spectra, although the

effects of introducing variability into Gompertz and von Bertalanffy growth models
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have been described (Bardos, 2005; Gurney and Veitch, 2007). It would be instructive

to know how much the McKendrick–von Foerster approximation could be improved

by introducing this extra term.

Several further features of real-world ecosystems, not dealt with in this paper, will

modify our results. First, some feedback between the abundance of phytoplankton

and consumers is to be expected. Second, perfect compensation in renewal of con-

sumers is unlikely, especially when travelling waves affect the abundance of repro-

ducing individuals. Such processes generate long, potentially destabilizing, feedback

loops. Third, consumers do not all start life with the same potential for growth and

reproduction. They comprise a number of different species with different life histo-

ries (Andersen and Beyer, 2006; Blanchard et al., 2009). They are born at different

sizes, they grow to different sizes, and they allocate different proportions of their lim-

ited resources to growth, maintenance and reproduction along the way (Maury et al.,

2007a). Such processes loosen the dynamical coupling between a feeding organism

and its prey.

There is much to learn about the intricacies of biology that can stabilize and destabilize

marine ecosystems. It is important to obtain this knowledge because the biomass in

such ecosystems is typically of major economic importance, heavily exploited, and

with dynamics that are not well understood. The deterministic jump-growth equation

derived here should place this programme of research on a more rigorous footing.
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1.5 Appendix: Derivation of Langevin equation

Our treatment of the jump-growth model using the van Kampen expansion in Section

1.2.3 did not provide a justification for assuming that the fluctuations ξ around the so-

lution φ of the deterministic equation (1.6) are damped by a factor of Ω1/2. In this ap-

pendix we derive an approximate stochastic differential equation for the jump-growth

model, adapting an approximation procedure used by Gillespie (2000) for stochastic

models of chemical reactions. We will find that the deterministic part of the equation

coincides with our deterministic jump-growth equation (1.6) and that the stochastic

noise term is indeed suppressed by a factor of Ω1/2.

Because of the stochastic nature of the jump-growth model, the vector of numbers

[. . . , n−1, n0, n1, . . . ] in each weight bracket introduced in subsection (1.2.2) is described

by a stochastic process n(t). In a time interval [t, t + τ] a number of predation events

will take place, each of which changes the numbers. This is expressed by the equation

n(t + τ) = n(t) + ∑
i,j

Rij(n(t), τ)νij, (1.30)

where the Rij(n, τ) are random variables giving the number of predation events tak-

ing place in the time interval [t, t + τ] that involve a predator from weight bracket i

and a prey from weight bracket j. The νij are the vectors that give the change in num-

bers caused by such a predation process, as described in Subsection (1.2.2). We now

will argue that the random variables Rij(n(t), τ) can be approximated by normally

distributed variables.

The rate aij of each individual predation event depends on the numbers of individuals

aij(n) = Ω−1kijninj. (1.31)

As the numbers change after each event, the events are unfortunately not indepen-

dent. However, because the numbers change only by ±1 in each event, the change

to the rates is very small if the numbers are large. So, if we choose the time span

τ small enough so that not too many predation events take place, the rates can be

approximated as remaining constant throughout the time interval,

aij(n(t
′)) ≈ aij(n(t)) ∀t′ ∈ [t, t + τ]. (1.32)

In that case the predation events can be treated as independent and therefore the num-

ber Rij(n(t), τ) of event taking place in the time interval follows the Poisson distribu-

tion with parameter τaij(n(t)).

Next we assume that the parameter τaij(n(t)) is either zero or large enough so that

the Poisson distribution is well approximated by the normal distribution with mean
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and variance both equal to τaij(n(t)). Again this is easy to justify when the numbers

are large and provided the feeding kernel kij is bounded away from zero. In our case,

where the feeding kernel contains a Gaussian, we need to neglect the rare events in

the tails of the Gaussian.

Note that we are placing two opposing conditions on the size of the time interval τ:

it needs to be both small enough so that the rates don’t change much but also large

enough so that the number of events can be taken to be normally distributed. Such

an intermediate range for τ will exist, provided the numbers of individuals in the

weight brackets are large enough. In our application, where the overall number of

individuals involved is truly huge, our approximations will be very good except for

very large weights where the density is very small and where the approximations will

break down.

Now that we have argued that the Rij are well approximated by normal random vari-

ables with mean and variance both equal to τaij(n(t)), we express them as

Rij(n(t), τ) = aij(n(t))τ +
√

aij(n(t))τ rij (1.33)

where the rij are normal random variables with mean 0 and variance 1. Substituting

this into (1.30), rearranging terms and dividing by τ gives

n(t + τ)− n(t)

τ
= ∑

ij

aij(n(t))νij + ∑
ij

√

aij(n(t))νijτ
−1/2rij. (1.34)

We now approximate this equation, which is valid for small but finite τ, by the stochas-

tic differential equation obtained by taking the limit τ → 0,

dn(t)

dt
= ∑

ij

aij(n(t))νij + ∑
ij

√

aij(n(t))νijηij(t), (1.35)

where ηij(t) are independent white noise processes. This type of equation is known

as a Langevin equation, see for example van Kampen (1992).

Substituting the explicit expressions (1.31) for the rates into the Langevin equation

(1.35) gives

dni

dt
=Ω−1 ∑

j

(

−kijninj − k jinjni + kmjnmnj

)

(1.36)

+ Ω−1/2 ∑
j

(

−
√

kijninjηij −
√

k jinjniηji +
√

kmjnmnjηmj

)

.

When we write the equation in terms of the population densities Φi = Ω−1ni we see
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that the fluctuation terms are suppressed by a factor of Ω−1/2.

dΦi

dt
=∑

j

(

−kijΦiΦj − k jiΦjΦi + kmjΦmΦj

)

+ Ω−1/2 ∑
j

(

−
√

kijΦiΦjηij −
√

k jiΦjΦiηji +
√

kmjΦmΦjηmj

)

.

For large system size Ω the fluctuation terms can be neglected and we end up with

our equation (1.6).
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Abstract

This paper investigates the stability of the power-law steady state often observed in

marine ecosystems. Three dynamical systems are considered, describing the abun-

dance of organisms as a function of body mass and time: a ”jump-growth” equa-

tion, a first order approximation which is the widely used McKendrick-von Foerster

equation, and a second order approximation which is the McKendrick-von Foerster

equation with a diffusion term. All of these yield a power-law steady state. We de-

rive, for the first time, the eigenvalue spectrum for the linearised evolution operator,

under certain constraints on the parameters. This provides new knowledge of the

stability properties of the power-law steady state. It is shown analytically that the

steady state of the McKendrick-von Foerster equation without the diffusion term is

always unstable. Furthermore, numerical plots show that eigenvalue spectra of the

McKendrick-von Foerster equation with diffusion give a good approximation to those

of the jump-growth equation. The steady state is more likely to be stable with a low

preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency.

The effects of demographic stochasticity are also investigated and it is concluded that

these are likely to be small in real systems.

Keywords: marine ecosystem; stability; size-spectrum; McKendrick-von Foerster equa-

tion; predator-prey; growth diffusion; eigenvalues

2.1 Introduction

It is well established that marine ecosystems often show roughly equal abundances

of biomass in logarithmically increasing weight intervals, when organisms are iden-

tified by body mass rather than by species identity (Sheldon et al., 1972; Boudreau

and Dickie, 1992). This is equivalent to a power-law for the abundance density as

a function of body mass with exponent of approximately −2. Alternatively, plotting

log(abundance) against log(mass) gives a “size spectrum” (Sheldon and Parsons, 1967;

Platt and Denman, 1978) which is approximately linear with gradient near to −1.

This empirical pattern has motivated a programme of theoretical research. Silvert

49



and Platt (1978; 1980) developed a size-dependent partial differential equation mod-

elling growth and death in a size spectrum, and established the existence of a power-

law steady state. The power-law steady state has also been shown in systems where

predators are allowed to eat any prey smaller than themselves (Camacho and Solé,

2001). When predators are assumed to be more selective (i.e. eating only a certain

range of prey), the existence of a power-law steady state has also been proven, using

an integro-differential equation for the model instead of a partial differential equa-

tion; the exponent generally depends on assimilation efficiency, external mortality

and predator-prey interaction rates (Benoı̂t and Rochet, 2004). In these and other

studies (e.g. Andersen and Beyer, 2006; Blanchard et al., 2009; Law et al., 2009), the

McKendrick-von Foerster equation is commonly used. However, a derivation from a

stochastic model of predation leads to a more general equation (Datta et al., 2010a),

which we will refer to as the “jump-growth” equation in the following analysis. The

McKendrick-von Foerster equation is the first order approximation (in an infinite se-

ries) to the jump-growth equation when prey are typically much smaller than preda-

tors. The second order approximation brings a diffusion term into the McKendrick-

von Foerster equation (Datta et al., 2010a), the effects of which have not previously

been studied.

Marine biologists need to understand the resilience of the power-law steady state to

perturbations caused by fishing and natural phenomena, such as springtime plankton

blooms. For instance, it has been shown that fishing increases the temporal variability

in abundance of marine species (Hsieh et al., 2006; Anderson et al., 2008). Fundamen-

tal to this understanding are the stability properties of the power-law steady state,

about which very little is known. We do know from recent numerical studies on the

jump-growth equation and the McKendrick-von Foerster equation that there is a bi-

furcation from a stable power-law steady state to a travelling-wave attractor under

certain parameter conditions (Law et al., 2009; Datta et al., 2010a). However, the only

stability analysis we are aware of assumed growth to be independent of prey density

(Arino et al., 2004), thereby excluding a key predator-prey interaction at the heart of

the dynamics. The power-law steady state plays a pivotal role in marine ecosystems,

and it is essential to understand the factors that contribute to its stability and instabil-

ity.

This paper provides the first detailed stability analysis on the jump-growth equa-

tion and its low order approximations, the McKendrick-von Foerster equation and

the McKendrick-von Foerster equation with diffusion. It is also the first analysis of

the effects of including the second order diffusion term in the McKendrick-von Foer-

ster equation, and of the effects of demographic noise on the stable power-law steady

state. The results shows that the first order approximation is unstable, whereas the

second order approximation can be stable, and gives a much better approximation to

the jump-growth equation. The steady state is shown to be more likely to be stable
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when the preferred predator:prey mass ratio is reduced and the diet breadth and the

feeding efficiency are increased.

For readers interested in the mathematical derivation of the perturbation equations

and eigenvalue spectra, Section 2.2 shows the necessary steps taken. However, for

those more interested in the results of the stability analyses, Section 2.3 shows the

behaviour of the three models, and reading Section 2.2.1 should provide sufficient

background reading to understand the different models used.

2.2 Analysis of the power-law steady state

2.2.1 Three models of predation

The analysis focuses on perturbations around the power-law steady state of three

equations: the jump-growth equation (2.1), the McKendrick-von Foerster equation

(1.14) and the McKendrick-von Foerster equation with diffusion (2.3). These equa-

tions describe the rate of change in the density of organisms of weight w, which we

call φ(w), with dimensions M−1L−3, where M is the mass dimension and L is the

length dimension. This density is with respect to both mass and volume, so the num-

ber of organisms in a volume V with weight between w and w + dw is Vφ(w)dw. The

first equation is based on the jump-growth equation of Datta et al. (2010a),

∂φ(w)

∂t
=

∫

(

−T(w, w′)φ(w)φ(w′)− T(w′, w)φ(w′)φ(w)

+T(w − Kw′, w′)φ(w − Kw′)φ(w′)
)

dw′ − µφ(w). (2.1)

T(w, w′) is proportional to the feeding rate of individuals of weight w on individuals

of weight w′, and 0 < K < 1 is the conversion efficiency of biomass from prey to

predator (Law et al., 2009). There are three ways in which a feeding event can result in

a change in the density of individuals at a given weight w, corresponding to the three

terms in the integrand. The first term represents the loss of individuals of weight w

due to growth to a larger size (predation of w upon w′), the second term the loss of

individuals of weight w due to death (predation of w′ upon w), and the third term the

gain of individuals of weight w due to growth from from a smaller size (predation of

w − Kw′ on w′). Here we have also included a linear natural death rate µ (with the

dimension of inverse time) to allow for other sources of mortality.

A Taylor expansion of the third term in the jump-growth equation in powers of K

gives an infinite series of approximations to the full jump-growth equation (Datta

et al., 2010a). Expanding up to and including terms linear in K gives our second
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model, the McKendrick-von Foerster equation,

∂φ(w)

∂t
= −

∫

T(w′, w)φ(w)φ(w′) dw′ (2.2)

− ∂

∂w

∫

Kw′ T(w, w′)φ(w)φ(w′) dw′ − µφ(w)

and including terms quadratic in K gives our third model,

∂φ(w)

∂t
= −

∫

T(w′, w)φ(w)φ(w′) dw′ (2.3)

− ∂

∂w

∫

Kw′ T(w, w′)φ(w)φ(w′) dw′

+
1

2

∂2

∂w2

∫

(Kw′)2 T(w, w′)φ(w)φ(w′) dw′ − µφ(w),

which we will refer to as the McKendrick-von Foerster equation with diffusion. Note

that, as in equation (2.1), a linear death rate µ has been included in these two approx-

imations.

We assume a feeding kernel of the form

T(w, w′) = Awαs
( w

w′

)

(2.4)

where A is the predator search volume per unit mass−α per unit time, α is the predator

search exponent, calculated to have a value of approximately 0.8 (see Ware, 1978), and

s(w/w′) is the feeding preference function, centred around some preferred preda-

tor:prey mass ratio B. To make analytical progress in this paper we assume that

α = γ − 1, where γ is the exponent of the power-law steady state (≈ 2). This as-

sumption then has the consequence that the steady state is a power-law (see below).

In addition, the eigenvalue spectrum can then be written as a closed form expression

and its properties analysed. Although probably not realistic from a biological point of

view (discussed in Section 2.4), the assumption places stability analyses of size spectra

on a firm mathematical foundation and provides a basis from which exploration of a

broader class of systems can begin.

Section 2.2.2 defines the power-law steady state for the jump-growth equation (2.1)

and its two approximations (2.2) and (2.3). Section 2.2.3 develops equations for the

dynamics of small perturbations to this steady state and Section 2.2.4 gives explicit

equations for the eigenvalue spectra. In Section 2.2.5, the effect of demographic noise

on the system at steady state is investigated. Finally, Section 2.2.6 incorporates a Gaus-

sian feeding preference for predators.
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2.2.2 The power law steady state

The steady state for equations (2.1), (2.2) and (2.3) is given by

φ̂(w) = φ0w−γ (2.5)

where φ0 is a constant. Below, it helps to transform the variable w to a dimensionless

log weight variable x = ln(w/w0) (for some arbitrary weight w0). For analysing the

steady state of the jump-growth equation (2.1) it is convenient to change the integra-

tion variable of each of the three terms to the predator:prey mass ratio, which leads to

the transformed equation

∂v(x)

∂t
= Â

∫

s(er)

(

− eαrv(x)v(x − r)− v(x)v(x + r)

+eα(r+ψ(r))v(x − ψ(r))v(x − r − ψ(r))

)

dr − µv(x), (2.6)

where we have used equation (2.4) for the feeding kernel with α = γ − 1. Here v(x)

has the property that e−(α+1)xv(x) dx = φ(w) dw and has dimensions L−3, Â = Aw0
α,

and r is the log of the predator:prey mass ratio with ψ(r) = ln(1 + Ke−r). In the

transformed jump-growth equation (2.6), the steady state is simply given by

v(x) = v0, (2.7)

where v0 = φ0w0
−α is a constant. Substituting this into equation (2.6) we get the

steady state condition,

∫

s(er)
(

−eαr − 1 + eα(r+ψ(r))
)

dr − η = 0 (2.8)

where η = µ/(Âv0) is dimensionless. This equation implicitly determines the value

of the search volume exponent α (and thus the steady state exponent γ) for a given

choice of the parameters K and η and the feeding kernel s(er). If we impose the con-

ditions that predators can only feed upon prey smaller than themselves and K 6= 0,

we can prove analytically that there always exists a unique value for α that solves the

steady state condition. Without these conditions we verify its existence and unique-

ness numerically. Setting η determines the abundance of fish at the steady state, as it

contains the constant v0.

For the McKendrick-von Foerster equation with diffusion (2.3), the steady state con-

dition is
∫

s(er)

(

−1 + αKe(α−1)r + α(α − 1)
K2

2
e(α−2)r

)

dr − η = 0, (2.9)

and for the McKendrick-von Foerster equation without diffusion (1.14), terms of order
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K2 in equation (2.9) are ignored.

2.2.3 Perturbations around the steady state of the jump-growth equation

We now add a small perturbation to the steady state of the jump-growth equation and

observe its evolution over time. If the perturbation grows over time, then the steady

state is not stable, and the system will not stay at the equilibrium; if the perturbation

decays, then the steady state is locally asymptotically stable. We call the perturbation

v0ǫ(x, t) and obtain its evolution equation by substituting

v(x, t) = v0(1 + ǫ(x, t)) (2.10)

into equation (2.6). We now assume that we can neglect terms of order ǫ2 because

ǫ is taken to be very small. For a finite-dimensional dynamical system this can be

justified rigorously using the Hartman-Grobman theorem (see e.g. Kirchgraber and

Palmer (1990)), however in an infinite-dimensional system this can be more subtle,

see for example Aulbach and Garay (1993), and we proceed formally in analogy with

the finite-dimensional case. We then use condition (2.8) to eliminate terms of order ǫ0,

so that only terms of ǫ1 remain. This leads to the linearised perturbation equation

∂ǫ(x)

∂t
= Âv0

∫

s(er)

(

− eαr(ǫ(x) + ǫ(x − r)) (2.11)

−(ǫ(x) + ǫ(x + r))

+eα(r+ψ(r))(ǫ(x − ψ(r)) + ǫ(x − r − ψ(r)))

)

dr − µǫ(x).

We can change integration variables appropriately so that the right hand side of equa-

tion (2.11) is in the form of an integral operator acting on ǫ,

∂ǫ(x)

∂t
= Âv0

∫

ǫ(m)G(x, m) dm (2.12)

where

G(x, m) = −δ(r)

(

∫

s(ez)(eαz + 1)dz + µ

)

− s(er)eαr − s(e−r)

+s(ez1)K−1e(α+1)(z1+r) + s(ez2)e(α+1)r−z2 . (2.13)

Here r = x − m, z1 = ln(K/(er − 1)), z2 = ln(er − K) and δ represents the Dirac delta

function. The integral kernel G(x, m) can be thought of as an infinite-dimensional

version of a matrix with indices x and m and the task of solving equation (2.12) thus

reduces to finding the ‘eigenvectors’ and ‘eigenvalues’ of this ‘matrix’. To define the

operator rigorously in the infinite-dimensional case we must first restrict the pertur-
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bations to the space of square-integrable periodic functions with some period L. On

this space the operator is compact and thus it is meaningful to speak of its spectrum

of eigenvalues. In the end we can then take the period L to infinity.

2.2.4 Eigenvalue spectra

We observe that the integral kernel G(x, m) depends on x − m only, i.e. it is a convo-

lution kernel. Its ‘eigenvectors’ are given by plane waves, ǫk(x) = eikx, for any k ∈ R.

We refer to k as the wavenumber of the plane wave ǫk(x) and denote the correspond-

ing eigenvalue as λ(k).

The eigenvalues are

λ(k) =
∫

s(er)
(

−eαr − eikr + eαr+(α−ik)ψ(r)
) (

1 + e−ikr
)

dr − η. (2.14)

We refer to the values taken by λ(k) as the eigenvalue spectrum.

A general perturbation can then be expanded in terms of these plane waves and its

time evolution is

ǫ(x, t) =
∫

C(k)eikx+Âv0λ(k)t dk. (2.15)

The expansion coefficient function C(k) is an even function because ǫ(x, t) is real. No-

tice that if any λ(k) has a positive real part then perturbations grow exponentially with

time (the factors Â and v0 are positive constants and thus do not affect the coefficient

of t), which means that the steady state is unstable.

To derive the eigenvalue spectrum for the McKendrick-von Foerster equation with

diffusion from equation (2.14), ψ(r) is expanded in powers of K. Taking terms up to

and including K2 yields

λ(k) =
∫

s(er)

(

−eikr + K(α − ik)e(α−1)r +
K2

2
(α − ik)(α − 1 − ik)e(α−2)r

)

×
(

1 + e−ikr
)

dr − η.

(2.16)

As in equation (2.9), neglecting K2 terms gives the corresponding eigenvalue spectrum

for the McKendrick-von Foerster equation.

It is the real part of the eigenvalue that we are interested in, as it is the sign of this

that determines whether the perturbations grow or die out over time. If, for some

wavenumber k Re(λ(k)) is positive, then any perturbation containing a component

with this wavenumber will grow over time and thus the steady state will be unstable.

If Re(λ(k)) is negative for all k then all perturbations die out over time, and the steady

state is stable.
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2.2.5 Stochastic fluctuations

The analysis above is concerned with the deterministic jump-growth equation (2.1)

and its low-order approximations (2.2) and (2.3). In fact, equation (2.1) is the mean-

field equation for a stochastic model of pairwise encounters between predator and

prey (Datta et al., 2010a). The magnitude of the fluctuations due to the demographic

noise in the stochastic model is a factor of Ω
1
2 smaller than the mean-field solution,

where Ω is the number of individuals in the system (van Kampen, 1992). For marine

ecosystems Ω tends to be very large, so the fluctuations will be relatively small, but

they can nonetheless have important effects (McKane and Newman, 2005), and may

significantly impact the patterns observed in empirical data.

