
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Jan 2006 

A Mathematical Formulation of DNA Computation A Mathematical Formulation of DNA Computation 

Mingjun Zhang 

Maggie Xiaoyan Cheng 
Missouri University of Science and Technology, chengm@mst.edu 

Tzyh-Jong Tarn 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
M. Zhang et al., "A Mathematical Formulation of DNA Computation," IEEE Transactions on 
Nanobioscience, Institute of Electrical and Electronics Engineers (IEEE), Jan 2006. 
The definitive version is available at https://doi.org/10.1109/TNB.2005.864017 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' 
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution 
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TNB.2005.864017
mailto:scholarsmine@mst.edu


IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 1

A Mathematical Formulation of DNA Computation
Mingjun Zhang,Member, IEEE, Maggie X. Cheng,Member, IEEE, and Tzyh-Jong Tarn,Fellow, IEEE

Abstract— DNA computation is to use DNA molecules for
information storing and processing. The task is accomplished by
encoding and interpreting DNA molecules in suspended solutions
before and after the complementary binding reactions. DNA
computation is attractive, due to its fast parallel information
processing, remarkable energy efficiency, and high storing capac-
ity. Challenges currently faced by DNA computation are (1) lack
of theoretical computational models for applications, and (2) high
error rate for implementation. This paper attempts to address
these problems from mathematical modeling and genetic coding
aspects. The first part of this paper presents a mathematical
formulation of DNA computation. The model may serve as a
theoretical framework for DNA computation. In the second part,
a genetic code based DNA computation approach is presented to
reduce error rate for implementation, which has been a major
concern for DNA computation. The method provides a promising
alternative to reduce error rate for DNA computation.

Index Terms— DNA computation, mathematical formulation,
error rate, genetic code.

I. I NTRODUCTION

In the late1950’s, the Nobel laureate Richard Feynman first
introduced the idea of computation at a molecular level. In
1994, the concept of DNA computation was demonstrated us-
ing experiments to solve a directed Hamiltonian Path Problem
(HPP) by Adleman [2]. Since then, the possibility of DNA
computation has attracted many researchers’ attention.

DNA computation is to use DNA molecules for infor-
mation storing and processing by encoding and interpreting
DNA molecules in suspended solutions before and after DNA
complementary binding reactions. The central idea of DNA
computation is the Watson-Crick model of DNA structure,
which specifies complementary binding properties of DNA
molecules.

It is well-known that within cells of any living species,
there is a substance called Deoxyribonucleic Acid (DNA),
which is a double-stranded helix of nucleotides carrying the
genetic information of a cell. This information is the code
used within cells to form proteins and is the building block
upon which life is formed. A single-stranded DNA consists
of a chain of molecules called bases, which protrude from a
sugar-phosphate backbone. The four bases are Adenine (A),
Thymine (T), Guanine (G), and Cytosine (C). Any single-
stranded DNA will adhere tightly to its complementary strand,
in which G always pairs withC and A always pairs with

Manuscript received November 18, 2004; accepted November 15, 2005.
Mingjun Zhang (contacting author) is with the Life Sciences and

Chemical Analysis Division at Agilent Technologies, California, USA.
Email:mingjunzhang@ieee.org. Tel: (408)553-4159.

Maggie X. Cheng is with the Department of Computer Science, University
of Missouri, Rolla, Missouri, USA. E-mail: chengm@umr.edu.

Tzyh-Jong Tarn is with the Department of Electrical and Systems En-
gineering, Washington University in St. Louis, Missouri, USA. E-mail:
tarn@wuauto.wustl.edu.

Hybridization Detection
.

.

.

.

.

.