In this section we describe how the magnitude of the stochastic fluctuations, and the

correlations between the fluctuations at different body sizes, can be predicted in the

case where the steady state of the mean-field system is stable. In order to make the fol-

lowing statements rigorous, one would work in terms of discrete body size intervals,

but we work in the continuum formally for convenience, which gives the same results.

We let n(x, t) be a random variable corresponding to the density of individuals of size

w = w0ex at time t. The random variable is described by the stochastic process given

in previous work (Datta et al., 2010a). Following the method used by van Kampen

(1992), we separate n(x, t) into a deterministic component v(x, t), which satisfies the

mean-field equations studied above, and a random fluctuation component ξ(x, t):

n(x, t) = Ve−αx
(

v(x, t) + Ω− 1
2 v0ξ(x, t)

)

. (2.17)

Assuming that the deterministic component is at steady-state, the stochastic fluctua-

tions ξ(x, t) can be described by a Langevin-type equation (for details of the derivation

of this equation from the individual-based model see Datta et al., 2010a)

∂

∂t
ξ(x, t) = Âv0

(

∫

G(x, y)ξ(y, t)dy + ρ(x, t)

)

, (2.18)

where the kernel G is given by equation (2.13) and ρ(x, t) is a null-mean noise process.

The covariance of noise at two different body sizes is described by a covariance kernel

B(x, y) = 〈ρ(x, t)ρ(y, t)〉, which is given by (see Datta et al., 2010a):

B(x, y) = eα(x+y)
∫

(

f (x, y, z)− f (x, z, y)− f (z, y, x)

+ δ(x − y)
∫

(

f (x, z, z′) +
f (z, z′, x)

2

)

dz′
)

dz,

(2.19)

where

f (x, y, z) = e−α(x+y) (k(x, y, z) + k(y, x, z)) (2.20)
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and

k(x, y, z) = eαxs
(

ex−y
)

δ(z − x − ψ(x − y)). (2.21)

The covariance 〈ξ(x, t)ξ(y, t)〉 of the fluctuations at logarithmic body sizes x and y

satisfies

∂

∂t
〈ξ(x, t)ξ(y, t)〉 = Âv0

(

∫

(G(x, z)〈ξ(z, t)ξ(y, t)〉+ G(y, z)〈ξ(z, t)ξ(x, t)〉) dz + B(x, y)

)

.

(2.22)

In the steady state, the time derivative on the left-hand side vanishes and thus the

correlation function 〈ξ(x, t)ξ(y, t)〉 can be calculated by setting the right-hand side to

zero which results in a linear equation to be solved. We present the numeric results in

section 2.3.7.

The quantity 〈ξ(x, t)ξ(y, t)〉 measures the correlation in the stochastic fluctuations at

two different body sizes at the same time. Fluctuations may also be correlated across

different times, but an investigation of this is beyond the scope of this paper. Although

resonance between the natural frequency of the system and the white noise inherent

in the stochastic model could cause these correlations to be significant (McKane and

Newman, 2005), this phenomenon was not observed in previous simulations of the

individual-based model, even with a relatively small system size Ω (Law et al., 2009).

2.2.6 Gaussian feeding preference

Organisms do not eat indiscriminately; here we assume that they feed at some pre-

ferred prey size (in relation to their own size), and a range of sizes around this pre-

ferred size. To reflect this, a suitable preference function is a Gaussian feeding pref-

erence, with peak at β and width proportional to σ (Andersen and Beyer, 2006; Law

et al., 2009). This can be represented by the following form for s(er),

s(er) =
1√
2πσ

· e
−(r−β)2

2σ2 . (2.23)

In theory this function allows predators to eat prey larger than themselves (i.e. is

non-zero for r < 0), although for realistic sets of parameter values s(er) is typically

negligible for r < 0.

The eigenvalue spectrum for the jump-growth equation (2.14) with the Gaussian pref-

erence function (2.23) unfortunately does not have a closed form. In contrast, the

eigenvalue spectra for the McKendrick-von Foerster equation without and with dif-

fusion can be determined analytically. Defining

Rn = (α − n)

(

β +
1

2
σ2(α − n)

)

(2.24)

In = k
(

β + σ2(α − n)
)

, (2.25)
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and taking the steady state condition (2.9) into account, the eigenvalue spectrum for

the equation with diffusion is

Re(λ(k)) =e−
1
2 σ2k2

[

− cos(kβ) + KeR1 (α cos(I1)− k sin(I1))

+
K2

2
eR2
(

(α(α − 1)− k2) cos(I2)− k(2α − 1) sin(I2)
)

]

− K2

2
eR2 k2.

(2.26)

The diffusion term is removed by excluding terms of order K2 in equation (2.26).

An important difference between the two approximations is that there must always

exist values of k for which Re(λ(k)) is positive in the eigenvalue function for the

McKendrick-von Foerster equation. Consequentially the McKendrick-von Foerster

equation will never give a stable spectrum. In contrast, the McKendrick-von Foerster

equation with diffusion contains a non-oscillatory term in k which is negative and in-

creases in magnitude as k increases. This has the effect of making the real parts of

the eigenvalues more negative for higher values of k. For both approximations the

oscillatory terms are damped exponentially by a e−
1
2 σ2k2

term. Equation (2.26) is anal-

ysed in greater detail in Section 2.3 to explain observed patterns in the behaviour of

eigenvalue spectra when altering parameters.

Using the steady state condition (2.8), it can be shown for the jump-growth equation

that Re(λ(0)) = η. This result also applies to both of the approximations. Thus, for

any positive η, Re(λ(k)) must be positive at k = 0, and as λ(k) given in equation

(2.14) is continuous, there exists a neighbourhood around k = 0 where Re(λ(k)) > 0.

Therefore there will be a range of wavenumbers k for which perturbations eikx will

destabilise the steady state. However, we only expect our model to be realistic for a

range of body weights spanning around 12 orders of magnitude (Cohen et al., 2003)

and therefore should ignore perturbations with a wavelength longer than this, i.e.

those with wavenumbers smaller than about k ≈ 0.2.

2.3 Results

2.3.1 Eigenvalue spectra of the three models

To evaluate the eigenvalue spectra, we use the Gaussian feeding preference (2.23), for

given values for the parameters K, β, σ, η. Where possible we keep these parame-

ters biologically reasonable and close to values from previous studies (Andersen and

Beyer, 2006). We use values of K = 0.2, β = 5 and σ = 1.5 as a base parameter set, and

investigate the effects of changing these parameters. For this base parameter set, the
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steady state exponent γ is equal to 2.27 when η = 0 (i.e. no external mortality) and

the value of γ increases with η. The values of γ used in the numerical plots mostly

lie in the empirical range of 2.2 to 3.25 reported by Blanchard et al. (2009). Values of

the wavenumber k are taken over a range from 0 to 30, as the interesting behaviour of

the eigenvalue spectra is seen in this frequency range. Note that the expressions for

Re(λ(k)) are even in k for the three models, so the plotting of negative values of k is

unnecessary. We often plot the eigenvalue spectra over a logarithmic k-axis to make it

easier to see the details at small k.

Examples of the eigenvalue spectra of the jump-growth equation and its two approxi-

mations (all computed numerically using the preference function (2.23)) are compared

in Figure 2.1.
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Figure 2.1: The eigenvalue spectra for the (a) jump-growth equation (JGE), (b) McKendrick-
von Foerster equation (MvF) and (c) McKendrick-von Foerster equation with diffusion (MvF-
D) when using a Gaussian feeding preference. Note that η has been set to give a steady state
exponent of roughly 2.3 for all three spectra. Parameter values K = 0.2, β = 5, σ = 1.5, η =
0.290, γ = 2.30.

All three spectra are close to η for small k, as expected from Section 2.2.6. Both approx-

imations are close to the jump-growth equation for low values of k, but as k gets larger

only the McKendrick-von Foerster equation with diffusion follows the jump-growth

equation closely. This is expected from equation (2.26) because the diffusion term is

needed to make the eigenvalue spectrum more negative with increasing k. Adding

the diffusion term gives a better approximation to the full jump-growth model. Thus

the properties of equation (2.26) will be used to gain insight into the behaviour of the

eigenvalue spectra of the jump-growth equation in the subsequent sections.

The power-law steady state is unstable for all three models in this example, because

all three spectra contain eigenvalues with a positive real part (the maximum occurring

at k ≈ 0.861). The tendency for unstable steady states to emerge in our analysis will

be discussed in Section 2.4.

The different behaviours of the two approximations are not just limited to a Gaussian
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feeding preference; similar results have also been obtained when using a step function

for the feeding preference. This has the form

s(er) =

{

1
2σ if β − σ ≤ r ≤ β + σ

0 otherwise
(2.27)

and is a rectangular kernel, with midpoint β, width 2σ and height 1/(2σ). It is worth

noting that although behaviour similar to Figure 2.1 is observed, the oscillations are

not damped exponentially, and oscillations are observed at all values of k.

2.3.2 Stable and unstable steady states

For some sets of parameter values, the steady state is stable. Figure 2.2 gives an exam-

ple, obtained by allowing a low preferred predator:prey mass ratio β, a high efficiency

K and a relatively large diet breadth σ.
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Figure 2.2: Eigenvalue spectra for the McKendrick-von Foerster equation and McKendrick-
von Foerster equation with diffusion, compared to that of the jump-growth equation. Param-
eter values K = 0.8, β = 1, σ = 0.35, η = 0, γ = 2.11.

This example is chosen to illustrate the point that the eigenvalue spectrum for the

McKendrick-von Foerster equation can be misleading; the spectrum for the McKendrick-

von Foerster equation without diffusion peaks at 1.19, whereas for the equation with

diffusion and the jump-growth equation Re(λ(k)) < 0 for all k. The spectrum is sta-

bilised by the non-oscillatory term introduced by the inclusion of terms of order K2.

The diffusion term contributes to stability and the effect of this is great enough to make

a qualitative difference to the calculated stability of the steady state. As predicted in

Section 2.2.6, the McKendrick-von Foerster equation gives an unstable spectrum for
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any choice of parameter values.

2.3.3 Time evolution of perturbations

To show the consequences of stable and unstable steady states on the dynamics, we

can examine the behaviour of a local perturbation to the size spectrum, and observe

its time evolution. Assume a Gaussian perturbation with initial form

ǫ(x, 0) = νe
− x2

2ς2 , (2.28)

where ν is a small constant and ς dictates what range of body sizes in the size spec-

trum are effected by the initial perturbation. This can be expanded in plane waves,

rewriting ǫ(x, 0) as

ǫ(x, 0) = ν̄
∫ ∞

−∞
e−

1
2 ς2k2

eikx dk. (2.29)

where ν̄ = (νς)/
√

2π. The time dependence of this perturbation then has the follow-

ing form:

ǫ(x, t) = ν̄
∫ ∞

−∞
e−

1
2 ς2k2

eikx+Âv0λ(k)t dk. (2.30)

We set ς so that the perturbation covers about one size unit on the x-scale, and choose

units so that Âv0 = 1. We choose to centre our perturbation around x = 0 without

loss of generality. Plotting the time evolution both for a stable spectrum (Figure 2.2)

and an unstable spectrum (Figure 2.1) using the jump-growth equation gives the two

behaviours shown in Figure 2.3.

For both plots, the initial perturbation moves along the x-axis over time, as the organ-

isms it contains feed on smaller organisms and grow. In the case of a stable spectrum,

the perturbation gives rise to smaller peaks either side of the initial perturbation, and

these all die out over time, tending to zero across the whole range of x. In the case

of an unstable spectrum, the peaks grow over time. They develop into waves with

wavenumber k̂, where k̂ is the most unstable node of the eigenvalue spectrum. Thus,

in the case of Figure 2.3b, where k̂ = 0.861, the wavelength of the peaks is seen to

be around (2π)/k̂. Over time the peaks grow in magnitude but maintain their wave-

length. The speed at which the perturbation moves through the size spectrum is de-

termined by Im(λ(k̂)).

2.3.4 Changing the preferred predator:prey mass ratio

Figure 2.4 shows the effect of increasing the logarithm of the preferred predator:prey

mass ratio β on the stability of the jump-growth equation.

The maximum real part of the eigenvalues increases as β increases, the steady state
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Figure 2.3: The time evolution of a Gaussian perturbation, ς = 0.2, when using (a) a stable
eigenvalue spectrum (parameter values K = 0.8, β = 1, σ = 0.35, η = 0, γ = 2.11), and
(b) an unstable eigenvalue spectrum (parameter values K = 0.2, β = 5, σ = 1.5, η = 0.290,
γ = 2.30).

going from stability when β = 1 (i.e. Re(λ(k)) < 0 for all k), to instability for the larger

values of β. This is in keeping with previous numerical results, where increasing β led

to a bifurcation from the power-law steady state to a travelling wave attractor (Law

et al., 2009), although the two results should not be directly compared because in

earlier work the assumption α = γ − 1 was not imposed. The changes seen in Figure

2.4 as β is increased can be understood in terms of equation (2.26), where β occurs

both in the Rn exponential terms and in the In cosine and sine terms. In Rn, β acts to

dampen the waves more as it increases, and in In, β acts to reduce the period of the

waves as it increases. Both these changes are visible in the figure. Some decrease in the

exponent of the power-law steady state is also evident with increasing β in Figure 2.4.

We interpret this in biological terms as an outcome of less biomass being lost from the

size spectrum as β increases, because biomass is inefficiently consumed fewer times

during its passage along the spectrum. Note that σ has been held constant this figure,

so that as β is increased, the mean of the predator : prey feeding distribution increases

but the variance remains constant.

2.3.5 Changing the feeding efficiency

Figure 2.5 shows the effect of changing the feeding efficiency K on the eigenvalue

spectrum.

To understand Figure 2.5, it helps to consider the limiting case of K → 0. Although

unrealistic, because it implies no growth of organisms, the eigenvalue spectrum in
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Figure 2.4: The eigenvalue equations for the jump-growth equation with varying logarithm
of the preferred predator:prey mass ratio β. Parameter values σ = 1.5, K = 0.2, η = 0.

equation (2.26) is then simply a damped cosine wave: Re(λ(k)) = e−
1
2 σ2k2

cos(kβ).

Consequently, the most unstable node k̂ must be the first peak of this wave, which

occurs at k̂ = π/β, equivalent to k̂ = 0.628 with the parameter values in Figure 2.5.

We observe in Figure 2.5 that, for small K (1 × 10−5), the value of k̂ (0.655) is close to

this limiting value.

Corresponding to the node at k̂ = π/β, there is a dominant eigenfunction with a

wavelength 2β. This can be understood in biological terms as a straightforward con-

sequence of the predator-prey interaction. A pulse perturbation from steady state

that increases the density of predators at some size lowers the density of prey eβ times

smaller than themselves. This in turn reduces the mortality rate on the prey’s prey e2β

times smaller than the predators, allowing their density to increase. This leads to the

wavelength 2β.

Figure 2.5 also shows that, as K increases, k̂ grows and Re(λ(k̂)) gets smaller. In other

words, perturbations from the steady state grow more slowly and have wavelengths

less than 2β as K increases. In this case, a pulse increase in predator density at some

body size does not remain at the same position in the size spectrum as time goes on.

The predators grow as they eat, and their preferred prey body size moves along with

them. This mitigates to some extent the destabilizing feedback of slow (or absent)

predator growth that would continue to reduce the density of prey approximately eβ

times smaller than the predator. These results help explain the observation of Law

et al. (2009) that perturbations tend to have a wavelength less than 2β. Notice also

that the exponent of the power-law steady state becomes substantially smaller as K

increases, because more biomass passes along the size spectrum to large organisms.

63



10
−1

10
0

10
1

−1

−0.5

0

0.5

1

1.5

k

R
e

(λ
(k

))

 

 

K = 0.00001, γ = 3.59, k
^
 = 0.653

K = 0.01, γ = 2.74, k
^
 = 0.776

K = 1, γ = 2.04, k
^
 = 0.922

Figure 2.5: The eigenvalue equations for the jump-growth equation, with varying feeding

efficiency K; k̂ denotes the location of the most unstable node of the spectrum. Parameter
values β = 5, σ = 1.5, η = 0.290.

2.3.6 Changing diet breadth

It has been shown in earlier numerical studies that, by making the diet breadth more

narrow (i.e. decreasing σ), the power-law steady state can become unstable, leading

to travelling waves of abundance that move along the spectrum with time (Law et al.,

2009; Datta et al., 2010a). In the extreme case of a feeding kernel where predators only

eat prey of the exact preferred mass ratio, and of no other weight (using a Dirac delta

function of the form s(er) = δ(r − β) as the feeding preference), the steady state can

be shown always to be unstable (proof not given here).

In Figure 2.6 we investigate the effect of increasing the diet breath σ.
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Figure 2.6: The eigenvalue spectra for the jump-growth equation with varying diet breadth:
(a) σ = 0.25 (k∗ = 9.60), (b) σ = 0.5 (k∗ = 6.02), and (c) σ = 1 (k∗ = 3.41), where k∗ denotes the
largest value of k for which Re(λ(k)) > 0. Parameter values K = 0.2, β = 5, η = 0, γ = 2.27.

64



As σ increases, the amplitude of oscillations at low values of k decreases, and the

range for which Re(λ(k)) has positive values becomes narrower; the largest value of

k for which Re(λ(k)) > 0 k∗ is seen to decrease as σ increases. This is consistent with

equation (2.26), because increasing σ will cause the oscillations to be damped sooner

by the e−
1
2 σ2k2

term. Note that it is the change in σ which is causing the change in the

spectrum and not the steady state exponent; γ remains at a value of approximately

2.27 in each case.

2.3.7 The effects of demographic noise

As explained in Section 2.2.5, we can calculate the equal-time correlation function

〈ξ(x, t)ξ(y, t)〉 for the fluctuations in the steady state. This function describes how the

fluctuations due to demographic stochasticity are correlated at different weights at

steady state. It is obtained by solving the linear integral equation obtained by setting

the time derivative to zero in equation (2.22). To perform the calculation we used

discrete weight brackets, so that the integral equation becomes a matrix equation,

which we solved numerically. Using the same parameter values as in Figure 2.2, the

result is plotted in Figure 2.7. The graph has the feature of an exponential decay

with increasing distance, typical of correlation functions. Superimposed on the decay

is an oscillation with a wavelength of approximately 2β, generated by the non-local

predator-prey interaction. The reason for the oscillation is that a positive fluctuation at

x = 0 gives more food, faster growth and a negative fluctuation near β, which in turn

gives less food, slower growth and a positive fluctuation near 2β. The wavelength is

slightly greater than 2β because the mean distance in log-weight between a predator

and its prey is slightly greater than β (i.e. β + (γ − 1)σ2) since the prey are themselves

distributed as e−(γ−1)x.

2.4 Discussion

We have presented a local stability analysis of the power-law steady state of marine

size spectra. The approach has some resemblance to the local stability analyses of

steady-state food webs widely applied in ecology (Murray, 2002; Rooney et al., 2006).

However, instead of having nodes representing a finite number of species, the analysis

here uses a continuous weight range corresponding to an infinite number of “nodes”,

and this gives a continuous spectrum of eigenvalues. Characterization of the eigen-

value spectrum has been carried out before (Arino et al., 2004); the difference here

is that we explicitly link growth of the organisms to predation, which we think is a

useful step towards reality.

To do the analysis, the predator search exponent α and steady state exponent γ have
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Figure 2.7: The correlation function 〈ξ(0, t)ξ(x, t)〉 for the fluctuations around a stable steady
state due to demographic stochasticity. This measures the correlation between stochastic fluc-
tuations at log body sizes 0 and x; the correlation between fluctuations at log body sizes x and
y, 〈ξ(x, t)ξ(y, t)〉, is equal to eαx〈ξ(0, t)ξ(x − y, t)〉. Parameter values K = 0.8, β = 1, σ =
0.35, η = 0, γ = 2.11.

been set so that α = γ − 1. In addition, we assume that the rate for predation-

independent death is independent of body weight. These assumptions imply that

the dynamics of small perturbations are described by the convolution operator given

in equation (2.12), leading to a simple time dependence of the perturbations in terms

of an expansion in plane waves, given in equation (2.15). In general these assumptions

would not be appropriate in ecological communities. The reason for using them here

is that we believe it is valuable to have analytical results for this special case before

beginning numerical explorations of conditions closer to those in nature.

The benchmark for the analysis is a jump-growth equation, obtained as the large-

system limit of an underlying stochastic predation-growth process (Datta et al., 2010a).

Importantly, the eigenvalue spectrum of the well-known, first-order approximation,

the McKendrick-von Foerster equation (Andersen and Beyer, 2006; Law et al., 2009;

Blanchard et al., 2009), exhibits a systematic departure from that of the jump-growth

equation: the real parts of the eigenvalues of the former tend to zero as wavenumber

increases, whereas those of the latter become increasingly negative. Therefore in our

analysis the eigenvalue spectrum of the McKendrick-von Foerster equation must al-

ways contain eigenvalues with positive real parts, and must always have an unstable

steady state.