X
Y

Z

(XY)

(YZ)

(X...Z)

DNA Computer

Fig. 1. DNA Computation

T , and vice versa. DNA computation involves to use single-
stranded DNA segments to code the problem, let the single-
stranded DNA segments react in test tubes or substrate sur-
faces, and then to find DNA binding strands and interpret
the results by applying bio-molecular techniques. This process
can be refined into two steps. The first step is to generate all
possible solutions to the problem by mixing DNA solutions.
DNA complementary binding reactions occur in parallel and
extremely fast upon mixing. The second step is to isolate
correct solutions through repeated separations of the DNA
strands from incorrect solutions and potentially good solutions.
A schematic representation of DNA computation is given in
Fig. 1, where inputs of the system are single-stranded DNA
segmentsX, Y, ..., Z. After hybridization, double-stranded
DNA segments(X...Z) that encode possible solutions are
detected. In conventional terminologies of computing, the
DNA strands may be regarded as hardware. Strand coding can
be treated as software. The operating system is to read DNA
strands through bio-molecular techniques.

DNA computation is attractive mainly for three rea-
sons. First, the computation realizes fast parallel information
processing. Second, the process is remarkably energy efficient.
Finally, DNA molecules have very high storing capacity. A
liter of solution may provide associative memory of up to107

or 108 tera-bytes. A DNA strand may need1000 base pairs
to encode a computing processor. So a liter of solution may
encode states of approximately1018 distinct processors [13].
DNA computers have been shown to be at least equivalent to
a classical Turing machine [1], [10], [14].

A mathematical model is helpful to understand the the-
oretical aspects of DNA computation. The model is also
useful to apply mathematical tools to solve DNA computation
problems. Paper [3] proposed a simple abstract model of
molecular computers. However, numerous topics related to
DNA computation remain open.

In this paper, a mathematical formulation of DNA compu-
tation is presented. Based on the formulation, character-based
DNA computation is converted into a numerical computation
problem. Propositions based on the formulation are also pre-
sented. To illustrate the formulation and propose new ideas
on solving problems currently faced by DNA computation,
a genetic code based DNA computation approach is further



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 2

proposed. The genetic code based DNA computation is based
on the genetic coding theory of molecular biology. The goal
is to reduce the error rate, which has been a major concern
for the implementation of DNA computation.

This paper is organized as follows. In Section II, the
mathematical formulation of DNA computation is presented.
The genetic code based DNA computation is discussed in
Section III. Applications of the formulation is given in Section
IV. Conclusion and discussion are presented in Section V.

II. A M ATHEMATICAL FORMULATION OF DNA
COMPUTATION

Define the following notations:

• Let X = xixi+1...xj and Y = yiyi+1...yj represent
single-stranded DNA segments, wherei, j ∈ N and
i ≤ j. N is the natural number.xi, yi ∈ {A, T, G, C}.

• The complementary sequence ofX is defined asX̄.
• Let Ti represents thei-th test tube, wherei ∈ N . Ti(+X)

means that the test tube containing DNA segment X.
Ti(−X) means that the test tubeTi does not contain
DNA segment X.

DNA computation involves many bio-molecular operations
including hybridization, separation, cutting and pasting DNA
strands at desired locations. These operations can be general-
ized at DNA strand level as follows, where “→” represents
the right hand side is the result of the reaction from the left
hand side operation.

• Ligation: plus “+” operation. Ligation concatenates seg-
ments of DNA. Biochemically, it is often invoked after
an annealing operation. Although it is possible to use
some ligase enzymes to concatenate free-floating double-
stranded DNA segments, it is more efficient to allow
single-stranded DNA to anneal together, connecting up to
a series of single-stranded fragments, and then use ligase
to seal the covalent bonds between adjacent fragments.
For two single-stranded DNA segmentsX and Y , a
ligation operation can be expressed as “X+Y → [XY ]”,
where [XY ] represents a newly created single-stranded
DNA segment.

• Cut: minus “−” operation. Restriction enzymes can cut
a strand of DNA at a specific address. Some restriction
enzymes only cleave single-stranded DNA, while others
only cleave double-stranded DNA segments. If a single-
stranded DNAX is cut at positionn from the 3′ end
of a DNA segment, the process can be expressed as
“−X(n) → Y +Z”, whereY andZ are newly generated
single-stranded DNA segments andY has a length of
n− 1.

• Hybridization: multiplication “•” operation. It is a
process when single-stranded complementary DNA seg-
ments spontaneously form a double-stranded DNA. For
single-stranded DNAX and X̄, the binding process
can be described as “X • X̄ → (XX̄)”, where (XX̄)
is a newly created double-stranded DNA. DNA strands
enclosed by brackets “(” and “)” are double-stranded
DNA and cannot be bonded with other strands unless
further melting operation is applied.

• Melting: division “\” operation. This is an inverse of the
annealing operation. Heating can be selectively used to
melt apart short double-stranded DNA segments while
leaving longer double-stranded segment intact. For ex-
ample, “\(XX̄) → X + X̄” means melting the double-
stranded DNA (XX̄) as two complementary single-
stranded DNA segmentsX and X̄.

One insight from the above formulation is that the DNA
computation is very fast. All the above operations are single
step DNA molecule reactions, which are extremely fast com-
pared with conventional silicon computation.

In addition to strand level operations, the DNA computation
may use the following operations at test tube level, which are
performed using sets of DNA segments.
• Mergence: union operation “∪”. The operation means two

test tubes can be combined, usually by pouring one test
tube into the other. For example, “T1 ∪ T2 → T ” means
melting two test tubesT1 and T2 together to produce a
new test tubeT .

• Separation or extraction: difference operation “−”. The
expression “−(Ti, X) → Tj(+X)∪Tk(−X)” represents
a separation operation applied to the test tubeTi on DNA
segmentX. The operation produces two test tubes, where
the tubeTj contains a stringX and the tubeTk does
not contain the DNA segmentX, where i, j, k ∈ N .
EitherTj andTk could be empty setφ. This step is done
using gel electrophoresis. It requires the DNA strands to
be extracted from the gel once the DNA segments of
different length have been identified.

• Amplification: product operation “×”. Given a test tube
containing DNA strands, the operation is to make multi-
ple copies of a subset of the strands presented. Copies are
usually made with PCR. For example, “×T → T1 ∪ T2”
means two test tubesT1 and T2 containing copies of a
subset of DNA strands are produced from the test tube
T .

• Detection: question operation “?”. This operation means
that gel electrophoresis is applied to see if anything of
the appropriate length is left within a test tube after PCR
amplification. For example, “T?X → True” means that
the test tube T contains at least one stringX. Otherwise,
“T?X → False”.

• Destroy: intersection operation “∩” with an empty set.
Subsets of strands can be systematically destroyed or
“digested” by enzymes that preferentially break apart
nucleotides in either single- or double-stranded DNA
segments. The process can be expressed as “T ∩φ → φ”.

To further investigate DNA computation as a computational
problem, the following concepts are developed.

A. Conversion of character-based DNA sequences to numeri-
cal sequences

Three methods are proposed to convert character-based
DNA sequences into numerical sequences. One method is to
use complex numbers. The second method is to use integer
numbers. The third method is to convert DNA sequence into
vectors.



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 3

1) Complex number representation:Define a function
f(x) : {A, T,G, C} → {1,−1, i,−i} as

f(x) =





1, x = A;
−1, x = T ;
i, x = G;
−i, x = C.

(1)

wherex is one of the four nucleotides.
The complementary base of each DNA basex can then be

calculated by the following inverse function

x̄ = f−1(−f(x)) =





T, x = A;
G, x = C;
C, x = G;
A, x = T.

(2)

By definitions (1) and (2), complementary DNA sequences
(either numerical or character-based) can be easily obtained.
This means only single-stranded DNA segments need to be
specified. The complementary strands can be easily generated
using the above functions in either character-based or numer-
ical format.