In contrast to the first-order approximation, the eigenvalue spectrum of the second-

order approximation, obtained by adding a diffusion term to the McKendrick-von Fo-

erster equation, contains a negative term that is quadratic in the wavenumber, which
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makes the real parts of the eigenvalues much closer to those of the jump-growth equa-

tion. The diffusion term is potentially important. One consequence of it is that there

can be eigenvalue spectra for which Re(λ(k)) < 0 for all wavenumbers k > 0, im-

plying local stability of the steady state. This is with the caveat that the eigenvalue

spectrum tends to the natural death rate η as the wavenumber tends to zero, so pertur-

bations with sufficiently low wavenumbers (long wavelengths) could still destabilize

the steady state.

The second-order approximation with diffusion has not previously been used, but

would be worth considering in the future when the full jump-growth equation cannot

be used. Interestingly, Benoı̂t and Rochet (2004) found they had to include a diffusion

term in numerical integrations of the McKendrick-von Foerster equation to obtain a

solution in the absence of natural mortality, although they stated that they did not un-

derstand why this should be so. How serious the omission of the diffusion term is in

practice depends on the wavenumber k at which the eigenvalue spectrum peaks, be-

cause it is this wavenumber that dominates the solution in the long term. If the peak

occurs at sufficiently small k, the effect of the negative second-order term in equa-

tion (2.26) is small, and the standard McKendrick-von Foerster equation is reliable

(Figure 2.1). If the peak occurs at large k, the negative second-order term in equa-

tion (2.26) becomes significant, and inferences about stability from McKendrick-von

Foerster equation may not be reliable (Figure 2.2). The second-order equation with

diffusion itself becomes a poor approximation if the feeding preference function is set

such that predators are often smaller than their prey, because the Taylor expansion of

the jump-growth equation on which it is based is no longer convergent (Datta et al.,

2010a). However, in reality predators are almost always larger than prey, so this is not

likely to be an issue.

Key parameters for locating the peak of the eigenvalue spectrum with respect to k

are the logarithm of the preferred predator:prey mass ratio β, the efficiency of mass

transfer from prey to predator K and the diet breadth σ. The results in Section 2.3.5

suggest that predator-prey interactions would typically restrict the wavenumber k at

the peak to be greater than π/β. Overall, to get the peak of the eigenvalue spectrum

at a low wavenumber where the McKendrick-von Foerster equation works best, Ke−β

must be small, i.e. growth increments of predators must be small. As β is made

smaller and K is made larger, the McKendrick-von Foerster approximation works less

well, because it misses the stabilizing effect of the diffusion term. The diet breadth σ,

also affects the shape of the eigenvalue spectrum, the main effect in equation (2.26)

being to dampen the oscillations in the real parts of the eigenvalues (Figure 2.6). In

so doing σ has the potential to shift positive peaks below Re(λ(k)) = 0, and hence to

change an unstable steady state into a stable one. This is consistent with the results

of earlier studies which have shown the stabilizing effects of broad diets (Law et al.,

2009; Datta et al., 2010a).
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A feature of the stability analysis here is that the parameter values required to achieve

stability are outside the range likely to apply in marine systems (e.g. K = 0.8 in Fig-

ure 2.2). As stated above, earlier numerical integrations using the McKendrick-von

Foerster equation have led to stable steady states using realistic sets of parameter val-

ues. There are, however, some important differences between the present analysis

and previous work. First, real size spectra span a finite range of body sizes, about

twelve orders of magnitude being realistic (Cohen et al., 2003). This means that per-

turbations with very long wavelengths cannot occur, and corresponding to this, the

wavenumber k cannot be less than about 0.2. Second, the finite range calls for lower

and upper bounds which are not used here. Imposing such bounds removes the exact

power-law steady state, and the boundary conditions themselves influence the stabil-

ity of the steady state. Third, the constraint on parameter values needed to achieve

α = γ − 1 may exclude those values likely to lead to stability. The present study is

best thought of as throwing light on the role that mortality, predation and growth play

in determining stability of the power-law steady state. We expect other processes to

also leave their own footprint, and some of these could increase the parameter space

in which stable steady states arise (Capitan and Delius, 2010).

Nonetheless, at a qualitative level, the results here are consistent with earlier observa-

tions that the steady state of marine size spectra undergoes a bifurcation from stability

to instability as predator:prey mass ratio is increased and as diet breadth is decreased.

The results here indicate that this is a Hopf bifurcation as a complex conjugate pair of

eigenvalues cross the imaginary axis. Even without taking other major life processes

into account, the analysis makes clearer what kinds of ecosystems are more vulnerable

to external disturbances such as those caused by fishing and climate change. Further

research should expand upon this, to better understand marine ecosystem dynamics,

and better predict the potential consequences of perturbing seemingly robust ecosys-

tems.
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Abstract

In this chapter the dynamics of size spectra are investigated under seasonal ”bottom-

up” forcing of the system by plankton blooms. A biomass spectrum model is first

constructed using the McKendrick-von Foerster equation with diffusion to govern

predation of smaller organisms by larger organisms. The lower portion of the spec-

trum is dominated by small primary producers and is subjected to time-dependent

population growth, corresponding to springtime phytoplankton blooms which are

widely observed in marine systems. The behaviour of the dynamic consumer spec-

trum is then investigated using numerical integrations. It is observed that for all the

simulated blooms, the time-averaged size spectrum is always close to a power-law

distribution, keeping with empirical observations. The match/mismatch hypothesis

is studied in detail by monitoring the consequences of the timing of offspring emer-

gence relative to the peak bloom on growth and survival. The growth rate of cohorts

is found to be highest prior to the peak of the bloom, although survival is also low-

est here. The most abundant cohort stays on the peak of the wave of abundance that

passes through the consumer spectrum; thus similar results to an earlier non-dynamic

model by Pope et al. (1994) are observed, although quantitative differences arise.

Keywords: marine ecosystem; seasonality; size-spectrum; McKendrick-von Foerster

equation; growth diffusion; steady state; phytoplankton bloom

3.1 Introduction

The concept of the size spectrum, established in the pioneering work of Sheldon and

Parsons (1967), has initiated a whole branch of research in marine ecology. For exam-

ple, it has been shown that, in aquatic systems, ignoring taxonomy and looking only at

organisms’ weights, the abundance of organisms is a negative power-law distribution

of the biomass (or equivalently size), and plotting log(abundance) against log(mass)

gives a roughly linear fit with gradient -1 (Sheldon et al., 1972; Platt and Denman,

1978). This regular pattern appears to be robust, independent of the size scale which

is investigated, and the linear relationship has been observed for phytoplankton spec-
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tra (San Martin et al., 2006; Huete-Ortega et al., 2010), zooplankton spectra (Heath,

1995; Zhou et al., 2009) and for fish spectra (Boudreau and Dickie, 1992; Jennings and

Mackinson, 2003).

Within this broad pattern there is important seasonal variation caused by changes

in temperature, nutrient levels and turbulence. Such environmental factors can al-

ter abundances of plankton and/or larger organisms, influencing the intercepts and

slopes of size spectra over the year (Navarro and Thompson, 1995; Mari and Burd,

1998; Cózar and Echevarrı́a, 2005). The single biggest seasonal driver of variation in

size spectra is the phytoplankton bloom that occurs at some stage during the year

(Barnes et al., 2011), usually in the spring, although smaller blooms can also occur

in the autumn (see Truscott, 1995; Findlay et al., 2006). The bloom is characterized

by an increase in the phytoplankton from 5 to 10 times its usual abundance (Gasol

et al., 1992; Huete-Ortega et al., 2010), depending upon the latitude and surrounding

environment, before returning to a fairly constant abundance for the rest of the year.

This process can take place over several days or over the course of weeks, and is fol-

lowed by an increase in abundance of zooplankton further along the size spectrum

(Heath, 1995), which in turn provides a larger food source for fish larvae (Cushing

and Horwood, 1994; Mertz and Myers, 1994).

Sampling size spectra with high enough temporal resolution to observe these seasonal

patterns from plankton to fish is demanding due to the difficulty and cost of efficiently

sampling different parts of the community (Jennings et al., 2002b). Nonetheless, vari-

ation within plankton spectra has been recorded over the course of a year (Heath,

1995; Huete-Ortega et al., 2010), and recent empirical work with regular sampling has

shown intra-annual changes in both phyto- and zooplankton spectra (Zarauz et al.,

2009; Zhou et al., 2010). Seasonal plankton models can achieve a qualitative match

with the data, with the caveat that the predicted increase in zooplankton abundance

can be much greater than that observed (Zhou et al., 2010).

The time of spawning of fish species relative to the timing of plankton blooms is of

special interest for understanding the early-life survival of fish and the consequences

for fisheries (Hjort, 1914). The match/mismatch hypothesis, a term coined by Cush-

ing (1975), predicts that fish larval recruitment is linked to the timing between the

reproductive period of mature fish and the peak of plankton abundance which are the

main prey source of fish larvae. The closer that larvae are born to the plankton peak,

the greater their food source, leading to a lower rate of starvation and faster growth

rate, meaning less opportunity for predators to feed upon the larval population. The

idea has been the subject of much study, and has some empirical support (Cushing,

1990; Mertz and Myers, 1994; Platt et al., 2003; Buckley and Durbin, 2006).

It is not just the availability of smaller prey that matters in a seasonal size spectrum.

The organisms feeding on smaller prey also run the risk of being eaten themselves;
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hence both ”bottom-up” and ”top-down” forces are at play (e.g. Frank et al., 2005).

Pope et al. (1994) conjectured that as the biomass is transferred up the size spectrum

through time, the wave of biomass becomes dampened at large sizes. Using a fixed

von Mises probability distribution as a simple caricature for the seasonal size spec-

trum, they investigated the consequences of dropping individuals onto the surface to

analyse their life history trajectories and simultaneously account for the growth and

predation that would be inflicted from the backdrop of this fixed biomass size-time

spectrum. They found that the success of cohorts depended upon high prey availabil-

ity for fast growth and low predator abundance for reduced mortality; cohorts born

earlier in the year had faster growth rates and higher amounts of biomass remain-

ing over the course of a year. However, they did not explicitly model the predation

process or the dynamics of the size spectrum.

This chapter builds on the approach of Pope et al. (1994) by considering the conse-

quences of a seasonal wave of primary production when the dynamics and predation

process of the consumer spectrum are included. There are two reasons for doing this.

First, the von Mises shape of the pulse of abundance is affected by the nonlinear dy-

namics of size-based predation, and may change as the pulse moves through the size

spectrum. Second, the speed at which the pulse moves along the size spectrum should

depend on the growth rate of consumers, rather than being set externally. The shape

of the consumer spectrum subject to a phytoplankton bloom over the course of a year

are studied. Time-averaged distributions are found to be close to power-laws for a

range of plankton blooms. The growth, survival and biomass of cohorts born at dif-

ferent times of the year are investigated in a method similar to Pope et al. (1994). As

in that previous paper, there is a clear advantage to spawning prior to the time of a

seasonal bloom, but the most successful cohorts stay at the peak of the wave of abun-

dance that follows a plankton bloom.

3.2 Size spectrum dynamics with seasonal blooms

3.2.1 Size spectrum model

A community size-spectrum model with two parts is considered; a phytoplankton

spectrum dominated by primary producers, and a predation-driven consumer spec-

trum (Figure 3.1). The consumer spectrum consists of pelagic fish species, but also

includes zooplankton which feed in a size-based fashion. This is similar to previous

models (e.g. Maury et al., 2007a; Law et al., 2009; Blanchard et al., 2009, Chapter 1).

A seasonal pulse of abundance is added to the phytoplankton spectrum to simulate

springtime blooms observed in empirical data (e.g. Navarro and Thompson, 1995;

Irigoien et al., 2005). The consequences of the bloom on the shape of the consumer
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Figure 3.1: The size spectrum, plotting the log mass of organisms against the log abundance.
The spectrum is split into a phytoplankton spectrum occupying the left-hand side of the size
spectrum, and a consumer spectrum, where organisms are able to feed upon both spectra for
growth. The spectra are separated by the dashed line. Image of grass carp (Ctenopharyngodon
idella) used with permission of Vlado.

spectrum are investigated. The individual growth and survival rates of cohorts born

at different times of year are examined, to establish the success of cohorts relative to

the time of emergence.

Consumer spectrum

It has been shown in previous models that the predation process alone can produce a

power-law steady state (Benoı̂t and Rochet, 2004; Law et al., 2009). Here the McKendrick-

von Foerster equation with diffusion is used because it emulates the stability proper-

ties of the more detailed jump-growth equation more closely than the widely used

McKendrick-von Foerster equation without diffusion (Chapter 2), whilst being less

numerically demanding than the full jump-growth equation. The McKendrick-von

Foerster equation with diffusion has the form

∂u(x)

∂t
= −µu − ∂

∂x
(gu) +

1

2

∂

∂x

(

e−x ∂

∂x
(du)

)

. (3.1)

where µ, g and d are terms representing, in turn, death (either due to predation or

other factors), growth due to predation, and diffusion in growth. The rates of these
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processes are defined as

µ = Aw0
α
∫ x∞

x0

s(ex′−x)eαx′u(x′)dx′ + M(x), (3.2)

g = Aw0
αKe(α−1)x

∫ x∞

xp

s(ex−x′)ex′ (p(x′) + u(x′)
)

dx′, (3.3)

d = Aw0
αK2e(α−1)x

∫ x∞

xp

s(ex−x′)e2x′ (p(x′) + u(x′)
)

dx′. (3.4)

The phytoplankton spectrum is labelled as p(x, t) and the consumer spectrum is la-

belled as u(x, t). p(x) and u(x) are functions describing the density of individuals per

unit volume at size x. For convenience, size is expressed as x = ln(w/w0) where w is

weight in milligrams and w0 is a reference weight. dx′ is the log weight range to be

integrated over, which by convention is the whole real range (−∞, ∞), but needs to be

restricted when performing numerical simulations (see Section 3.3). K describes the

feeding efficiency with which prey biomass is converted to predator biomass (Chap-

ter 1), which is assumed to be constant across the size spectrum. A mortality rate

M(x), which allows organisms to die due to non-predation factors is also included.

The feeding of organisms is assumed to consist of two weight dependent terms. One

scales with the weight of the predator (Awα), from evidence of allometric scaling be-

tween the volume covered by an organism per unit time and the weight of the or-

ganism (Ware, 1978). Here A is a constant defining the predator search volume per

unit mass−α per unit time and α is the scaling exponent. The other term (s(x, y)) is

a function of the mass ratio of predator x and prey y, following the observation that

the size of prey compared to its predator is an important factor in feeding (Cohen

et al., 1993), and in aquatic systems more so than the prey species (Ursin, 1973; An-

dersen and Ursin, 1977; Boudreau and Dickie, 1992; Jennings and Mackinson, 2003).

The lower bounds are xp for the phytoplankton spectrum and x0 for the consumer

spectrum, and the upper bound for the consumer spectrum is x∞.

Analytically a power-law steady state for the McKendrick-von Foerster equation with

diffusion has been proven (Chapter 1), given by

û(x) = u0e(1−γ)x (3.5)

where u0 determines the scaling of the size spectrum, and 1 − γ is the steady state

exponent. This is with the caveats that the weight range is the real line x ∈ (−∞, ∞),

and that all organisms feed in a size-based way.
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Phytoplankton spectrum

The phytoplankton spectrum spans the range xp ≤ x < x0. The processes driving the

dynamics of phytoplankton and the acquisition of energy from nutrients and light are

not explicitly modelled here (see Moloney and Field, 1991; Fuchs and Franks, 2010).

Instead, it is assumed that organisms can be preyed upon by larger organisms, but are

assumed to replace themselves quickly enough so as to make predation effects negli-

gible (e.g. Maury et al., 2007a; Law et al., 2009; Blanchard et al., 2011). Models have

tested the response of the size spectrum to bottom-up perturbations before, by increas-

ing the height of the phytoplankton size classes uniformly for a short period of time

(Maury et al., 2007b; Blanchard et al., 2011). Here a similar approach is taken. Follow-

ing the approach of Pope et al. (1994) the seasonal size-time phytoplankton spectrum

is characterized by the von Mises distribution, and the dynamics are therefore inde-

pendent of the consumer spectrum. The phytoplankton bloom is thus modelled by

the following time-dependent equation,

p(x, t) = u0e(1−γ)x

(

1 +
(D − 1)eζ(cos(2π(t−t0)))

I0(ζ)

)

(3.6)

where D ≥ 1 controls the ratio of the cumulative bloom abundance over the whole

year and cumulative steady state abundance (i.e. D = 1 gives no bloom), ζ is an in-

verse measure of the duration of the bloom (as ζ increases the bloom becomes shorter

and sharper) and t0 corresponds to the point in time over the year where the bloom

is at its peak (with 0 < t0 < 1, and time t measured in years). I0(ζ) is a modified

Bessel function of the first kind and order zero (Pope et al., 1994) and is a normalis-

ing factor such that, for fixed D, as ζ is altered, the integral of (3.6) over a year (the

total number of phytoplankton) remains constant. For all parameter values, the mean

phytoplankton spectrum over the course of a year is a power-law distribution.

Empirical data rarely show the cumulative phytoplankton abundance over a year;

more often, samples are regularly taken throughout a time period giving the phyto-

plankton abundance at those points in time (Navarro and Thompson, 1995; Huete-

Ortega et al., 2010). For this reason it can be simpler to specify D by using estimates

for ζ and the ratio of abundance at the bloom peak and during the rest of the year

(which is labelled R), and rearranging (3.6) to give

D = (R − 1)I0(ζ)e
−ζ + 1. (3.7)

An example of the shape of the bloom is shown in Figure 3.2.

As well as the well-documented qualitative rise in abundance of phytoplankton dur-

ing the bloom period, there is evidence to suggest that the majority of the increase

takes place in larger size classes, i.e. the nanophytoplankton weight range of 20-
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Figure 3.2: The abundance of phytoplankton over a year. The peak of the bloom is high-
lighted by the vertical dashed line.

200µm equivalent spherical diameter (Li and Logan, 1995; Mari and Burd, 1998). Thus

two alternative forms of the bloom are considered, as well as (3.6). In the first instance,

following size spectrum data showing that the slope of the phytoplankton spectrum

becomes less negative during the course of a bloom (Echevarria and Rodriguez, 1994;

Huete-Ortega et al., 2010), the gradient of the phytoplankton spectrum is altered dur-

ing the bloom. Here the equation for the bloom is

p1(x, t) = u0e(1−γ)xp+γ∗(t)(x−xp) (3.8)

where

γ∗(t) = γ + (γp − γ)eζ(cos(2π(t−tp))−1) (3.9)

with γp picked to give the specified bloom:steady state abundance of the largest phy-

toplankton. Hence p1(xp, t) is fixed, and phytoplankton become relatively more abun-

dant during the bloom for larger x.

In the second instance a change in the relative contributions of large:small phyto-

plankton is investigated by holding the lower part of the phytoplankton spectrum

constant (xp ≤ x ≤ xn, where xn represents the minimum weight of nanophytoplank-

ton), and allowing only the upper part of the phytoplankton spectrum (xn < x ≤ x0)

to increase during the bloom. In this case the equation for the bloom is

p2(x, t) = u0e(1−γ)x for xp ≤ x < xn

p2(x, t) = u0e(1−γ)x

(

1 +
(D − 1)eζ(cos(2π(t−t0)))

I0(ζ)

)

for xn ≤ x < x0

(3.10)
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The effects of the three blooms (3.6), (3.8) and (3.10) on the consumer spectrum are

compared using numerical simulations.

3.2.2 System parameters

Gaussian feeding preference function

Before the size spectrum model can be evaluated numerically, the feeding preference

of organisms in the dynamic spectrum must be set. For this, a Gaussian feeding pref-

erence is incorporated following previous work (Ursin, 1973; Andersen and Ursin,

1977) which has the form

s(ex−y) =
1√
2πσ

· e
−(x−y−β)2

2σ2 (3.11)

where x is the predator log weight and y the prey log weight, β is the log of the

preferred predator : prey mass ratio and σ controls the width of the Gaussian shape,

and is a measure of diet breadth. The shape of the feeding preference function (3.11)

is given in Figure 3.3.
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Figure 3.3: The shape of the Gaussian feeding preference function (3.11), with x = 9, β = 5
and σ = 1.

The kernel (3.11) is not truncated at x = y, so in theory organisms can feed on prey

larger than themselves, but in the numerical simulations β and σ are set so the value

of (3.11) becomes negligible as the prey weight approaches the predator weight.
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Non-predation mortality

A weight-dependent non-predation mortality term is included, which affects all or-

ganisms in the dynamic spectrum. This is to account for other sources of mortality,

such as starvation, fishing and natural causes. A second death rate is also included

for extremely large organisms, to limit numbers at the right-hand end of the size spec-

trum. Thus a senescent mortality term increases exponentially by a factor θ from some

starting weight x f , following from previous work (Law et al., 2009, Chapter 1). Over-

all the non-predation death rate has the form

M(x) =

{

ηe(α−γ+1)x if x < x f

η
(

e(α−γ+1)x + eθ(x−x f )
)

if x ≥ x f .
(3.12)

If η is set so that η/(Au0) is sufficiently small, then with reasonable parameter values

(see Table 3.1 for details) γ is calculated to be approximately 2.05. Empirically ob-

served size spectrum slopes have similar values (e.g. Huete-Ortega et al., 2010; Barnes

et al., 2011), and thus non-predation mortality scales approximately with e−0.25x (where

α = 0.8, see Ware (1978)). This is in agreement with metabolic theory, which suggests

that the metabolic rate for organisms scales with w3/4, leading to a death rate scaled

by w−1/4 (Peters, 1986).