2) Integer number representation:DNA bases may be
mapped as integer numbers as well. Define a functionf(x) :
{A, T, G,C} → {0, 1, 2, 3} as

f(x) =





0, x = A;
1, x = C;
2, x = G;
3, x = T.

(3)

Similarly, the complementary base ofx can be determined
by the following inverse function

x̄ = f−1({3} − f(x)) =





T, x = A;
G, x = C;
C, x = G;
A, x = T.

(4)

where {3} represents an appropriate finite length sequence
consisting of multiple copies of integer3. The numerical
calculation can then be conducted base by base. For example,
the numerical sequence of a DNA segmentX = AGGCAT
is f(X) = f(AGGCAT ) = 022103. The complementary
segment ofX can be easily obtained as̄X = f−1({3} −
f(X)) = f−1(311230) = TCCGTA.

3) Vector representation:In vector space analysis, numer-
ical value based DNA sequences can be expressed as rows of
a matrix. Addition of such kinds of matrices can be regarded
as DNA hybridization process. Scalar multiplication produces
multiple copies of the sequences in a test tube. Consider the
four DNA bases{A, T,G, C}T as a vector, any DNA strand
X = x1x2...xn, n ∈ N , can then be expressed as a vector by
a transfer matrixΠ as

X = Π




A
T
G
C


 =




p11 p12 p13 p14

p21 p22 p23 p24

...
...

...
...

pn1 pn2 pn3 pn4







A
T
G
C


 (5)

where
∑4

j=1 pij = 1, ∀i ∈ N . Specifically,

pi1 =
{

1, xi = A.
0, otherwise.

pi2 =
{

1, xi = T.
0, otherwise.

pi3 =
{

1, xi = G.
0, otherwise.

pi4 =
{

1, xi = C.
0, otherwise.

(6)

In above definition, each row of the matrixΠ represents one
DNA base. The complementary sequence ofX̄ can then be
obtained by simply swapping column one with column two,
and column three with column four as follows

X̄ =




p12 p11 p14 p13

p22 p21 p24 p23

...
...

...
...

pn2 pn1 pn4 pn3







A
T
G
C


 (7)

For example, the transfer matrix of a single-stranded DNA
X = ACGTGGATCT is Π1 shown in (8). The complemen-
tary sequence of X is̄X = TGCACCTAGA, whose transfer
matrix is Π2 shown in (8)

Π1 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1
0 1 0 0




, Π2 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 0 0 1
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
1 0 0 0




(8)

The above definitions (6) and (7) make it possible to define a
DNA strand as ann× 4 matrix.

The DNA nucleotides may also be defined as a vector
directly. For example,A = [1 0]T , T = [−1 0]T , G = [0 1]T ,
andC = [0 − 1]T . Then a DNA sequence can be expressed
as a2 × n matrix, wheren is the number of bases for the
DNA sequence. For example, a single-stranded DNA sequence
X = GATCCAGT can be expressed as

[
0 1 −1 0 0 1 0 −1
1 0 0 −1 −1 0 1 0

]
(9)

In a biological process, mutations often occur [7]. A sto-
chastic transfer matrixΓ can be defined as follows to reflect
this phenomenon based on the above definitions (6) and (7).

Γ =




ρaa ρat ρag ρac

ρta ρtt ρtg ρtc

ρga ρgt ρgg ρgc

ρca ρct ρcg ρcc


 (10)

where ρij represents the probability of transformation from
DNA basei to j, wherei, j ∈ {a, t, g, c}. Obviously,ρia +
ρit + ρig + ρic = 1, ∀i ∈ {a, t, g, c}. ρii is the probability for
correct transformation.



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 4

The inner product (as the inner product in linear algebra)
of a DNA sequenceX can then be expressed asXT X, which
is a diagonal2 × 2 matrix. The first and the last elements in
the matrix represent the number of bases inX from the set
{A, T} or {G, C}, respectively.

Once a DNA sequence is converted into a numerical se-
quence, many interesting properties can be investigated. Next,
some theoretical results are presented.

B. Some theoretical results

By definition (1) and in viewing a DNA sequence as a vector
in the format of (9), the following results are obtained.

Proposition 2.1: If the base-by-base plus operation of
two equal-lengthed numerical value based DNA sequences
results in a zero vector, then the two DNA sequences are
complementary to each other.

Proof: Define vectorsX = [x1x2...xn]T and Y =
[y1y2...yn]T as the two DNA sequences. By the assumption
X + Y is equal to a zero vector, we can conclude that
xj = −yj , j = 1, ..., n, where xj , yj ∈ {1,−1, i,−i}. By
definition (1), the sequences are complementary to each other.

Proposition 2.2: If the base-by-base plus operation of all
numerical value based DNA sequences in different test tubes
results in a zero vector, then the hybridization by mixing the
test tubes should be complete. A complete hybridization means
all single-stranded DNA sequences find their complementaries.

Proposition 2.3: Under the definition (1), if the inner
product of two equal-lengthed sequences is not a real number,
then the two sequences are not complementary to each other.
It can be further claimed that they are not complementary in
G andC.

Proposition 2.4: Under the definition (1),∀X, Y ∈ Rn (n
represents the number of DNA bases in the strands), ifX and
Y have a complete hybridization andXT Y = 0, thenX and
Y have equal number of DNA bases from{G, C} and{A, T}.
Similarly, if a complete hybridization occurs, butXT Y > 0,
it means that there are more bases from{G,C} set than from
{A, T} set. Otherwise, if complete hybridization occurs, but
XT Y < 0, it means that there are more bases from{A, T}
set.

Proposition 2.5: Under the definition (1),∀X, Y ∈ Rn

(n represents number of DNA bases in the strands), we have
‖XT Y ‖ < ‖X‖‖Y ‖, where‖XT Y ‖ represents the length of
the DNA strand after hybridization.‖X‖ and ‖Y ‖ represent
the length of single-stranded DNA segments. If a complete
hybridization occurs,‖XT Y ‖ = n. If none of the bases is
hybridized, then‖XT Y ‖ = 2n. This relationship is similar to
the well-known Cauchy-Schwartz inequality in linear algebra.

To investigate properties under the above formulation (9) in
vector space, the following definitions are proposed.

Definition: Equivalent transfer matrices. Since each single
strand of a double-stranded DNA uniquely determines the
other strand, each single-stranded DNA can be alternatively
used to describe the same DNA double strand. Transfer
matrices of a single-stranded DNA and its complementary
are regarded as equivalent to each other. For example,Π1

in (8) is an equivalent transfer matrix ofΠ2 in (8) expressed

as Π1 ⇔ Π2, and vice versa. Two DNA sequences are
complementary to each other, if and only if their transfer
matrices are equivalent.

Note, two DNA transfer matrices are equivalent, if and only
if one matrix is the result of swapping column one with column
two, and column three with column four of the other matrix.

Proposition 2.6: If DNA transfer matricesA ⇔ B and
B ⇔ C, thenA is the same asC.

Definition: Similar DNA sequences. Two equal-lengthed
DNA sequences that have less than certain percent (usually
10% in practice) different bases in order are regarded as similar
sequences. The binding results for similar sequences may be
hard to be distinguished using current molecular techniques. It
is advised not to use similar sequences to code different words
in DNA computation.

Proposition 2.7: Necessary condition for similar se-
quences. Under the formulation (9), if two DNA sequences are
similar, then the sum of all columns of the transfer matrices
has numerical value variations less than a pre-defined percent
of the length of a single DNA sequence.

To code a DNA computation problem, it is critical that all
coding words are not similar to each other and they are not
complementary to each other. The above propositions can be
used to check similarities and complementary properties of
DNA sequences for DNA computation.