Boundary condition

Because of the different processes driving the behaviour of the two size spectra, or-

ganisms from the phytoplankton spectrum do not grow in mass to enter the consumer

spectrum. Thus an assumption is required for the smallest individuals in the con-

sumer spectrum, as there is no influx of biomass from smaller organisms. Previous

simulations used a ”renewal” spectrum as the boundary condition, with a fixed abun-

dance but from which organisms could grow out of by predation (Law et al., 2009,

Chapter 1). Unlike those models, the phytoplankton spectrum in this chapter has sea-

sonally varying abundance, so such a fixed boundary could oversimplify the dynam-

ics of real systems. The smallest organisms in the consumer spectrum considered here

are zooplankton, and increased zooplankton abundance following a phytoplankton

bloom have been observed (Heath, 1995; Zhou et al., 2009). Thus, to model the trend

of zooplankton populations following a bloom, the abundance of the smallest organ-

isms in the dynamic spectrum x0 scales with the phytoplankton abundance, i.e.

u(x0, t) = u0e(1−γ)x0

(

1 +
(D − 1)eζ(cos(2π(t−t0)))

I0(ζ)

)

. (3.13)
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Organisms can grow out from this weight along the consumer spectrum, although the

abundance u(x0, t) is unaffected. The dynamics of zooplankton populations are more

complex than the modelled population here; the work presented is a first step towards

more realistic approaches (see Section 3.4 for further discussion).

3.2.3 Survival and growth rates at steady state

The non-predation mortality has the form (3.12) so that, in the absence of senescent

mortality, an analytical power-law steady state can be derived (Chapter 1 Capitan and

Delius, 2010). Using the Gaussian feeding preference (3.11), the death and growth

rates are given respectively by

µ = Ce−mx (3.14)

g = De−mx (3.15)

where the constants C, D and m are given by

C = Aw0
αu0em(β+ 1

2 σ2m) + η

D = Aw0
αKu0e(γ−2)(β+ 1

2 σ2(γ−2))

m = γ − α − 1.

(3.16)

Generally m > 0 for realistic parameters, i.e. both death and growth in the power-law

steady state decrease exponentially with log body weight.

For organisms whose majority diet is the phytoplankton spectrum (approximately

the range [x0, x0 + β − 2σ]) the growth rate (3.15) will scale with the phytoplankton

spectrum, although the result is no longer exact once individuals grow enough to feed

upon the consumer spectrum.

3.2.4 Numerical simulations

The system of p(x) and u(x) is initialised at the analytical power-law steady state

given by equation (3.1), with natural mortality (3.12) but without senescent death; γ

is calculated from parameter values as specified in Table 3.1. The spectrum is dis-

cretised into weight ”boxes” of width δx (ln weight is used for both axes throughout

the simulations), and the initial distribution is set up with the abundance for weight

xi equating to u(xi) = uoe(1−γ)xi (with δx = xi − xi−1). A Newton-Raphson iterative

scheme is then used to calculate the numerical steady state using mortality term (3.12)

including senescence, and this is taken as the initial distribution for the simulations.

To perform numerical integrations, the timescale is discretised into time steps of size

δt, and a discretised form of equation (3.6) is used for the distribution of the phyto-
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plankton spectrum p(x, t). A semi-implicit Euler method (similar to that of Hartvig

et al. (2011)) is implemented to calculate subsequent population distributions for the

consumer spectrum u(x) using the McKendrick-von Foerster equation with diffusion

(3.1). For numerically calculating the integrals (3.2), (3.3) and (3.4) Simpson’s rule is

used. All parameter values are given in Table 3.1. To test reliability of the numerical

results, an ODE solver in Matlab incorporating a fourth-order Runge-Kutta method is

used to model the discretised system and confirm results.

At the community level, the dynamic behaviour of the consumer spectrum resulting

from a phytoplankton bloom is investigated over the course of one year. This allows

comparison with empirical observations observed across time in the consumer spec-

trum (Heath, 1995). Size-based feeding behaviour is used to explain the observed

changes in abundance across the spectrum and across time. Phytoplankton blooms

in nature vary in abundance, duration and shape, depending on location and time

(Echevarria and Rodriguez, 1994; Mari and Burd, 1998; Huete-Ortega et al., 2010;

Zhou et al., 2010). The effect of varying bloom amplitude and duration are studied,

by altering R and ζ in (3.7) and (3.6) respectively. The shape of the bloom is also al-

tered to model data which suggest large phytoplankton are primarily responsible for

phytoplankton blooms (Li and Logan, 1995; Huete-Ortega et al., 2010) using both (3.8)

and (3.10) (henceforth referred to as shallow and nanophytoplankton blooms respec-

tively). These are compared to the usual bloom shape (3.6) where the whole spectrum

keeps the same gradient throughout the year (henceforth referred to as a uniform

bloom). Spectra are averaged over the year and plotted for comparison of the gradi-

ents with empirical time-averaged spectra (e.g. Jennings and Mackinson, 2003).

At the individual level, the growth and death rates calculated from (3.1) can be used

to plot the weight and survival rate of organisms born at any point on the spectrum

across time. At the steady state the growth and death rates are constant for any given

weight, but in a seasonal environment there will be variation depending upon the

timing of emergence in relation to the phytoplankton bloom. To calculate the growth

and death rates the method of characteristics is used (Benoı̂t and Rochet, 2004; Law

et al., 2009). The focus in the model is on newborn fish larvae. The weight of a larva

starting at weight xe at time t = 0 can be calculated by solving

dx

dt
= g(x(t)) (3.17)

where g(x, t) is taken from (3.3). To test whether the model growth rates for larvae

are realistic, growth rates are calculated over the course of several years, and are com-

pared with widely available weight-at-age data for common fish species (Fishbase,

2011), to validate the model parameters used. From a list of twelve of the most com-

mon species in the North Sea (comprising: cod, dab, grey gurnard, haddock, herring,

Norway pout, plaice, saithe, sand eel, sole, sprat, and whiting) sole and cod are se-
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lected because of their relatively low and high adult weights respectively, to give a

realistic size range for individuals to grow to. At steady state growth is expected to

correlate closely with (3.15); individual mass over time is explicitly derived as

x(t) =
1

m
ln(mDt + 1). (3.18)

Note this differs from the predicted trajectory for organisms which undergo von Berta-

lanffy type growth (von Bertalanffy, 1957), where the mass over time is derived to be

x(t) = x∞ + b ln
(

1 − eκ(t−t0)
)

(3.19)

where x∞ is the mean asymptotic log mass of the species, κ is a rate factor, t0 is the

theoretical age at length zero and b is the exponent of the length-weight relationship

(generally centred around 3).

The survival rate of an individual over time f (t) is found in a similar method to the

growth rate (3.17), by solving

f (t) = e
∫ t

0 −µ(x(τ),τ) dτ (3.20)

with µ(x(t)) taken from (3.2). At steady state survival over time is derived as

f (t) = (mDt + 1)−
C

mD . (3.21)

At the cohort level, the match/mismatch hypothesis can be investigated. A combi-

nation of fast growth and low mortality has been predicted to maximise the biomass

of fish larvae (e.g. Anderson, 1988; Horwood et al., 2000). In this model, ”cohort”

refers to the abundance of biomass of individuals remaining across time. All cohorts

are started with equivalent biomass at the egg weight xe, and the biomass is then cal-

culated by multiplying the weight of the cohort across time with the corresponding

survival rate. After a fixed amount of time has elapsed, the biomass of cohorts with

different times of emergence can be compared to establish the most successful cohort

by plotting the abundance remaining.

3.3 Results

3.3.1 The consequences of phytoplankton blooms on size spectrum dy-

namics

A phytoplankton bloom is added to the size-spectrum at steady state, and the result-

ing behaviour over the course of a year is shown in Figure 3.4. There is no vari-
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Figure 3.4: The size spectrum over a year, with a phytoplankton bloom introduced (centred
at time t = 0.25).

ation in the spectrum until the introduction of the bloom (beginning around time

t = 0.2), at which point the added abundance of the phytoplankton bloom causes

an increase at the left-hand end of the consumer spectrum (i.e. the range of organisms

whose diet range lies mainly in the phytoplankton spectrum). This rise in abundance

quickly spreads to the whole consumer spectrum via the predation process. As the

phytoplankton population returns to its original abundance, peaks and troughs are

observed to move through the spectrum. For closer inspection of the dynamics occur-

ring in the consumer spectrum, snapshots taken at different time of year are compared

(Figure 3.5). At the peak of the bloom the abundance of the consumer spectrum is
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Figure 3.5: Snapshots of the consumer spectrum at different points during the year.
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higher than at steady state. A peak of abundance is visible around x = 7, which moves

along the size spectrum and induces a trough further down the spectrum, caused by

the increased predation mortality on organisms in the feeding range of the abundance

peak. This trough causes lower predation even further down the spectrum, leading to

establishment of a second peak later in the year (Figure 3.5). At the end of the year the

two peaks are still present, and the trough has become amplified as it moves across

the spectrum. Similar observations were also noted by Maury et al. (2007b) who used

a similar short-term increase (also 10×) of phytoplankton abundance as the ”bottom-

up” effect to induce the waves of abundance. Waves of abundance have also been

induced by picking parameters which destabilised the power-law steady state, with

the period of the peaks linked to feeding behaviour (Law et al., 2009, Chapter 1).

The dynamics of the spectrum are investigated under different blooms (Appendix

3.5.2). As the abundance of the bloom (R) increases there is a larger increase in abun-

dance in the beginning of the consumer spectrum, as organisms have a higher prey

abundance upon which to feed. These organisms experience faster growth, leading to

a greater community abundance further along the spectrum, along with a more pro-

nounced trough at the left-hand end of the consumer spectrum (Figure 3.12a). As ζ

increases the duration of the bloom decreases, leading to a greater shift away from the

steady state in the consumer spectrum (Figure 3.12b). This is intuitive, as a shorter

sharper bloom leads to a larger variability in the growth rate of consumers feeding

upon the phytoplankton spectrum. Note that the total annual phytoplankton biomass

is equivalent for ζ = 10 and ζ = 40, and by the time of the snapshot in Figure 3.12b

both blooms are over. Thus the peaks and troughs are at similar points in the spec-

trum, as consumers have the same total phytoplankton biomass to feed upon. The

uniform bloom has a larger effect on the consumer distribution than either the shal-

low or nanophytoplankton blooms (Figure 3.12c). This is due to the cumulative phy-

toplankton biomass over the year being greatest for the uniform bloom, and reduced

for either of the other blooms (which have similar total biomasses).

Time-averaged consumer spectra resemble power-law distributions for all tested blooms

(Figure 3.6). Year-averaged gradients of the consumer spectrum are close to the steady

state gradient (−1.04) for all tested blooms Average gradients throughout the year

range from −1.16 to −0.922 in numerical simulations. Comparing this to empiri-

cal data on pelagic species which the model best describes, Jennings and Mackinson

(2003) observed a size spectrum slope of −1.2 over the weight range 2-256g, while

Boudreau and Dickie (1992) aggregated data to produce a slope of -1.04 (converted

from the slope of the biomass spectrum). The results are thus closely correlated, al-

though it is noted that fishing effects are not explicitly included in the model, and are

known to decrease the slope of the size spectrum (e.g. Bianchi et al., 2000).
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Figure 3.6: The average size spectrum across the year, altering the phytoplankton bloom: (a)
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3.3.2 Individual level effects of the bloom

Growth of individuals

The growth rates of individuals born into the spectrum displayed in Figure 3.4 were

observed to increase during the phytoplankton bloom (Figure 3.7). In the absence of

a bloom there is no variation in the success of individuals, and the same weight is

reached after 0.1 years independent of the timing of emergence (x = 3.44, 31mg). In

the presence of a bloom, growth is strongly influenced by prey abundance; organisms

born at time t = 0.215 (just prior to the bloom peak) have the fastest growth (reaching

x = 9.31, 11g), while cohorts born outside of the bloom period reach approximately

the same weight as in the steady state spectrum. The growth rates are equivalent to

0.094 and 0.26 day−1 ln weight increase for individuals in the steady state and sea-

sonal spectra relatively; these are within the ranges of growth rates for fish larvae of

different species observed by Houde (1989). An advantage is observed in laying eggs
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Figure 3.7: (a) The growth trajectories of individuals born throughout the year; the fastest
growing individuals after 0.1 years is highlighted by the solid line.(b) The weight of individ-
uals emerging throughout the year at weight xe after 0.1 years (solid line), in a size spectrum
subject to a phytoplankton bloom (dashed line). The horizontal dot-dash line indicates the
growth of individuals in the steady state spectrum.

so that larvae hatch before the bloom peak, to ensure they have a greater abundance

of food, reflecting the ’match’ part of the match/mismatch hypothesis. Empirical ev-

idence has indicated higher recruitment levels of larvae born prior to the bloom peak

(e.g. Platt et al., 2003; Buckley and Durbin, 2006). Food availability is thus inferred to

be a limiting factor to larval growth, and newborns with a higher growth rate have a

shorter larval stage duration (Searcy and Sponaugle, 2000), avoiding the high levels

of mortality that fish larvae are subject to (Leggett and Deblois, 1994).

The growth trajectories for an individual born in the steady state spectrum compare

unfavourably with empirical data for cod and sole (Figure 3.8). In the steady state

spectrum, the individual growth trajectory is similar to a logarithm curve as predicted

by (3.18). The model growth rate (which is assumed to represent an ”average” pelagic

fish) starts slower than expected, and subsequently lies within the bounds of the em-

pirical data for a short period within the first three years. The model individual then

grows outside of the upper bound set by cod. The empirical growth rates are postu-

lated to slow down in later life due to reproduction, which begins at maturity and al-

locates resources from incoming biomass to produce eggs. The reproduction process

is not modelled in this study, and improved models explicitly account for biomass

losses to produce offspring (Maury et al., 2007a; Blanchard et al., 2011; Hartvig et al.,

2011; Plank and Law, 2011). It is observed that in a seasonal size spectrum growth of

an individual is unrealistically rapid, and organisms reach the far end of the consumer

spectrum (roughly 65kg) within the first year. Thus the model may not be realistic for

modelling the effect of phytoplankton blooms on all size ranges, as the growth rate

increases unrealistically for large consumers.
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Figure 3.8: The weight-at-age plots for sole (cross markers) and cod (square markers). Data
taken from Fishbase (2011). These are compared with the growth of individuals in the steady
state spectrum (solid line).

Survival of individuals

There is little variation in survival until around the time of the peak of the phyto-

plankton bloom where the survival curve becomes steeper (Figure 3.9a). This is due

to an increase in abundance of organisms in the weight range [3, 7] during the bloom,

which prey heavily on newborn larvae at weight 0. The survival of larvae rises and

falls in a negative correlation with predation mortality over the year; the abundance

of predators drops soon after the bloom, before rising later in the year (see Figure 3.5),

corresponding relatively to the peak and second trough observed in Figure3.9b. In

the model by Pope et al. (1994) the survival of newborns was observed to decrease as

the wave of abundance moved to larger size classes able to prey upon them; the con-

sumer spectrum here displays more complex behaviour due to the dynamics of the

size-based feeding process. Mortality rates due to starvation and mortality are high

for fish larvae (Rosenberg and Haugen, 1982; Ware, 1975), with ranges of 1 − 50%

day−1 reported (Houde, 1989); in comparison, daily mortality for larvae in the model

is roughly 17% day−1, and approximately 1% of individuals survive the first 0.1 years

in the steady state spectrum (horizontal line in Figure 3.9b).

3.3.3 Cohort level effects of the bloom

A combination of fast growth and low mortality maximises the biomass of cohorts

growing out of the larval stage (Figure 3.10). Cohort biomass generally decreases over
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Figure 3.9: (a) The survival of individuals born throughout the year; the individuals with
highest survival after 0.1 years is highlighted by the solid line. (b) The survival rate of individ-
uals emerging throughout the year at weight xe after 0.1 years (solid line), in a size spectrum
subject to a phytoplankton bloom (dashed line). The horizontal dot-dash line indicates the
survival rate of individuals in the steady state spectrum.

time as predation mortality removes the majority of individuals. However, cohorts

born prior to the bloom have higher growth rates, leading to an increase in biomass

over the bloom period (Figure 3.10a). The biomass of the most successful cohort over

0.1 years, born at time t = 0.152, reaches its maximum at the bloom peak, before

dropping again as predation pressure causes a decrease in survival (Figure 3.9b). Ad-

ditionally, a long-term strategy is revealed in the simulation; for cohorts born after the

bloom (t = 0.302), survival is initially higher and allows the cohort to persist for a

longer time-period (see dot-dash line in Figure 3.10a). However, the initial stage of

larval growth (i.e. the first days and weeks of life) is commonly cited to be an im-

portant factor for recruitment success (Cushing and Horwood, 1994; Horwood et al.,

2000), and larval stage duration is usually short (see Houde, 1989; Searcy and Sponau-

gle, 2000). Recruitment models also generally focus upon short time frames (e.g. 40-80

days in Pitchford et al., 2005). In the model, emerging prior to the bloom peak is ob-

served to maximise cohort abundance in the larval stage, in agreement with empirical

findings (Bradford, 1992).

3.3.4 Tracking successful cohorts through the spectrum

In order to gauge the ”success” of cohorts, remaining cohort biomass is chosen, as it

combines growth and survival into a single variable, both of which affect the chance

of larval recruitment. The location of the cohorts with the largest remaining biomass

(after 0.1 years and 0.4 years) is tracked on the backcloth of the seasonal size spectrum

(Figure 3.11). In the cases of both cohorts, the trough of abundance in the spectrum

is avoided due to the high levels of predations affecting individuals. The most suc-

cessful cohort over 0.1 years is born ahead of the wave of abundance caused by the
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Figure 3.10: (a) The remaining biomass of cohorts born throughout the year; highlighted are
the cohort with highest biomass after 0.1 years (solid line) and 0.4 years (dot-dash line). (b) The
remaining biomass of individuals emerging throughout the year at weight xe after 0.1 years
(solid line), in a size spectrum subject to a phytoplankton bloom (dashed line). The horizontal
dot-dash line indicates the remaining biomass of individuals in the steady state spectrum.

phytoplankton bloom. The extra abundance leads to an increased growth rate, and

by the time the phytoplankton spectrum returns to the steady state level, the cohort

is on the peak of abundance which remains following the bloom. Thus the cohort

avoids the high level of predation that other cohorts born in the time period [0.2,0.3]

are subject to (Figure 3.9b), and remains ahead of the trough for the rest of the year.

For maintaining biomass over a longer time period, emerging post-bloom is a better

tactic; the successful cohort in this case follows the second peak of abundance that fol-

lows the trough in the spectrum. The second peak is subject to lower mortality due to

a reduced abundance of predators in the trough, leading to higher long-term survival.

The results are in agreement with those of Pope et al. (1994); the successful cohort

stays ahead of the peak of abundance which causes higher mortality for cohorts born

later in the year. The difference with the dynamic model is that in the previous model

the wave of abundance was set externally, meaning cohorts were always eventually

overtaken by the pulse, which moved through the entire spectrum (the weight range

[1µg, 100kg]) in a year. In the dynamic model the peaks of abundance move via the

feeding process, and thus cohorts can grow at the same rate as the pulses. The time-

scale is therefore very different once the feedbacks and realistic parameters for growth

and mortality are considered. The speed of the wave is observed to vary little for the

range of blooms considered here.

3.4 Discussion

The motivation behind this work was to investigate the consequences of seasonal

pulses of abundance on the behaviour of the dynamical size spectrum model. Varia-
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Figure 3.11: The seasonal size spectrum, with the growth trajectories of the most successful
cohorts after 0.1 years (circle markers) and 0.4 years (cross markers).

tions in the abundance of phytoplankton over the course of a year have been observed

(Menzel and Ryther, 1960), and the consequences of this have spurred on debate over

how fish species time their spawning to take advantage of this extra prey availability

(Cushing, 1975).

Adding a bloom to this system had the effect of perturbing the system away from the

power-law steady state, and in doing so introducing peaks and troughs of abundance

in the consumer spectrum, which moved along the spectrum over time through pre-

dation (Figure 3.4). Temporal spectra have shown a similar pattern of variation in

zooplankton spectra. An empirical study by Heath (1995) over the course of a year

displayed a springtime bloom of small organisms leading to a propagation of biomass

up the spectrum. It is noted that the peak of biomass took approximately 100 days to

reach the largest size class in the empirical study (around 5.5mm equivalent spherical

diameter), much slower than the dynamic model used here. The simplistic bound-

ary condition used here does not sufficiently describe the interactions between phyto-

plankton and zooplankton, and future work should focus on more detailed modelling

of the boundary.

A variety of plankton blooms were introduced to the system, in order to view the

time-averaged spectra produced over the course of a year. All were close to power-

law distributions (Figure 3.6), supporting empirical data which aggregates spectra

recorded at different times of year (Li, 2002; Jennings et al., 2002b). The blooms were

chosen to represent the diversity of phytoplankton trends observed; blooms of dif-

ferent abundances, durations and forms have been recorded (e.g. Menzel and Ryther,

1960; Navarro and Thompson, 1995; Batten et al., 2003; Huete-Ortega et al., 2010).
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Other studies have simulated variations in plankton spectra to examine ”bottom-

up” effects. Oscillating phytoplankton input using a sine function resulted in peaks

and troughs which expanded while propagating up the spectrum (Benoı̂t and Rochet,

2004). Maury et al. (2007b) simulated a temporary increase of phytoplankton abun-

dance, which led to amplified peaks of biomass further up the spectrum, over a year

after the bloom had ended. Stock et al. (2008) tested the response of a size-structured

functional group model to bottom-up effects, and found biomass increased scaled

with the square root of the perturbation size.

Snapshots at any particular time were often perturbed far from the steady state spec-

trum (Figure 3.5); likewise, snapshots of empirical spectra are rarely perfectly linear,

but rather show variation between different size groups with a best fit line plotted

over the data (Li and Logan, 1995; Jonsson et al., 2005). There is a lack of empirically

observed temporal size spectra in the weight region where fish larvae are born; most

sampling is either of the phytoplankton weight range (Huete-Ortega et al., 2010) or

the fish weight range (Jennings and Mackinson, 2003), missing out the crucial range

where fish larvae are born into the system. There is a large degree of overlap between

the weights of large zooplankton and fish larvae, so it would be difficult to sepa-

rate the effects of fish reproduction from the general behaviour of the spectrum using

a community size spectrum model where zooplankton and fish larvae of the same

weight are indistinguishable. To explore the interface between the phytoplankton

and consumer spectra, a more detailed approach is required for zooplankton dynam-

ics. Phytoplankton - zooplankton models are often used to describe predator-prey in-

teractions (e.g. Truscott and Brindley, 1994; Edwards and Brindley, 1996; James et al.,

2003), thus a separate size spectrum for zooplankton dynamics could be incorporated

into the model (see Fuchs and Franks, 2010; Zhou et al., 2010).

The growth rate of organisms was observed to scale with the abundance of the spec-

trum u0, for which a large range of values was observed from empirical data ([100, 104],

see Boudreau and Dickie (1992); Mari and Burd (1998); Cermeño et al. (2006); Zhou

(2006); Zhou et al. (2009); Barnes et al. (2011)). A midrange value was chosen for sim-

ulations, and individuals in the steady state spectrum were observed to initially grow

at a slower rate than empirical data would suggest, before continuing at a faster rate

than the data showed beyond the first three years (Figure 3.8); an extra reproduction

term is required to realistically model the allocation of energy to reproduction. Dy-

namic energy budget (DEB) models are commonly used to model the partitioning of

incoming biomass into gonadic and somatic growth (see e.g. van der Veer et al., 2001;

De Roos and Persson, 2002; Kooijman, 2009), and the methodology has been recently

applied to size spectrum models (e.g. Hartvig et al., 2011; Plank and Law, 2011). The

growth rate was observed to increase as phytoplankton abundance rose during the

bloom. Hence fish larvae emerging within the bloom period experienced faster ini-

tial growth, keeping with both model predictions (Pope et al., 1994) and empirical
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observations of larval growth rates (Gotceitas et al., 1996; Wright and Bailey, 1996).

Larval mortality also increased with phytoplankton abundance; emerging in the win-

dow between the beginning and peak of the bloom resulted in very low survival rates.

The dependence of recruitment on larval mortality is a subject of debate; it has been

conjectured that slower growing larvae are exposed to both starvation and predation

mortality for a longer time, leading to lower survival (Ware, 1975; Beverton and Holt,

1993). However, reliable empirical evidence of the predation levels of fish eggs and

larvae, and the subsequent variation of recruitment, are limited (Bailey and Houde,

1989). In the model starvation of individuals was not explicitly modelled (see Hartvig

et al., 2011), but was assumed part of the natural mortality that decreased with body

mass; an advancement of the model would be to link low growth of newborns with

increased mortality. This study has shown the importance of predation on larval sur-

vival, and is a first step towards more detailed modelling of mortality effects on larval

recruitment.

When investigating the optimum time of emergence in the seasonal size spectrum, the

conclusion reached was similar to that of Pope et al. (1994). To maximise the biomass

remaining over time, cohorts were born in advance of the bloom, to take advantage of

the bloom biomass and to avoid the high predation rates which closely followed the

bloom (Figure 3.10). The successful cohort stayed on the peak of abundance which

remained after the bloom for the rest of the year (Figure 3.11). Pope et al. (1994) found

similar timing for the most successful cohort, and coined the term ’surfing the wave’

to describe the tactic of staying ahead of the wave of abundance to maximise growth

and minimise predation. The term is apt in that model because the wave of abundance

necessarily moves through the entire size spectrum over one year (due to the setup

of the system by Pope et al. (1994)), and so inevitably overtakes the cohort at some

point - as a water wave eventually overtakes the surfer. Once the dynamics of feeding

are incorporated in the spectrum, the wave of abundance is observed to move more

slowly, and as a consequence the successful cohort in this model follows the peak of

abundance over the year without being overtaken by the pulse. Spawning in time

for the phytoplankton bloom has resulted in higher levels of recruitment (e.g. Platt

et al., 2003; Buckley and Durbin, 2006), which is in agreement with the model findings;

however, there is still much conjecture about which single life stage of fish (if any) is

most indicative of recruitment success (see e.g. Bradford, 1992), and very few solid

conclusions have been reached since the hypotheses proposed by Hjort (1914) and

Cushing (1975).

The key improvement to the model would be an explicit reproduction function. In

this model organisms in the consumer spectrum were introduced by the boundary

condition (3.13). It is simplistic to assume that the birth rates of zooplankton correlate

with the phytoplankton abundance, although the population size of zooplankton has

been observed to follow peaks and troughs in phytoplankton abundance (Zhou et al.,
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2010). More importantly, fish larvae are not produced by mature fish in the model;

in this study growth and death rates were simply used to ’trace’ the potential growth

and survival rates of cohorts. An obvious step forward would be to allow adult fish to

produce offspring, and to make the reproductive process time-dependent, so that the

match/mismatch hypothesis can be more rigorously tested. The phytoplankton dy-

namics could also be explicitly modelled; rather than using the non-dynamic blooms

utilised here, nutrient levels could be taken into account (e.g. Armstrong, 1994; Fuchs

and Franks, 2010), along with other environmental factors such as temperature and

turbulence (Cózar and Echevarrı́a, 2005; Reul et al., 2005), which are known to affect

the productivity of phytoplankton. The model used here is a stepping stone for more

realistic dynamical models to investigate seasonality in aquatic systems.
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3.5 Appendix

3.5.1 Parameters for numerical integrations

Parameter values for the system are obtained from the literature, and are detailed in

Table 3.1.

term meaning default value

δt size of time steps 0.001 years
δx size of weight brackets 0.05 ln(weight, mg)
xp minimum weight for phytoplankton 800pg
xn minimum weight for nanophytoplankton 500ng
x0 maximum weight for phytoplankton 50µg
xe weight of newly hatched fish larvae 1mg
x f minimum weight for senescent death 5kg
x∞ maximum weight for dynamic consumer spectrum 65kg
A predator search volume 2.548m−3mg−αy−1

α predator search exponent 0.8
β preferred predator : prey mass ratio 100
σ width of feeding preference function 2
K feeding efficiency 0.2
u0 scaling abundance of size spectrum 80m−3

w0 reference weight selected 1mg
1 − γ initial slope of size spectrum -1.04

η weight dependent mortality rate 0.1 years−1

θ senescent death exponent 3
t0 time of phytoplankton bloom peak 0.25 years
R ratio of bloom : steady state abundance 10
ζ concentration of peak 40

Table 3.1: Parameter definitions and default values used for numerical integrations. Sources
for values are as follows: xn (Mari and Burd, 1998; Barnes et al., 2011), x0 (Boudreau and
Dickie, 1992; Huete-Ortega et al., 2010), xe (Cury and Pauly, 2000), A (Ware, 1978; Peters and
Wassenberg, 1983), α (Ware, 1978), β (Cohen et al., 1993; Jennings and Mackinson, 2003), σ
(Ursin, 1973; Andersen and Ursin, 1977), K (Jennings et al., 2002b), u0 (Zhou, 2006; Cermeño
et al., 2006), R (Zhou et al., 2009), ζ (Navarro and Thompson, 1995; Buckley and Durbin, 2006).
Conversions between lengths and masses use methods from the Appendix of Boudreau and
Dickie (1992). Other parameter values chosen for numerical convenience.
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3.5.2 Varying bloom parameters
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Figure 3.12: The effect of changing bloom parameters on the consumer spectrum: (a) bloom
amplitude R = 4, 10 in (3.6), with ζ = 40 for all simulations, compared to the steady state
spectrum; (b) bloom duration ζ = 10, 40 in (3.6), with R adjusted to give equal total numbers
of phytoplankton over the year, compared to the steady state spectrum; (c) bloom shapes (3.6),
(3.8), (3.10), with R = 10, ζ = 40 for all simulations. Snapshots taken at time t = 0.4.
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Abstract

In this chapter time-dependent reproduction is explicitly added to a size spectrum

model, along with seasonal plankton blooms, in order to investigate the match/mismatch

hypothesis that predicts recruitment success being dependent on prey abundance for

newborn fish larvae. The reproduction process in aquatic species is scaled up from

an individual level process to the community, and incorporated into the McKendrick-

von Foerster equation with diffusion. The process is assumed to be time-dependent,

for the first time in a community size-spectrum model. Waves of abundance prop-

agate up the spectrum when time-dependent spawning periods are included. The

combined effects of the timing and seasonality of reproduction coupled with the tim-

ing of the plankton bloom are then investigated. It is revealed that the growth rate

of newborn larvae is high around the plankton bloom, and mortality rates generally

decrease for later spawning; to maximise biomass cohorts should be born prior to the

bloom peak. As the spawning duration is decreased, the average cohort has lower

survival but a higher variability in growth, leading to possible pay-offs in spawning

seasonally rather than constantly.

Keywords: marine ecosystem; seasonality; size-spectrum; McKendrick-von Foerster

equation; phytoplankton bloom; match/mismatch hypothesis; reproduction

4.1 Introduction

Fish stocks are subject to large fluctuations across time (Horwood et al., 2000), and yet

the fisheries industry relies on catches for food sources, with aquaculture recognised

as the fastest growing animal food-producing sector (FAO, 2008). Marine communi-

ties have thus been heavily investigated, to identify possible causes for interannual

variability. Hjort (1914) was the first to hypothesise that the level of recruitment of

fish to the adult population was linked to the first year of life for fish larvae (much

more strongly than to later life stages), and the growth and mortality they experi-

enced during this time; this was termed the ”critical period” hypothesis. Advances

in larval fish ecology have happened slowly, over the course of decades rather than
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years. Breakthroughs have included the use of otoliths to pinpoint the age and habitat

of larvae (Pannella, 1971), advances in technology enabling the modelling of hydro-

dynamical processes which several hypotheses have predicted have a large effect on

larval survival (Werner et al., 2001), and more advanced computing software to deal

with the complexities of spatial and temporal processes involved. These advances

have allowed a more thorough analysis of the early life stages of fish.

The concept of a critical period has been expanded upon, thanks in large part to the

work by Cushing (1975, 1990), who coined the ”match/mismatch” hypothesis, which

links the timing of the birth of fish larvae to annual springtime plankton blooms; these

organisms (specifically zooplankton) act as the majority diet for newly hatched larvae.

It is postulated that synchrony between the spawning and bloom periods will result

in higher survival of larvae leading to greater levels of recruitment. The idea has

gained empirical backing from various studies on seasonally spawning fish species

since its conception (e.g. Bergenius et al., 2002; Buckley and Durbin, 2006). Further

studies have found that larval mortality decreases with size (Bradford, 1992; Puva-

nendran and Brown, 1999), adding weight to the postulation that a fish larva has a

greater chance of reaching recruitment if growth is faster during the early life stages

where mortality from starvation and predation is at its highest. Many studies, both

empirical and theoretical, have followed Cushing’s proposal, and whose results ei-

ther confirm the hypothesis (Mertz and Myers, 1994; Pope et al., 1994), or show no

significant correlation between success of fish larvae and availability of food (Bollens

et al., 1992; Johnson, 2000). Other studies have observed that other abiotic factors such

as temperature are more important then plankton abundance in determining growth

rates of larvae (e.g. Meekan et al., 2003).

Anderson (1988) summarised recruitment theory and provided an overview of the hy-

potheses over what governs growth and mortality in the larval stage of fish species;

it was concluded that no one factor was solely responsible for governing recruitment

success, and it was most likely a combination of various biotic and abiotic factors

which controlled the early life stages of fish species. However, the results seemed to

support a size-based theory to predict success of fish larvae, in terms of both max-

imising growth and minimising mortality in the early life stages, which indicates that

models taking into account the size of fish may be beneficial in predicting recruitment

success of newborn larvae.

It has been shown that the frequency distributions of all aquatic organisms across

the body mass range, irrespective of taxa, yields a power-law distribution. Shel-

don and Parsons (1967) found that plotting log(abundance) against log(mass) gave

a roughly linear relationship, which has become referred to as the ”size spectrum”

(Sheldon et al., 1972). This phenomenon is not limited to microscopic particles, the

size range for which the pattern was first observed, and the linear trend remains reg-
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ular at different size ranges, in a variety of aquatic communities (e.g. Boudreau and

Dickie, 1992; Kerr and Dickie, 2001; San Martin et al., 2006). The slope of the size

spectrum is observed to be close to -1 (Jennings and Mackinson, 2003; Huete-Ortega

et al., 2010; Barnes et al., 2011), indicating that there are equivalent amounts of biomass

in logarithmically increasing weight brackets. This pattern has been understood us-

ing metabolic scaling theory (Brown and Gillooly, 2004), and more recently using the

idea of scale invariance in the life processes of marine organisms (Capitan and Delius,

2010).

In order to investigate larval survival within the aquatic community, the reproduction

process must be modelled. Fecundity has been shown to scale with body mass (Duarte

and Alcaraz, 1989), and the maturity weight and asymptotic weight of fish species

have been linked (Beverton, 1992). Thus there is evidence for a size-based approach to

simulating the spawning process. Modelling reproduction in a size-spectrum model

has been accomplished before (e.g. Shin and Cury, 2004; Maury et al., 2007a; Hartvig

et al., 2011); in short, models generally used a fraction of the assimilated body mass

from predation to produce eggs of a fixed weight, following the dynamic energy bud-

get theory of Kooijman (1986, 2009). This resulted in an influx of biomass at some

fixed weight in the spectrum, following the observation that regardless of fish species,

egg size is fairly constant among many pelagic fish species (Ware, 1975; Cury and

Pauly, 2000). However, size spectrum models with time-dependent reproduction are

less common; one example is a model proposed by Persson et al. (1998), where pre-

allocated mass is transformed into a batch of new cohorts at the beginning of each

season. It is well established that some fish species spawn only at certain times in the

year, such as cod, sole and sprat (see e.g. Mertz and Myers, 1994; Johnson, 2000; Arm-

strong et al., 2001), to take advantage of the extra food abundance from the plankton

bloom, if the match/mismatch hypothesis is to be believed (Beaugrand et al., 2003).

Previous work on the timing of larval hatching used a fixed temporal ”background”

spectrum, and then followed cohorts born at different times to calculate the best time

of year to be born in terms of fast growth and low mortality (Pope et al., 1994). Fol-

lowing this, an updated model made the consumer spectrum fully dynamic, speci-

fying only the phytoplankton spectrum over the year, including seasonal blooms in

the springtime (Chapter 3). However, neither of these models had a robust reproduc-

tive function, the latter model specifying the abundances of the smallest organisms

in the consumer spectrum at all times, independent of the abundance of adults capa-

ble of spawning. Size spectrum models which take time-dependent phytoplankton

abundance into account have been studied (Zhou et al., 2010), where the observed

phytoplankton abundances through several years were used to model zooplankton

abundance over the same period, with comparable results to observed population

sizes. For an analysis of the match/mismatch hypothesis both growth and mortal-

ity of larvae subject to variable prey abundance should be studied, to determine the
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best time to be born. Hence, in this study, both seasonal blooms and seasonal repro-

duction are incorporated in a simple community-level size spectrum model, and the

consequences of the timing of spawning in relation to the plankton bloom are investi-

gated.

This work builds upon the approach from Chapter 3, by adding reproduction to the

seasonal size spectrum established in numerical simulations. By systematically al-

tering both the timing and duration of the spawning peak, the success of cohorts is

compared to investigate the timing needed to maximise cohort biomass. It is found

that, as in previous work, being born prior to the bloom peak results in the highest

amount of surviving cohort biomass, and that gambling with shorter spawning peri-

ods increases variability within the success of a cohort.

4.2 Setting up the size spectrum model

4.2.1 Splitting the size spectrum into two

A community size-spectrum with two parts is considered, following the setup in pre-

vious work (Chapter 3). Previously, the method of growth was used to disaggregate

the spectrum into autotrophs (the phytoplankton spectrum) and heterotrophs (the

consumer spectrum). The focus was on the dynamics of the size spectrum subject

to annual phytoplankton blooms. The area of study is now shifted to the timing of

reproduction of fish species in relation to plankton blooms (where ”plankton” now

comprises of both the phyto- and zooplankton communities). It has been shown that

the weight of eggs spawned from marine teleost fish lie in a narrow range around 1mg

(Ware, 1975; Cury and Pauly, 2000); thus, reproduction to a single fixed egg weight in

the spectrum is considered, which is the boundary between the plankton and con-

sumer spectra.

An identical equation is used to model the plankton spectrum as in previous work

(3.6); see Chapter 3 for details. The consumer spectrum is altered to introduce repro-

duction to the system, for which the individual-level process is initially considered.

4.2.2 Model for reproduction

In previous work, the jump-growth equation for modelling the predation process was

derived from a basic stochastic process involving one individual eating another and

gaining weight (Chapter 1). In a similar way, to model reproduction the individual

level process is initially considered, summarised in Figure 4.1. From this basic stochas-
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Figure 4.1: The change in abundances at different weights during a single reproductive event.
A fish of weight xa loses a small amount of weight (to become weight xb) while depositing a
large number of eggs further down the spectrum at xc.

tic process Capitan and Delius (2010) derived the macroscopic model, given by

(

∂u(x, t)

∂t

)

b

=
∫

dx′
∫

dx′′
(

− r(x, x′, x′′, t)u(x, t) + r(x′, x, x′′, t)u(x′, t)

+
ex′ − ex′′

ex
r(x′, x′′, x, t)u(x′, t)

) (4.1)

where r(x, x′, x′′, t) is the rate at which individuals of weight x reduce to weight x′

by producing offspring of weight x′′. Note that the subscript b indicates that only the

reproductive process is considered at present; reproduction is incorporated into the

full dynamic model in the next section.

Using the model (4.1) for reproduction would be computationally demanding, and

require extremely fine discretisation of the weight range for numerical simulations,

as noted for the jump-growth equation (Chapter 1). Thus a simplified model is used

here for the reproductive process; for the sake of argument, the continuous weight

range is discretised into weight brackets, as in Chapter 1, for a more intuitive grasp of

the system. The following assumptions are now made. Firstly, the mass of eggs tends

to vary little in many pelagic species (Ware, 1975; Cury and Pauly, 2000). Secondly,

mature fish generally weigh much more than the eggs they produce (several orders of

magnitude larger is commonplace); it is therefore reasonable to assume that a parent

fish has similar weights before and after a reproductive event. Thus the model of

reproduction appears similar to the metabolic loss term of Capitan and Delius (2010);

in a discretised system fish simply move to the weight bracket below in a reproductive

event, while the appropriate amount of mass moves to the weight bin where offspring

are born, and converted into the appropriate number of offspring (Figure 4.2).

The log weight of newborns is labelled x0 (note that this is equivalent to xe from Chap-

ter 3). The equation for reproduction is now given by

(

dui

dt

)

b

= ri+1ui+1 − riui for i 6= 0

(

du0

dt

)

b

= ∑
j

(

exj − exj−1

ex0
rjuj

)

∆

(4.2)
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Figure 4.2: A simplified version of the changes in abundance during a reproductive event.
Individuals of weight xi+1 lose weight ∆ in each reproductive event to become weight xi,
where ∆ = xi+1 − xi (∆ is independent of x). The mass lost moves to some fixed weight bin
x0 further down the spectrum. In the same way, individuals at weight xi lose egg weight and
move down to become weight xi−1.

By taking the limit ∆ → 0 the continuum limit of (4.2) is derived. This follows steps

taken in previous work (Chapter 1, Capitan and Delius (2010)). Thus the number ui(t)

becomes a number density per unit volume u(x, t), such that u(xi, t) = ui(t)/∆, and

ri(t) becomes r(xi, t), such that r(xi, t) = ri(t)∆. The sum in (4.2) is replaced by an

integral. Rewriting the fraction in (4.2) as

exj − exj−1

ex0
=

exj(1 − e−∆)

ex0

≈ exj−x0 ∆,

(4.3)

where the first order approximation for 1 − e−∆ is taken, then taking ∆ → 0 changes

the sum ∑ ∆ to an integral
∫

dx. Thus the reproductive process in the continuum limit

is given by
(

∂u(x, t)

∂t

)

b

=
∂

∂x
(r(x, t)u(x, t)) for x 6= x0

(

∂u(x0, t)

∂t

)

b

=
∫

ex−x0r(x, t)u(x, t) dx

(4.4)

where time-dependence has been re-introduced to the reproduction and abundance

functions.

It is noted that the assumptions used to derive (4.4) only hold as long as the loss in

weight during reproductive events is small. Thus, if spawning individuals are close in

mass to that of newborns, or many offspring are produced over a short period of time,

then the approximation to (4.1) becomes worse. This is analogous to the McKendrick-

von Foerster equation being a suitable approximation to the jump-growth equation

only when prey are generally much smaller than predators (Chapter 1).

4.2.3 Including reproduction in the model

Reproduction is included in the McKendrick-von Foerster equation with diffusion by

altering the the first order term in (4.5), which moves biomass up the spectrum. As

reproduction involves individuals losing weight, biomass is shifted the opposite way;
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the overall flux of biomass is the difference of the two rates. Thus, the McKendrick-

von Foerster equation with diffusion becomes

∂u(x)

∂t
= −µu − ∂

∂x
((g − r)u) +

1

2

∂

∂x

(

e−x ∂

∂x
(du)

)

(4.5)

where r(x, t) is the reproduction rate (other terms are identical to the equation without

reproduction (3.1)) and g − r is labelled the overall growth rate. The abundance of

offspring is given by

∂u(x0)

∂t
= −µ(x0)u(x0)− g(x0)u(x0) +

∫ ∞

x0

ex−x0r(x, t)u(x, t) dx. (4.6)

which is similar to the boundary condition of Blanchard et al. (2011), although repro-

duction has explicit time-dependence here.

A size- and time-based approach is used to model fecundity. Realistically a number

of different factors affect reproductive output (Lambert, 2008), and a simple model is

employed to allow greater tractability. The maturity weight of fish is labelled xm in the

spectrum; below this weight, organisms do not reproduce. The reproduction function

r(x) is specified as

r(x, t) = f (t) · h(x) (4.7)

where

f (t) =
eν cos(2π(t−tr))

I0(ν)
(4.8)

h(x) =
(

1 + eρ(xm−x)
)−1

(Feqx). (4.9)

Thus the time dependence (4.8) is a von Mises distribution as in the plankton bloom

(3.6), albeit now centred around time tr, independent of tp. This takes into account the

possibility of non-uniform reproduction across time, which is present in batch spawn-

ers such as cod and haddock (e.g. Bollens et al., 1992; Knijn et al., 1993; Johnson, 2000).

Setting the period duration ν = 0 means time-independent reproduction (but still dy-

namic, scaling with the abundance of mature organisms in the spectrum). From the

form of (4.7) waves of abundance are expected to result from non-constant reproduc-

tion, as the boundary condition is oscillatory in time. The rate at which individuals

reproduce is described by h(x), which scales with body mass following evidence that

log fecundity increases linearly with log size (Duarte and Alcaraz, 1989; Blanchard,

2000). The first bracket in (4.9) is a switching function, similar to that of Hartvig et al.

(2011), which fixes where reproduction starts, with xm as the weight where 50% of

organisms are mature, and ρ determining the steepness of the slope. F and q are

constants; F is the rate at which organisms reproduce and q is the weight-dependent

scaling factor. Values for F and q are chosen to match with the aggregated fecundity

curve from 97 teleost fish species (Duarte and Alcaraz, 1989), reflecting the fact that
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this community model simulates reproduction (and other life processes) for an ”av-

erage” pelagic fish (Blanchard et al., 2009). Both male and female fish are assumed

to contribute equal biomass to reproduction. Note that for simplicity the stages be-

tween spawning (i.e. incubation, hatching and yolk resorption) are not modelled here

(see Duarte and Alcaraz, 1989), and offspring are assumed to immediately feed in a

size-based way.

The setup of the size spectrum model incorporating reproduction is summarised in

Figure 4.3.

plankton spectrum dynamic spectrum 
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Figure 4.3: The size spectrum, consisting of the plankton and dynamic spectra. Organisms
in the plankton spectrum do not grow by predation, and their population is set externally.
Organisms in the dynamic spectrum feed upon both spectra for growth. Organisms above
maturity weight xm can reproduce; offspring enter at the boundary of the dynamic spectrum,
at weight x0. x f is the weight at which extra mortality starts to affect the spectrum, to prevent
organisms growing unreasonably large. Image of grass carp (Ctenopharyngodon idella) used
with permission of Vlado.

Note that in the setup of the model the reproduction rate r is independent of the

growth rate g, in a departure from the dynamic energy budget methods (Kooijman,

2009) commonly used in size spectrum models to allocate incoming mass to somatic

and reproductive mass (e.g. Maury et al., 2007a; Blanchard et al., 2011); here the phys-

iology of egg production is not explicitly modelled, and size-based fecundity is as-

sumed. One issue with using a reproduction rate which is dependent on the instan-

taneous growth rate of organisms is that fish species reproduce over different time

scales (see Appendix 4.5); for species such as haddock and cod spawning occurs over

a limited period of time in the year (a matter of weeks or months, see Mertz and My-

ers (1994); Armstrong et al. (2001)), and in such cases constant reproduction is not an

accurate representation of the system. Also, for models with growth-dependent repro-
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duction, a temporal decrease in the growth rate (for example, due to spatial variability

of prey) causes the reproduction rate to likewise be reduced. Here the focus is on the

consequences of seasonality, so reproduction is modelled in a simple way. This is not

to say that food supply does not affect reproductive rate in the long term; studies have

shown correlations between rations received by fish and egg production (e.g. Woot-

ton, 1977). An in-depth modelling of the physiology of marine organisms would be

required for the robust modelling of egg production from food intake, and is beyond

the scope of this work.

4.2.4 The match/mismatch hypothesis

The match/mismatch hypothesis (Cushing, 1969, 1990) is summarised in Figure 4.4,

adapted from Mertz and Myers (1994). The hypothesis suggests that larval survival

Figure 4.4: Illustration of plankton blooms (shown in blue) and reproductive periods (shown
in yellow); the area of overlap of the two is shown in green. The match/mismatch hypothesis
indicates that eggs can (a) hatch in time to take advantage of the increased prey abundance
from the plankton bloom, leading to greater recruitment, or (b) miss the bloom, and have
lower food availability, with fewer fish larvae surviving to adulthood.
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is linked to prey availability, and that faster growing larvae are more likely to reach

recruitment as they are subject for a shorter amount of time to the high starvation and

predation mortalities affecting fish larvae (Leggett and Deblois, 1994). There is em-

pirical evidence to back up the hypothesis; for example, data from Wright and Bailey

(1996) suggests that the larvae of sandeel (Ammodytes marinus) which are born closer

to the phytoplankton bloom undergo faster growth, and have a higher survival rate

than those born significantly before or after the plankton bloom. Platt et al. (2003) also

accounted for 89% of the variation in haddock larval survival by the timing of spring-

time phytoplankton blooms, using ocean satellite data recorded over seven years. Ex-

tensive testing of the hypothesis was not possible until recently, when the technology

for detailed spatial and temporal recording of marine systems became more widely

available. Satellite data recording chlorophyll a levels (a proxy for phytoplankton

abundance) of ocean surfaces (Platt et al., 2003; Barnes et al., 2011) and frequent cruise

sampling (Li, 2002; Zhou et al., 2010) have led to more detailed temporal phyto- and

zooplankton data, enabling comparisons of plankton abundances with those of well-

established data on fish eggs and larvae (Armstrong et al., 2001; Meekan et al., 2003;

Genner et al., 2010).

The interplay between the plankton bloom and spawning period is examined numeri-

cally here. A fixed plankton bloom is set up during the year, and the spawning period

is varied to find correlations between cohort success and the timing and duration of

reproduction.

4.2.5 Numerical simulations

The system of p(x) and u(x) is initialised at the analytical power-law steady state as

in Chapter 3; γ is calculated from parameter values as specified in Table 4.1. The spec-

trum is discretised into weight ”boxes” of width δx (ln weight was used for both axes

throughout the simulations), and the initial distribution is set up with the abundance

for weight xi equating to u(xi) = uoe(1−γ)xi (with δx = xi − xi−1). A Newton-Raphson

iterative scheme is then used to calculate the numerical steady state for the model

(4.5), with constant reproduction (ν = 0) and the senescent mortality rate of (3.12).

This is taken as the initial distribution for the simulations. The plankton and con-

sumer spectra through time are then calculated as in Chapter 3, with the boundary

condition now specified by (4.6). Initially the plankton spectrum is held constant, and

a bloom is later introduced to test the varying success of cohorts over the course of the

year.

The growth trajectory of an individual is tested as in Chapter 3, using the method of

characteristics (Law et al., 2009; Rochet and Benoı̂t, 2011). The growth of an individual

is calculated by solving (3.17), and compared to both empirical weight-at-age data and

the growth trajectory of an individual in the steady state spectrum in Chapter 3. The
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reproduction present in this model is predicted to slow down growth at larger sizes,

and the trajectory is expected to fall within or closer to the bounds set by the empirical

data for cod and sole. These species are chosen to represent pelagic species with large

and small asymptotic sizes respectively (Fishbase, 2011).

The effect of seasonal reproduction on the dynamics of the consumer spectrum is in-

vestigated, to simulate the batch spawning behaviour of various pelagic fish species

(e.g. Armstrong et al., 2001). Waves of abundance previously resulted from phyto-

plankton blooms, where the boundary condition was assumed to follow the phy-

toplankton abundance (Chapter 3). A similar pattern is expected due to the time-

dependent reproduction function controlling influx of new individuals at the bound-

ary (4.7). The growth trajectory of a mature individual is traced over the course of the

year, to observe temporal variability in the overall growth rate (i.e. growth - reproduc-

tion). This is expected to drop during the spawning period as resources are diverted

to reproduction.

A plankton bloom is added to the spectrum lasting 2-3 months (Navarro and Thomp-

son, 1995), and the consumer spectrum is simulated over the course of a year, system-

atically varying the timing of spawning. A spawning window with the same duration

as the plankton bloom is picked, reflecting behaviour of pelagic batch spawners (e.g.

Johnson, 2000). The method of characteristics is employed to calculate the growth tra-

jectories (3.17) and survival (3.20) of offspring through the year. This is then used to

investigate the success of cohorts, i.e. the amount of biomass remaining after a fixed

time period. In Chapter 3 abundance at the boundary scaled with the phytoplankton

spectrum, and to eliminate the effects of this the per capita biomass was calculated

(i.e. where all cohorts start with the same abundance). Here the abundance depends

explicitly on the reproduction function (4.7), and this is taken into account by scaling

the initial biomass with u(x0, t). The average growth, death and remaining biomass of

different cohorts are compared to investigate the optimal time to be born. The effect of

varying spawning duration ν is tested in the cases where reproduction occurs around

the time of the plankton bloom, and where it occurs after the bloom has ended (rep-

resenting the ’match’ and ’mismatch’ components of the match/mismatch hypothesis

respectively). Both the average and maximum biomass are plotted, in order to study

both the general trend and variability in biomass as spawning becomes more peaked.

4.3 Results

4.3.1 Model specifics for numerics

Table 4.1 summarises the values assigned to system parameters for the numerics.

Most parameter values are taken from Chapter 3 and generally chosen to represent bi-

106



ologically reasonable process rates. A higher feeding efficiency K = 0.6 (Hartvig et al.,

2011) is required to take reproduction into account; although the reproduction func-

tion (4.7) is independent of food intake, for a numerical steady state to be achieved

it was found that all organisms needed positive overall growth rates. As in Chapter

1, the steady state can be destabilised by increasing the preferred predator:prey mass

ratio β or decreasing diet breadth σ. As the growth rate of individuals scales with K,

the scaling abundance of the size spectrum is reduced to u0 = 30 for realistic growth

trajectories. A reduced exponent for senescent death is included as reproduction af-

fects large individuals more strongly, so less mortality is required to keep abundance

low at the end of the spectrum.

term meaning default value

dynamic spectrum u(x)
xp min weight of plankton -11 (16ng)
x0 weight of newborn consumers 0 (1mg)
xm maturity weight of individuals 11 (60g)
x f wt at start of senescent death 15.35 (5kg)
x∞ max wt of consumers 18 (65kg)
A predator search volume 2.548m−3mg−αy−1

α search volume exponent 0.8
β log preferred pred:prey mass ratio 5
σ width of feeding kernel 2
K mass conversion efficiency 0.6
η natural mortality rate 0.2 years−1

1 − γ slope of initial size spectrum -0.955
θ senescent death exponent 2
u0 abundance of size spectrum 30m−3

plankton spectrum p(x)
tp time of plankton bloom peak 0.5 years
ζ width of bloom peak 10 (0.25 years)
R ratio of bloom : steady state abundance 5

spawning period
tr time of spawning peak varies
ν width of reproduction window 10 (0.25 years)
F rate of reproduction 1.8 years−1

q reproduction exponent 0.01
ρ exponent of switching function 5

numerical integration
δx weight bracket for integration 0.05 ln(weight, mg)
δt time step for integration 0.001 years

Table 4.1: Default parameter values used in figures (realised values shown in brackets).

The size spectrum is split into several sections, each subject to different predation and

mortalities. The weight spectrum x is subdivided as follows:

• [xp, x0) is the plankton spectrum. Predation from the consumer spectrum does

not affect the abundance of individuals (which are assumed to replace them-
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selves immediately, see Chapter 1). Organisms do not grow across the boundary.

The system is subject to a seasonal bloom, corresponding to equation (3.6).

• [x0] is the boundary between the two spectra, and where new consumer off-

spring (produced by mature fish at the upper end of the spectrum) are born into

the spectrum. Newborns are subject to both natural and predation mortality,

and are able to grow through the consumer spectrum (4.6).

• (x0, x f ) is the consumer spectrum, which undergoes death, growth, reproduc-

tion and diffusion processes as in (4.5), feeding upon both the plankton and

consumer spectra. The reproduction rate is negligible until xm where it increases

exponentially with ln body mass. The natural death rate of (3.12) affects all or-

ganisms.

• [x f , x∞] is subject to all the processes above, plus the extra senescent death term

in (3.12), in order to limit abundance for extremely large organisms.

4.3.2 Steady state with time-independent reproduction

Setting ν = 0, the reproduction rate is time-independent. Figure 4.5 shows the steady

state derived using parameter values as shown in Table 4.1. A discontinuity is ob-

0 5 10 15
−20

−15

−10

−5

0

5

x

lo
g

(u
(x

))

x
0

x
m

x
f

Figure 4.5: The steady state solution to the McKendrick-von Foerster equation with diffusion
(4.5), with a fixed plankton spectrum and uniform reproduction (ν = 0). The vertical dashed
lines indicate, from left to right: the boundary between the plankton and consumer spectra,
the maturity weight for organisms in the spectrum, and the point where senescent mortality
begins to affect organisms.

served at the boundary between the two spectra where offspring are born. Similar

behaviour has been observed in other models specifying reproductive boundaries

(Blanchard et al., 2011). The slope of the consumer spectrum becomes steeper around
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weight xm as biomass begins to be allocated to reproduction from mature individuals.

The overall growth rate (g − r) is a smooth positive function of x at the steady state

(results not shown here).

The growth trajectory for an individual born in the steady state spectrum compares

favourably with empirical data when reproduction is included as a size-dependent

process (Figure 3.8). The model growth rate is slower than in the previous chap-

Figure 4.6: The growth of a model individual in the steady state spectrum (solid line), com-
pared to individuals from Chapter 3 (dot-dash line) and empirical weight-at-age curves for
sole (cross markers) and cod (square markers). These species are chosen to represent lower
and upper bounds of growth for pelagic species, and the shaded region indicates the expected
size range for individuals of different ages.

ter where reproduction was not modelled. The growth curve starts similar to the

logarithm-shaped curve from Chapter 3, and becomes flatter after the cohort reaches

maturity, as growth is reduced by reproductive output. The curve has a similar shape

to that of cod in years 4-6, although exceeding the weight-at-age curve slightly. Nev-

ertheless, at a qualitative level the behaviour of an individual through time seems

to reflect real weight-at-age curves better than when reproduction is not taken into

account.

4.3.3 Peaked reproduction

For ν > 0 reproduction rates are low for the majority of the year, and peak around

time tr. The dynamics reveal a wave of abundance moving through the system (Fig-

ure 4.7). The abundance at the boundary decreases initially, as reproductive effort is

low at the start of the year. Abundance increases and reaches its peak at time t = tr,

before then decreasing again for the rest of the year. This fluctuation at the boundary

causes a wave of abundance to move up the size spectrum, similar to the bottom-up
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Figure 4.7: The size spectrum over the course of a year, with seasonal spawning centred at
tr = 0.5.

effect of seasonal plankton blooms (Pope et al., 1994; Heath, 1995, Chapter 3). The

abundance at size x0 follows the shape of the time-dependent function (4.8), as ex-

pected, although variations in the abundance of mature organisms lead to deviations

from the exact shape of f (t). Importantly, the lack of reproduction at the start of the

year leads to a deficit of the predators of larvae further up the spectrum, which is

observed to rise sharply as spawning reaches its peak. Predation mortality plays a

crucial role in the survival of fish larvae (Leggett and Deblois, 1994), and the dynam-

ics of the community have been simplified greatly for the model.

The overall growth rate for mature individuals is observed to drop below zero dur-

ing the reproductive period (Figure 4.7a). Initially reproductive effort is low, so the
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Figure 4.8: The growth of mature organisms which undergo seasonal spawning around tr =
0.5 (spawning period highlighted by dashed line): (a) the overall growth rate of a mature
individual (mass x f ) across the year (g − r = 0 indicated by horizontal dot-dash line), (b)
tracing the mass of a mature individual (with an initial weight of 4.6kg) over the course of a
year.
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majority of biomass is used for somatic growth. As the reproductive period begins,

overall growth decreases, and drops below zero around time t = 0.4. The minimum

is reached at t = 0.5 when reproductive effort is highest, before increasing again.

There is thus the possibility for individuals to lose weight over the reproductive pe-

riod (Figure 4.8b), which depends upon the ratio of growth rate g to reproduction rate

r. Although the physical dimensions of fish have not been observed to decrease from

field studies in the wild over the reproductive period, it is feasible for the body mass

to decrease if the mass lost in laying eggs is not compensated by the biomass assimi-

lated through predation, a phenomenon which has been observed in laboratory-based

studies (Wootton, 1977). The mature individual in Figure 4.8b is observed to be ap-

proximately the same weight at the beginning and end of the year; this is unlikely, as

fish grow continuously for the majority of their lives. The model is less realistic for

simulating growth of larger organisms in the spectrum than for larvae.

4.3.4 Cohort success

Timing of reproduction

A plankton bloom (3.6) is now introduced to the spectrum; this is given a von Mises

shape following empirical evidence (see Chapter 3), centred at tp = 0.5 and lasting

approximately 2-3 months. Different timings of the spawning peak are tested to in-

vestigate the growth, survival and biomass of cohorts (Figure 4.9). Both growth and

biomass are observed to peak around the peak of the bloom. The death rate increases

slowly until the bloom, after which it decreases more significantly over the rest of

the year. In Chapter 3 the death rate was observed to be highest at the peak of the

bloom; here the same result is observed, although there is a relatively high abundance

of predators of larvae at the start of the year (Figure 4.7) due to the initial steady state

condition. Predation biomass varies more with the reproductive boundary condition

than in Chapter 3, as there is little flow up the spectrum from the smallest consumers

outside of the reproductive period. The peak for cohort biomass is around t = 0.5,

where growth rates are high, and drops sharply after the bloom peak. Hence spawn-

ing prior but close to the peak is the best tactic for maximising biomass, in agreement

with previous models (Pope et al., 1994, Chapter 3) and empirical results (Platt et al.,

2003; Buckley and Durbin, 2006). An early peak in biomass is observed at t = 0.25,

and possible causes are currently being investigated.

Duration of reproduction

The shorter the spawning period is, the lower the average biomass of the cohort (Fig-

ure 4.10a). This applies for both ’match’ and ’mismatch’ conditions, although cohorts
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Figure 4.9: Characteristics of cohorts born in different reproductive periods throughout the
year, in a system subject to a plankton bloom: (a) average weight after 0.1 years; (b) average
per capita death rate after 0.1 years; (c) average biomass remaining after 0.1 years. Reproduc-
tive periods simulated at regular intervals between tr = 0.1 and tr = 0.9. Plankton abundance
shown by dotted line.
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Figure 4.10: Testing the effect of spawning duration on cohorts born close to (t = 0.45,
’match’) and away from (t = 0.75, ’mismatch’) the plankton bloom, with decreasing spawning
duration: (a) the average biomass of cohorts; (b) the maximum biomass of cohorts.
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born close to the bloom generally have larger sizes due to increased prey biomass.

This would seem to indicate that a ”bet-hedging” strategy of constant spawning (ν =

0) would maximise the total biomass of fish larvae (note that the integrated amount

of reproduction biomass is equal for all values of ν). However, the maximum biomass

of cohorts is shown to increase as reproduction becomes more peaked (Figure 4.10b).

This is in agreement with the simple model by Mertz and Myers (1994), where re-

cruitment variability increased as the width of spawning decreased. The maximum

biomass in both cases dropped for ν = 40 (corresponding to spawning duration close

to a month), and numerical work is currently being carried out to explain this.

Recruitment levels in nature are generally low for fish larvae, with high mortality

rates for newborns (Pitchford et al., 2005); if fewer large individuals are more likely to

be recruited than many smaller individuals, then gambling by producing many eggs

in a shorter time period could result in higher levels of recruitment. However, these

results do not support a firm conclusion for this.

4.4 Discussion

A simple community size spectrum model used in the context of resolving size-dependent

predation, growth, mortality and reproduction processes of an ”average” species was

developed in this chapter, incorporating predation, seasonality and, for the first time

in a community size-spectrum model, continuous time-dependent reproduction. Pre-

vious models used a pulse of reproductive effort at the start of each time period (Pers-

son et al., 1998); this was extended over a longer time period in this model, in keeping

with empirical data (Quéro, 1984; Knijn et al., 1993; Johnson, 2000). Previous models

which simulate the production of new offspring into size-based models have divided

incoming biomass from the predation process into somatic growth and egg produc-

tion (De Roos and Persson, 2002; Maury et al., 2007a; Blanchard et al., 2011; Hartvig

et al., 2011); here reproduction was independent of the instantaneous feeding rate of

organisms, which in reality is subject to spatial and temporal variation. Instead, the

simple assumption was made of making reproduction both weight-dependent (Woot-

ton, 1977; Duarte and Alcaraz, 1989; Blanchard, 2000) and time-dependent based on

the batch spawning method used by some pelagic species, in keeping with empirical

observations (see Appendix 4.5).

The incorporation of reproduction into the model involved a method similar to the

derivation of the deterministic jump-growth model (Chapter 1); starting with an indi-

vidual stochastic process whereby an organism produces offspring of a lower weight

and, in doing so, loses a portion of its own weight (Figure 4.1). However, rather than

deriving a macroscopic model from the master equation describing this process (Cap-

itan and Delius, 2010), it was simply assumed that the amount of weight lost in each
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event was quite small, leading to a first-order approximation (4.4). This is similar to

the growth term (3.3) in the McKendrick-von Foerster equation (Benoı̂t and Rochet,

2004; Law et al., 2009), although the reproductive term moves mass down rather than

up the spectrum. This led to a modified equation which incorporated the reproductive

process into the population dynamics (4.5).

When performing numerical integrations of the system, a power-law steady state was

attained when reproduction was spread equally across the year (Figure 4.5) with a

discontinuity between the plankton and consumer spectra. Realistic parameter val-

ues were chosen, and the discontinuity did not cause fluctuations as in other work

(Rochet and Benoı̂t, 2011), so this artifact did not affect the dynamics. Empirical spec-

tra which measure abundances of newborn larvae are uncommon, and so reductions

in abundance when moving between different taxonomic groups may exist; rigorous

sampling at the size of larvae is needed to test this.

The value used for the feeding efficiency K (estimated to be around 0.1-0.2 for aquatic

species, see Paloheimo and Dickie (1966)) was larger than expected to assure positive

overall growth for organisms with constant reproduction. Recent work by Hartvig

et al. (2011) suggest a higher assimilation efficiency when dynamic action, excretion

and egestion are accounted for. The energetic trade-off in the adult life stage should

be explicitly modelled in future work, to account for maturation of organisms. An

arbitrary value for the maturity weight xm of approximately 60g was chosen here,

although variation between species is high, and has been linked to the asymptotic

weight (Beverton, 1992). An improvement to the model would thus be a multi-species

spectrum (each species having its own maturity, reproductive schedule and asymp-

totic weight) where species are allowed to feed upon each other, such as those studied

by Andersen et al. (2009). The success of species with different spawning behaviour

could be compared, and the dynamics of predation would be more robust than the

simplistic model here, where predator abundance decreased at times when reproduc-

tion did not occur. Coexistence and stability of multi-species spectra can be difficult to

achieve, and a recent model (incorporating constant reproduction) used random cou-

pling strengths between species until stability was established (Hartvig et al., 2011).

Making reproduction a seasonal process induces waves of biomass which move up

the size spectrum, as the population of offspring rises and falls throughout the year

(Figure 4.7). Waves of abundance have been observed in the past (Law et al. (2009),

Chapter 1) when parameter values were chosen which destabilised the steady state

distribution. Adding a plankton bloom has a similar effect, as organisms whose feed-

ing range lies within the plankton spectrum are subject to higher growth rates (Benoı̂t

and Rochet (2004); Maury et al. (2007a), Chapter 3). Here it was observed that seasonal

forcing via the reproductive process also pushes the system away from the steady

state. With both plankton blooms and time-dependent reproduction occurring si-
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multaneously, departures from the well-established power-law distribution (Sheldon

et al., 1972) are expected. Real systems show greater variation when observations are

recorded without averaging results temporally or spatially (e.g. Heath, 1995; Barnes

et al., 2011).

An important feature of the reproductive model used here is the ability for organisms

to have negative overall growth rates (i.e. lose mass) during the reproductive period

(Figure 4.8). Previous models used biomass from predation to produce offspring (e.g.

Blanchard et al., 2011; Hartvig et al., 2011; Plank and Law, 2011). The difference in the

model here is the disaggregation of instantaneous growth rate and reproductive rate.

The conjecture behind making the reproduction growth-independent is that spawning

is generally fixed to a certain period of the year for some fish species (Durant et al.,

2007). Other models have also enabled organisms to lose weight during reproduction;

for example, Persson et al. (1998) incorporated a discrete reproductive period once a

year, where all offspring for that year were produced at the same time in the spring.

For this, ”reversible mass” was built up over the rest of the year which could be lost

in reproduction (or used for metabolism in the case of low food supply), as opposed

to ”irreversible mass” which made up the bones and organs and was assumed not to

decrease. A loss in weight has been observed in sticklebacks during the reproductive

period (Wootton, 1977), supporting the qualitative nature of the results.

It has been shown that recruitment to the adult population depends on the growth

and death rates that larvae are subject to (Cushing and Horwood, 1994; Beaugrand

et al., 2003; Platt et al., 2003). Variability in larval mortality has also been linked to

the width of the spawning window (Mertz and Myers, 1994). This was observed in

the numerical simulations (Figure 4.9); offspring born after the plankton bloom had a

higher survival rate, although did not grow as fast. Conversely, being born close to the

bloom promoted fast growth but a higher death rate. Overall the biomass was max-

imised by being born prior to and close to the peak of the bloom, with a sharp drop in

biomass following the bloom (Figure 4.9c). Platt et al. (2003) observed unusually high

levels of recruitment in years where the plankton bloom was early, and it was pos-

tulated that fish which spawned over a longer period of time (hence both earlier and

later in the year) resulted in larvae which avoided high starvation mortalities after the

bloom ended. The dynamics of the consumer spectrum were heavily affected by the

time-dependent reproduction boundary in our model; in reality, different fish species

spawn over different periods of time (see Appendix 4.5), so a dip at the beginning of

the consumer spectrum for most of the year is unrealistic.

The optimum strategy for recruitment is still unclear from the results of the analysis;

as mortality in the early life stages of fish is high (Duarte and Alcaraz, 1989; Leggett

and Deblois, 1994), recruitment is unlikely for the average larva (Pitchford et al., 2005),

and thus fewer larger organisms may be more likely to be recruited than many smaller
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organisms. Spawning over shorter periods of time resulted in lower average amounts

of biomass after 0.1 years (roughly 37 days, an appropriate amount of time to reach

recruitment, see Houde (1989); Searcy and Sponaugle (2000)) but higher variability

in the size range within the cohort. This is in agreement with the model findings

of Mertz and Myers (1994), who found recruitment variability increased as spawning

duration decreased, and empirical data showing stronger size classes where spawning

was more peaked (Johnson, 2000). However, it is still unclear whether fewer large

individuals or greater numbers of small individuals are more likely to be recruited

from this model. An extension of the model would be to allow offspring to grow

sufficiently to reach maturity. Running the model over several decades, it could be

observed how recruitment and community abundance varied in the long-term when

timing the reproductive period away from, or close to the plankton bloom.

There is still work to be done to prove or disprove the match/mismatch hypothesis

of Cushing (1990) and alternate hypotheses subsequently proposed (see Durant et al.,

2007). Models have shown a variety of factors important in reaching maturity: for

some models growth rate is the most important factor in recruitment (Meekan and

Fortier, 1996), while others have concluded mortality in the larval stage as the more

important factor (Rice et al., 1993). Other factors such as climate and hydrodynam-

ics have been studied to investigate the interannual variability in larval recruitment

(Houde, 1989; Durant et al., 2007). The role of mortality (from starvation and preda-

tion) on the survival of larvae is less documented empirically than the growth process

(Leggett and Deblois, 1994), and further work investigating the temporal changes in

mortality will lead to a greater understanding of the tactics to maximise survival in

dynamic size-structured communities. What has been presented here is a first step

towards more general approaches to simulating seasonal reproduction.
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4.5 Appendix: Reproductive periods for North Sea species

(a) cod (b) dab (c) grey gurnard

(d) haddock (e) herring (f) norway pout

(g) plaice (h) saithe (i) sandeel

(j) sole (k) sprat (l) whiting

Figure 4.11: The variety in spawning periods of twelve common fish species in the North Sea,
aggregated from Bowers (1954); Quéro (1984); Alheit (1988); Knijn et al. (1993); Albert (1994);
Brander (1994); Hunter et al. (2003).
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Concluding Remarks

Marine ecosystems are an important source of food, employment and economic growth

for humans (FAO, 2010) and have been heavily exploited within the last century, lead-

ing to recent stock collapses (Longhurst, 1998; FAO, 2010; Hutchings and Rangeley,

2011). Furthermore, the wider effects of overexploitation have included large-scale al-

terations in fish communities and whole ecosystems (Jennings et al., 2002a; Salomon

et al., 2008). The density of large predators at high trophic levels has decreased due to

increasing fishing effort, leading to altered size compositions of fish communities with

higher proportions of smaller organisms (Bianchi et al., 2000). In order to interpret and

predict the consequences of human-induced changes, an understanding of the funda-

mental processes that drive the dynamics of marine ecosystems is needed, including

their natural variation and resilience to different types of perturbations. Size-based

models have been widely used to simulate the basic life processes that organisms

in aquatic environments are subject to, and for understanding community level re-

sponses to perturbations (Silvert and Platt, 1978; Camacho and Solé, 2001; Andersen

and Beyer, 2006; Maury et al., 2007a; Law et al., 2009; Hartvig et al., 2011). In this

thesis a mathematical perspective was taken to improve understanding and further

develop size-based models and theory. The motivation for modelling ecosystems in

this way was the evidence of size-based behaviour observed widely in aquatic sys-

tems (Sheldon et al., 1972; Ursin, 1973), coupled with the need to make progress from

an analytical viewpoint, which is difficult when using complex models that comprise

all species and their separate size distributions.

There are important lessons to be learned from the work contained in this thesis, both

in the context of size spectra and the wider field of ecology. These include: (1) the

need for a mechanistic approach when modelling life processes of organisms, and to

begin with individual-level interactions before scaling up to the community (Chap-

ter 1), (2) new insights about the stability of size-structured communities, and ana-

lytical explanations for the effect of feeding parameters on stability (Chapter 2), (3)

improved understanding of the consequences of seasonal perturbations from phyto-

plankton blooms on the dynamics of the size spectrum (Chapter 3), (4) a size-based

analysis of the match/mismatch hypothesis including the seasonal timing and dura-

tion of reproduction, and the importance of predation mortality on cohort survival
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(Chapter 4).

Size-based feeding is common in aquatic systems (Cohen et al., 2003), and linear

trends in biomass in logarithmically increasing weight brackets have been observed in

marine communities (Sheldon et al., 1972; Jennings and Mackinson, 2003). These ob-

servations have led to much work developing size-based models to simulate marine

ecosystems. There are several factors allowing the species of organisms to be ignored

in favour of body mass (or any other indicator of size, e.g. length, volume, equiva-

lent spherical diameter for plankton); these include cannibalism, cross-predation and

organisms growing up to six orders of magnitude over their lives (Cushing, 1975).

The same arguments often do not apply for terrestrial systems; although size has been

shown to be an important factor in prey selection for predators in terrestrial food webs

(Cohen et al., 1993; Brose et al., 2006a), size-based feeding holds to a higher degree

in marine systems, particularly in pelagic systems spanning in size from small zoo-

plankton up to large fish predators. Factors such as group hunting strategies, strong

interaction strengths between particular species, and asymptotic size being reached

at an early life stage, may be more commonplace for terrestrial species. Thus size-

based modelling may be less appropriate for terrestrial systems, and the conclusions

reached in the thesis may be restricted to aquatic systems where many processes are

strongly governed by size.

Accurate modelling of growth is needed in size spectrum models

The McKendrick-von Foerster equation (1.14) is widely used in size spectrum models

(e.g. Benoı̂t and Rochet, 2004; Andersen and Beyer, 2006; Law et al., 2009), to simulate

the growth process. The equation was originally conceived to model the age distribu-

tions of individuals through time (McKendrick, 1926), with the convenience that age

and time evolve at the same rate. The life expectancy of an individual is dependent

upon the cumulative death rate across time: simple assumptions about reproduction

and death were made to derive a steady state for the model (von Foerster, 1959).

The application of the McKendrick-von Foerster equation to model weight distribu-

tions seems intuitive. Platt and Denman (1978) were first to use a flux term to describe

growth through the size spectrum, the logic being that biomass generally moves up

the size spectrum, with large organisms eating small ones. While the assumption is

reasonable, modelling growth in this fashion eliminates any variability in the growth

trajectory of individuals; a group of organisms starting at the same weight in the size

spectrum grow at identical rates over time. This may not be representative of ma-

rine organisms; fish larvae have low food supply and high mortality rates (Cushing,

1975; Cushing and Horwood, 1994), and stochastic models have emerged to take into

account individual-based variability in growth (Beyer and Laurence, 1980; Pitchford
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et al., 2005; Burrow et al., 2011).

A simple stochastic process of one organism eating another in order to grow larger

was introduced in Chapter 1, and the macroscopic model for dynamics was derived

from the master equation. The jump-growth equation (1.12) allows organisms to grow

different amounts depending upon the size of their prey, which is intuitive: given a

constant feeding efficiency, eating prey twice as large means growing by twice the

amount. This model more accurately captures the feeding process of aquatic organ-

isms, and a power-law steady state solution can be derived using size-based feeding

(Section 1.2.6). The link to the McKendrick-von Foerster equation is shown via a Tay-

lor expansion in Section 1.2.5: for size spectra close to equilibrium and where prey are

on average much smaller than their predators, the McKendrick-von Foerster equation

is an appropriate approximation to use. These conditions do not always hold, and

empirical data has shown both varying abundance over time (Boudreau and Dickie,

1992; Heath, 1995; Li, 2002; Zhou et al., 2010) and reduced predator:prey mass ratios

for lower predator masses (Barnes et al., 2010). In cases such as these the McKendrick-

von Foerster equation may be a less useful tool for representing the feeding process,

as individuals may grow significantly within a single feeding event. The invariance in

growth for individuals can lead to an overestimate of numerical instability in compar-

ison to the jump-growth equation (Figure 1.4), which could be mistaken for biological

properties of the system. In these instances the jump-growth equation (or a higher

order approximation) are necessary to capture feeding behaviour more accurately.

Variation in growth stabilises the size spectrum

Time-averaged power-law distributions can be observed upon aggregating data (e.g.

Boudreau and Dickie, 1992; Barnes et al., 2011), and a power-law steady state has been

proven analytically (Platt and Denman, 1978; Camacho and Solé, 2001; Benoı̂t and Ro-

chet, 2004, Chapter 1). However, contrary to the evidence to suggest marine systems

are at steady state, perturbations to aquatic ecosystems occur due to various biotic and

abiotic factors. These include temperature, plankton blooms and fishing (Hutchings

and Myers, 1994; Echevarria and Rodriguez, 1994; Bianchi et al., 2000). The litera-

ture reports an increasing variation in fished populations compared to unexploited

populations (Hsieh et al., 2006; Anderson et al., 2008), with the latter providing hy-

potheses for the observed increase; these include fluctuating fishing levels leading to

higher variability in population size, and truncation effects of removing the largest

individuals of species.

The stability analysis carried out in Chapter 2 is the first that I am aware of in the con-

text of size spectrum models; numerical local stability analyses of size spectra have

previously been carried out (Law et al., 2009; Blanchard et al., 2011). Stability analyses

120



of food web models (which generally involve a finite number of nodes corresponding

to different species or functional groups) have been carried out previously (see e.g.

Brose et al., 2005a; Rooney et al., 2006). For size spectra the difference is that there are

an infinite number of ’nodes’ as a continuous weight scale is instead considered. A

previous stability analysis, performed by Arino et al. (2004), also used a continuous

weight scale for the analysis, although there growth was not explicitly linked to pre-

dation, and feeding was only a function of the predator size rather than predator:prey

mass ratio. It can thus be argued that the analysis in Chapter 2 models predator-prey

interactions more realistically, although certain parameter restrictions were required

to carry out the analysis.

Adding a diffusion term to the McKendrick-von Foerster equation (2.3) allows a co-

hort of organisms to spread out in weight when feeding, rather than following a fixed

trajectory. This allows for stochasticity due to both environmental and demographic

sources (Pitchford et al., 2005; McKane and Newman, 2005). In Chapter 2 the diffu-

sion term had the effect of stabilising the system to short wave perturbations (Fig-

ures 2.1, 2.2), due to the presence of the non-oscillatory −k2 term in (2.26). Thus

stable eigenvalue spectra were achieved with the equation with diffusion and the full

jump-growth model, but never with the McKendrick-von Foerster equation. Similarly,

Benoı̂t and Rochet (2004) had to incorporate a diffusion term into feeding in the ab-

sence of non-predation mortality for the community to persist in their model. Adding

diffusion is a simple, yet mathematically derived, method to account for stochasticity

within the feeding process of aquatic organisms.

The eigenvalue spectra were more closely correlated with those of the jump-growth

equation than those of the McKendrick-von Foerster equation without diffusion, as

expected of a higher-order approximation (Figures 2.1, 2.2). The jump-growth equa-

tion was derived as a deterministic equation specifically to model the generic feeding

process of marine predators that primarily feed according to body size (such as many

fish and pelagic invertebrate species), and hence should be taken as the yardstick for

comparing other size-based predation models to. An issue when running the equation

numerically is the fine discretisation required to ensure non-zero growth for reason-

able parameter values (see Section 1.4). In this sense the McKendrick-von Foerster

equation with diffusion can be seen as a compromise of modelling the predation pro-

cess with numerical accuracy, while avoiding the high computational power needed

to reasonably run the full jump-growth model.

Smaller feedback loops stabilise size spectra

The feeding parameters tested in Chapter 2 consisted of: the feeding efficiency, the

preferred predator:prey mass ratio, and the diet breadth. Stability was shown to in-
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crease in cases where feeding efficiency was high, predator:prey mass ratios were

small and diet breadths were broad. Chapter 3 displayed a tendency for perturba-

tions (caused by phytoplankton blooms) to move through the spectrum faster when

efficiency was higher, and for the amplitude to be reduced when feeding was more

localised (results not shown).

All three observations can be explained by feedback processes: the longer an organism

takes to grow from weight y to weight x which feeds upon y, the larger the feedback

loop is, which can potentially destabilise the system (Blanchard et al., 2008). From the

form of the growth rate (3.3) it is clear that organisms will grow through the spectrum

faster with increasing efficiency K (this is also intuitive). Low predator:prey mass

ratios and broad diet breadths will reduce the average distance between prey and

predator weights, thus reducing the feedback of individuals being removed by the

predation process.

Previous numerical work has shown that increasing predator:prey mass ratios can

destabilise the power-law steady state of size spectra (Blanchard et al., 2008), and with

certain parameter values lead to travelling waves (Law et al., 2009, Chapter 1). An

empirical analysis of 74 sites across the North Sea also revealed a tendency for more

stable environments to have lower mass ratios (Jennings and Warr, 2003), supporting

the numerical results found in Chapters 1, 2 and 3.

Interestingly, Brose et al. (2006b) found that in complex food web models, stability (i.e.

where all species in the web persisted) rose with increasing predator:prey mass ratio,

which was hypothesised to lower the per unit biomass interaction strength between

predators and prey (Yodzis and Innes, 1992; Brose et al., 2005a). This result agreed

with the proposal of May (1972) that lowered interaction strengths increase food web

stability. The result seems to contradict the observation in size spectrum models that

lower predator:prey mass ratios are stabilising. In fact the situation is more compli-

cated. Comparison of the results of Brose et al. (2006b) with the size-based distri-

butions used in this thesis is possible by discretising the continuous size range into N

countable nodes (each node yi representing a body mass range [xi, xi + δx) rather than

a species), and adding links between nodes where the feeding kernel is non-negligible.

Lowering the average interaction strength I in the discretised distribution is achieved

by increasing the diet breadth σ, but this also raises the number of links from each

node (and hence the probability P that two nodes will interact). The stability condi-

tion of May (1972) states stability is likely if I < 1/
√

NP, so closer examination is

required before any conclusions about agreement can be drawn. Nevertheless, stabil-

ity was observed to be enhanced by high values of σ in the models used in this thesis.

Also, in the discretised distribution the biomass at node yi scales with e(2−γ)xi ; in the

case γ = 2 there are invariant amounts of biomass at each node, so the consumption

rate is independent of β, an observation which separates the size-based models of this
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thesis and the complex food webs of Brose et al. (2006b). It is clear that predator-prey

interactions are non-trivial, and further work should shed light on how size-based

feeding affects size spectrum dynamics.

Phytoplankton blooms lead to perturbed size spectra

Phytoplankton abundance can vary little over time, or be subject to seasonal blooms

(Frost, 1991). These blooms manifest themselves in the springtime (e.g. Navarro and

Thompson, 1995; Wang et al., 2006; Zhou et al., 2010) and, to a lesser extent, in the

autumn (Herring, 2002; Kaiser et al., 2005; Findlay et al., 2006). The mechanisms of

how blooms occur are well understood, and the combination of nutrients, advection

and sunlight that are involved are not studied in this thesis (see e.g. Kaiser et al., 2005).

I chose instead to focus on the net effect: a temporal rise in phytoplankton abundance,

and the consequences for a size-spectrum model of these seasonal perturbations.

To incorporate phytoplankton blooms a von Mises distribution was selected (Pope

et al., 1994), for its similarity in shape to recorded temporal abundance data (Navarro

and Thompson, 1995; Irigoien et al., 2005). The method in Chapter 3 followed the

work by Pope et al. (1994), but importantly with a dynamic consumer spectrum rather

than a fixed background spectrum for the weight distribution. The subsequent dy-

namic size spectrum showed behaviour approximating that of empirical spectra mea-

sured across time (Heath, 1995), where peaks of abundance moved up through the

spectrum by predation, followed closely by a trough of abundance. Temporal and

spatial averaged spectra (e.g. Kamenir et al., 2004; Cermeño et al., 2006) often smooth

over these perturbations, although spectra sampled at certain points in time reveal

seasonal oscillations in abundance (e.g. Figure 5b of Zhou (2006), Figure 9 of Zarauz

et al. (2009), Figure 5a of Schartau et al. (2010)).

For all blooms introduced to the system, an increase in the abundance of the consumer

spectrum was observed. The same observation was assumed by Pope et al. (1994),

and has been observed both in models and empirically (e.g. Benoı̂t and Rochet, 2004;

Maury et al., 2007a; Zhou et al., 2010; Blanchard et al., 2011). The perturbations tended

to dampen and spread out as biomass shifts up the size spectrum via predation, due

to feeding by larger organisms and variation in growth caused by the diffusion term

in the model. A return to the steady state was observed for all spectra following the

bloom, provided no further blooms were introduced; in reality, annual phytoplankton

blooms are a component of many marine ecosystems, so the concept of a steady state

may be misleading in such environments.

A simple fixed boundary condition between the autotrophic phytoplankton spectrum

and heterotrophic consumer spectrum was assumed in Chapter 3, and a dynamic re-

productive boundary was introduced in Chapter 4. These simple boundary condi-
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tions enabled interpretations of the responses of the consumer spectrum to seasonal

”bottom-up” effects to be made. Other studies have extended work on dynamic pro-

ducer (or background) spectra with a variety of methods. Semi-chemostatic growth

has been assumed to allow feedback between predation by consumers and the abun-

dance of the producer spectrum (e.g. De Roos and Persson, 2002; Hartvig et al., 2011).

Other studies provided detailed coupling between nutrient levels and phytoplankton,

zooplankton and fish spectra (Baird and Suthers, 2007; Stock et al., 2008). Both nutri-

ent and sunlight levels were simulated by Fuchs and Franks (2010) for a detailed in-

vestigation of phytoplankton - zooplankton dynamics. Further work is required in in-

vestigating the links in dynamics between phytoplankton, zooplankton and predators

to understand the nature of bottom-up perturbations in size spectra better. Adding

complexity to the basic size spectrum model introduced here will improve knowl-

edge of the dynamics involved in biomass transfer to larger organisms, and thorough

examination of temporal data is required.

Successful cohorts are born prior to the phytoplankton bloom

The match/mismatch hypothesis, first conceptualised by Hjort (1914), predicts that

survival at the early life stages of fish species is an important determinant of year-

class strength. It postulates that planktonic food availability at the time when larvae

exhaust the egg yolk supply and switch to external feeding is critical in the survival

of larvae to recruitment. The term ’match/mismatch’ was coined by Cushing (1975)

to highlight the possibility of the spawning period of fish to time with the peak of

zooplankton abundance (match) or away from the peak (mismatch). Larval mortal-

ity is variable depending upon the synchrony of these two periods, as larvae with

insufficient food are more susceptible to starvation and grow more slowly, increasing

vulnerability to predation. Due to high larval mortality, Mertz and Myers (1994) pro-

pose that ”the larval stage may be the principal determinant of year-class strength”

(also see Chambers and Trippel, 1997; Horwood et al., 2000).

Empirical studies have been carried out due to debate over the plausibility of the

match/mismatch hypothesis. Recruitment in cod has been linked to variation in the

timing of reproduction with the planktonic prey peak (Beaugrand et al., 2003), and

larval growth rate has been shown to correlate strongly with prey biomass (Buckley

and Durbin, 2006; Koeller et al., 2009). Platt et al. (2003) used surveys measuring

both juvenile abundance of haddock from 1970, and the timing of the plankton bloom

each year from ocean colour sensors, in order to measure the correlation between the

survival of year classes and the timing between the spawning and bloom period. Most

of the variation in larval survival (89%) was explained by the timing of the springtime

plankton bloom. Durant et al. (2007) extended the match/mismatch hypothesis by

investigating its applicability to terrestrial systems.
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In Chapter 3 cohort biomass after 0.1 years was maximised by being born slightly

prior to the phytoplankton bloom (Figure 3.10), due to an increased growth rate once

the bloom was introduced (Figure 3.7) combined with a lower predation rate than

cohorts born during the bloom were subject to. A marked increase of the predators

of offspring was observed during the bloom, leading to a higher death rate (Figure

3.9a), and the most successful cohort avoided this through fast growth to advance

ahead of the predator range (Figure 3.11). Interestingly, Platt et al. (2003) found that in

both 1981 and 1999, where the survival of haddock larvae was exceptionally high, the

plankton blooms were observed to be unusually early. They hypothesised that adult

haddock may have begun to spawn earlier in the year (and for a longer duration), so

that fewer of the total number of larvae perished from starvation (although starvation

mortality was not measured to validate this). From Figure 3.9 the death rate for larvae

born before the bloom is not as severe as after the bloom has initiated, so the empirical

findings of Platt et al. (2003) are consistent with the results in Chapter 3.

Explicitly modelling the reproductive process adds an additional feedback to the model,

with only organisms above a threshold weight xm able to reproduce. Reproduction

in size spectrum models has mostly been modelled as a constant process, with no

time dependence (e.g. Shin and Cury, 2004; Maury et al., 2007a; Blanchard et al., 2011;

Hartvig et al., 2011; Plank and Law, 2011). Here, for the first time in a dynamic com-

munity size spectrum model, the reproductive period is limited to certain times of

year and is independent of growth rate. Many fish species exhibit spawning seasons

with different timing and durations; some fish species reproduce fairly constantly

over the course of the year (for example, herring and sandeel), while other species

have extremely peaked reproduction over only two or three months, such as cod

and haddock (Quéro, 1984; Rice et al., 1993). Thus the match/mismatch hypothesis

seems more appropriate for these latter species (see Meekan and Fortier (1996) for one

such analysis on Atlantic cod) than for non-seasonal spawners. Appendix 4.5 shows

spawning periods of 12 common North Sea species.

Adding time dependence to the influx of consumers perturbed the spectrum, as ex-

pected (Figure 4.7); along with plankton blooms, this is another example of a bottom-

up effect that marine systems are subject to. The growth rate of mature organisms

was observed to decrease during the reproductive period, as resources are diverted to

producing offspring (Figure 4.8), characterised by a drop in mass over the spawning

period (Wootton, 1977). When investigating the effect of reproductive period on co-

hort growth and survival in the seasonal spectrum, high rate of both growth and death

were observed during the bloom period (Figure 4.9a, b). This agrees with observations

from the previous chapter (Figures 3.7a and 3.9a). Overall biomass remaining after 0.1

years was observed to reach a maximum leading up to the peak of the plankton bloom

(Figure 4.9c), where growth rates were highest, leading to the conclusion that being

born leading up to the peak of the bloom maximised cohort abundance over time, a
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result mirrored in recent empirical data (Platt et al., 2003; Buckley and Durbin, 2006).

Pitchford et al. (2005) highlight that as recruitment is an unlikely event for an individ-

ual larva, deterministic models may not adequately capture the randomness involved

in larval survival. From the results of Figure 4.10, making the spawning period shorter

and sharper resulted in lower mean cohort biomass, yet increased the variability in

biomass, meaning a small number of individuals were able to grow significantly. It is

not obvious which individuals are more likely to reach recruitment, as mortality is ob-

served to decrease with body weight, both in the model (3.14) and in observations of

real systems (Bradford, 1992; Puvanendran and Brown, 1999). The growth trajectories

of cohorts must be followed for longer periods of time to establish recruitment prob-

abilities, and predation mortality must be made explicitly time-dependent in models.

Results from this early work are the first stage of further studies required to answer

the question of reproduction timing and its consequences.

Factors aside from prey availability will influence the survival of fish larvae, and au-

thors have criticised the match/mismatch hypothesis for ignoring other processes in-

volved in successful recruitment (e.g. Leggett and Deblois, 1994). Empirical studies

have been conducted which show no significant correlation between the timing of

reproduction and bloom periods and larval survival (Bollens et al., 1992; Johnson,

2000). Buckley and Durbin (2006) reported that, although strong correlations were

observed between the timing of Pseudocalanus blooms and larval growth, aggregating

the four main copepod species present showed a weaker correlation, and abundance

of Calanus finmarchicus alone were unrelated to growth rate. This highlights how the

knowledge of prey selection can impact on interpretations from empirical data, and is

an example of the importance of specific species links, even in marine systems where

size-based interactions are thought to be dominant. Other factors such as potential

energy gain and morphological relationship between predators and their prey influ-

ence the choice of prey (Gill and Hart, 1994). The importance of photoperiod and

water temperature in larval survival are also cited, and the difficulties of adequately

sampling prey abundance (Buckley et al., 2006).

Alternative hypotheses have been suggested to explain observed variations in year

class strength, such as the member-vagrant hypothesis of Sinclair (1988). He pos-

tulates that the survival of offspring populations are attributed to the numbers of

”member” larvae remaining together in geographical space over time, minus ”va-

grants” which become separated by advection currents in the ocean. Platt et al. (2003)

emphasised the need for data which adequately captures fine-scale spatio-temporal

processes at the correct time of sampling the fish eggs / larvae and geographical lo-

cation (thus requiring an understanding of oceanographic processes, such as currents

and turbulence). A summary of alternate hypotheses is provided by Durant et al.

(2007). Thorough testing of hypotheses with high resolution data will yield a greater
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understanding of the important life processes involved in larval survival and year

class strength.

Limitations and improvements of the work presented

In this thesis a deeper mathematical understanding of the dynamics driving commu-

nity size spectra has been achieved, and results obtained (both analytically and nu-

merically) have been in agreement with observations of real community size spectra

and previous modelling work. Although size-based modelling can explain many of

the patterns observed in aquatic communities, there are drawbacks and limitations of

the approach.

One of the key assumptions made when adopting the size spectrum method was to

ignore species and classify organisms by their weight only. This allows conclusions

to be drawn at the community level, i.e. the biomass distribution of an ecosystem

as a function of body weight regardless of species, and the response of the spectrum

to environmental effects dependent only on body weight. For example, fish species

have different asymptotic sizes (Figure 3.8) and reproductive periods (Appendix 4.5),

which were fixed at ”average” community values in the work presented here. In order

to expand knowledge of more in-depth processes, working with multiple populations

and/or further disaggregation of organism traits may be needed to accurately model

the dynamics. The analytical understanding of the dynamical processes gained in this

thesis would be difficult with more complex models that contain species identities and

their size distributions. The community-based approach has helped to gain more in-

depth mathematical insight into community size spectrum models, which are being

used to try to inform ”an ecosystem approach” via the use of size-based indicators for

tracking community and ecosystem-level impacts (e.g. Bianchi et al., 2000; Shin et al.,

2005; Pope et al., 2006).

Multi-species models have been compared to single species models from a fishing

perspective (Hollowed et al., 2000), where it was concluded that predation mortal-

ity varied little temporally in most systems, and multi-species models need to take

size structure (as well as spatial effects and abiotic factors) into account. Size spectra

have been modelled with multiple populations interacting, each with species-specific

traits such as maturation, asymptotic mass and rates for life processes (De Roos and

Persson, 2001; Pope et al., 2006; Blanchard et al., 2011). De Roos and Persson (2002) in-

corporated a physiological structured population model (dubbed the ’Escalator Box-

car Train’ method, see De Roos (1988)) to model a three-component system consist-

ing of size-structured predator and consumer populations and an unstructured re-

source population. A model describing the effect of fishing on size-structured pop-

ulations was incorporated by Pope et al. (2006), although growth for the 13 species
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studies was determined by von Bertalanffy growth curves, and not linked to preda-

tion (whereas mortality rates were dependent on predator abundance). Their results

were in agreement with empirical and modelling observations of steeper size spec-

trum slopes emerging from heavily exploited systems (Bianchi et al., 2000; Shin et al.,

2005). More recently, theoretical work has incorporated growth from predation into

size spectrum models which model the interactions between ’species’ as defined by

a single life-history trait, asymptotic body size (Andersen and Beyer, 2006; Ander-

sen et al., 2009). More recently, the work has been extended to explicitly model the

dynamics and physiological processes of these species including reproduction (An-

dersen and Pedersen, 2010) and, by using random interaction matrices, equilibrium

states have been reached (Hartvig et al., 2011). The multi-species spectra investigated

allow inferences to be made at both the community level and individual species level

and is a quickly progressing area of research.

The closed form expressions derived in this thesis allowed the power-law steady state

to be analysed, and to quantify the dependence of stability upon feeding parameters

(Chapter 2). To keep the dynamic size spectrum model simple and allow analyti-

cal progress to be made, many of the parameters in the system were assumed to be

constant, and only body mass distinguished individuals in the spectrum. There is

evidence of changing predator:prey mass ratios and feeding efficiency as body size

increases (Barnes et al., 2010), and choosing functions (with weight as the variable)

for these and other parameters is a simple step that could be taken to add more real-

ism to the model. Other traits may be species-specific, rather than size-based, so it is

important to gain understanding of the important factors affecting ecosystem stability

and dynamics. Metabolism has been modelled simplistically in the work presented

here, as an allometric function scaling with body weight in the feeding kernel. Many

life processes have been shown to scale with body size (Peters, 1986; Brown et al.,

2004), and in-depth analyses of basic functions of organisms at a cellular level could

yield valuable results for size spectrum models. Although egg size has been shown

to vary little between marine teleost fish species (Ware, 1975; Cury and Pauly, 2000),

evidence suggests that winter and spring spawners produce larger eggs, and for batch

spawners to produce progressively smaller eggs over the summer (Ware, 1975). Al-

ternative studies link egg size to pelagic / demersal spawning (Duarte and Alcaraz,

1989). This is just one example of species-specific traits which could be integrated into

a multi-species model; others include asymptotic weight (as used by Hartvig et al.

(2011)), swimming speed and species-specific feeding rates.

Phytoplankton have not been modelled dynamically in the studies in this thesis. In

Chapter 1 the phytoplankton spectrum was held constant and in Chapters 3 and 4 a

time-dependent bloom was introduced, although this was done independently of the

abundance in the consumer spectrum. Simple non-dynamic models for the producer

spectrum were used to analyse the behaviour of seasonal forcing on the consumer
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spectrum, without explicitly modelling the various factors which trigger blooms such

as temperature and nutrients. Other studies have used semi-chemostatic models for

the producer spectrum, to enable the abundance to drop by predation and rebuild

from population growth and invasion (e.g. De Roos and Persson, 2002; Hartvig et al.,

2011). The dynamics of nutrient levels on the abundance of producers has been mod-

elled; Irwin et al. (2006) used a constant nutrient influx with logistic growth to model

phytoplankton abundance, while more complex dynamics have been incorporated

into models with phytoplankton, zooplankton and fish spectra (Baird and Suthers,

2007; Stock et al., 2008). A benthic size spectrum consisting of detritivores was mod-

elled by Blanchard et al. (2009), although the plankton spectrum was held constant in

simulations. Temperature and sunlight are also important factors in the emergence

of blooms, and the modelling of these in conjunction with nutrient levels should pro-

vide robust models for phytoplankton abundance (see Fuchs and Franks, 2010); recent

work has also linked size spectrum slopes to a dynamic model of phytoplankton and

nutrients using remote sensing (Roy et al., 2011). Another subject of interest asso-

ciated with phytoplankton spectra is coagulation, and the role it plays in observed

size-abundance patterns (Jackson, 1995; Li and Logan, 1995; Mari and Burd, 1998). It

would be valuable to see what effects (if any) this would have on the shape and slope

of the size spectrum.

As well as modelling the phytoplankton spectrum separately from the dynamic con-

sumer spectrum, there are reasons to support disaggregating the zooplankton from

other marine predators. Zooplankton have a maximum weight much lower than fish

species (approximately in the order of 1g, see Zhou et al. (2009)), feeding primarily on

phytoplankton (Heath, 1995) and forming the majority of the diet of newly hatched

fish larvae (Cushing, 1990). The debate spurred on by the last observation has led to

PZF (phytoplankton - zooplankton - fish larvae) models to simulate explicitly the dy-

namics of the three interacting populations (e.g. Moloney and Field, 1991; Armstrong,

1994; James et al., 2003). However, there is little literature to describe size-based zoo-

plankton spectra; Zhou et al. (2010) discuss a lack of models for describing details of

life processes of zooplankton. Concerted efforts are being made to remedy this (see

e.g. Stock et al., 2008; Fuchs and Franks, 2010), and connecting in a size-based way

up to larger predators. Empirical studies focusing on the zooplankton spectra are

not widely available (Heath, 1995), and more data needs to be made available before

modelling efforts can be validated.

Environmental effects have not been extensively tested in the work presented here.

Of particular interest in light of climate change is water temperature, and the impact

on the life processes of aquatic organisms. Growth and fecundity have been shown

to scale linearly with temperature (Hirst and Bunker, 2003), and temperature is in-

trinsically linked to physiological rates of organisms (Houde, 1989; Kooijman, 2009;

Gillooly et al., 2001; Brown et al., 2004). This is integrated into size spectrum models,
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for example, in that of Maury et al. (2007a). Scaling the three dynamic processes of

death, growth and diffusion presented in the model used in Chapters 3 and 4 could

provide valuable insight to the potential impacts of warming climates. Abiotic fac-

tors such as temperature, turbulence and upwelling are spatially affected, and incor-

porating this into the model would require extensive changes to the model setup.

One of the main assumptions in deriving the jump-growth equation is that over large

enough spatial scales, the numbers of organisms is proportional to volume. Once this

is no longer the case, model assumptions will need to be re-evaluated. However, spa-

tial effects are important: for example, sunlight, temperature and oxygen levels vary

along the water column (Echevarria and Rodriguez, 1994). The added randomness of

environmental variation means adding stochasticity to the model could be justified.

The master equation approach used (van Kampen, 1992) in Chapter 1 to derive the

deterministic model for predation (the jump-growth equation) also yielded a Fokker-

Planck equation to describe the demographic fluctuations of the deterministic model,

which scaled with the square root of the system size and hence was assumed to be

negligible for a large enough community. Stochastic size spectra were run alongside

the jump-growth equation and McKendrick-von Foerster equation to confirm obser-

vations from the two models (Section 1.3). In Chapter 2 it was concluded that demo-

graphic stochasticity had only small effects on the stability of the power-law steady

state, and the fluctuations could be ignored. More work is required in order to deter-

mine the consequences of environmental effects using the models developed in this

thesis.

To conclude, a size-based approach incorporating individual-level processes of pre-

dation, growth, death and reproduction has been constructed, and are consistent with

empirical observations of the structure, dynamics and stability of marine community

size spectra. Variable growth in size-based models has been shown to capture the

feeding process more realistically; the McKendrick-von Foerster equation can often

result in numerically unstable systems due to the rigid growth trajectories of organ-

isms, which the diffusion term from the second order approximation remedied. To

empirically test the findings in this thesis, high resolution temporal spectra could be

sampled in the size range for pelagic fish species (e.g. 2-2048g as sampled by Jennings

et al. (2002b)), to observe the possibility of waves of abundance moving through the

spectrum, which were caused in numerical simulations by both unstable steady states

and bottom-up seasonal effects. The importance of feedback loops in the stability of

the studied models was not investigated in great detail. Analytical findings suggest

that feeding over a wide weight range with low predator:prey mass ratios is stabilis-

ing, and temporal spectra could reveal higher variability in communities where the

preferred mass ratio is higher. To further improve the simple models used to test

the match/mismatch hypothesis, alternates such as the member/vagrant and stable

ocean hypotheses could be tested; this would involve modelling spatial variation of
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plankton abundance and simulating the effects of turbulence, as the majority of hy-

potheses for larval recruitment success are explained using mixing and upwelling

processes in the ocean (see Durant et al., 2007). The importance of predation mortality

in larval survival was concluded from the studies carried out in Chapters 3 and 4, and

further in-depth analyses should be carried out on temporal variations in predator

abundance, with the aid of real data of larval mortality following hatching. A com-

bination of appropriate empirical data and theoretical model setups will facilitate a

deeper understanding of recruitment variability.

”The man in black fled across the desert, and the gunslinger followed.”

- Stephen King, The Gunslinger (1982).
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URL http://books.google.co.uk/books?id=448WAQAAIAAJ
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