By the above formulation, the problem of DNA computation
can be regarded as the process of finding numerical value
based sequences, so that their base-by-base operations (hy-
bridization) results in a zero vector. To illustrate how the above
formulation may be used for DNA computation and other
related problems, an application section is given following the
discussion on genetic coding.

III. G ENETIC CODE BASEDDNA COMPUTATION

A. Background Information

DNA computation currently is too error-prone to achieve
its great potential. Many ideas of DNA computation assume
a zero error rate. In reality, errors appear at every stage.
In [2], [9], the problem of high error rates was identified
as the most challenging problem for the success of DNA
computation. High error resistant method is needed for DNA
computation. One open question is whether the error rates in
DNA manipulations can be adequately controlled [6], [10].
Some algorithms have been proposed to handle a few of the
apparently crippling errors. Paper [8] proposed a surface-based
DNA computation algorithm to solve the minimal set cover
problem. The technique decreases errors caused by potential
DNA strand lost by affixing the DNA onto a silicon surface.
In [5], a DNA computation model has been developed that uses
dynamic programming and large size of memory available to
DNA computers. The goal is to reduce error rates by increasing
DNA strands. A more thorough study of decreasing error
rates can be found in [6], where methods for making volume
decreasing algorithms (the number of strands decreases as the
algorithm executes) more resistant to certain types of errors are
proposed. One effort in the paper is to convert the decreasing
volume problem to a constant volume problem (the number



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 5

of strands remains the same throughout the computation). The
basic idea is to add DNA strand redundancy by increasing
solution volume. The technique requires to increase steps of
operations and cannot be applied to an algorithm that has
constant volume to begin with. The other effort proposed in
the paper is to reduce the false negative error rate in the
bead separation procedure by double encoding DNA bases.
The idea is to have each DNA-encoded base appear twice
in separate locations in the strand to increase the possibility
of being extracted. However, it is still not clear at present
stage whether error rates can be reduced sufficiently to allow
a general-purpose DNA computation.

Next, a genetic code based approach is proposed, which ap-
pears novel and promising in dealing with error rate reduction.
Another nice thing about the proposed approach is that it is
not limited to certain type of errors, which have been the cases
for most of the methods proposed in the open literature [4].
We start with analyzing the sources of errors.

As discussed earlier, two steps are usually involved in
solving a DNA computation problem. Errors usually comes
from the following three sources.

• DNA strand extraction. The operations are to remove
strands from a test tube containing a given DNA pattern.
In reality, only about95% of the strands matching the
pattern can be removed. Sometimes, strands that do not
match may be accidentally removed. Even with99%
successful extraction rate, the chance of getting a good
strand after multiple steps of extraction exponentially
decreases. If only one “solution” is in the test tube, it
is almost impossible to exactly extract the strand through
a couple of biological reactions and operations.

• Random errors. Random substitution, insertion, and dele-
tion errors may occur in DNA strands, which may lead
to wrong binding results.

• PCR errors. The polymerase enzymes do make mistakes
when they are synthesizing copies of DNA strands.

The above errors can be reduced by either designing high
error resistant coding approach or developing better molecular
techniques for later DNA strand extraction. To avoid difficulty
in reducing errors at later stages, a method to address the
problem at the early phase of DNA computation is preferred.
The proposed genetic code based approach targets early coding
stage of DNA computation.

B. Genetic code is highly error resistant

The genetic code is a triplet code based on three-letter
codons. The complete genetic code is shown in Fig. 2, where
the64 triplets stand for one or another of the20 amino acids,
and the stop codons.ATG coded for Methionine is the start
codon. Three of the codons,TAA, TAG, andTGA, are stop
codons. Clearly, a given amino acid may be encoded by more
than one codon, but a codon can code for only one amino acid.
It is called redundancy. The redundancy is not evenly divided
among amino acids. For example, Methionine and Tryptophan
are represented by only one codon each, where Leucine,
Arginine and Serine are represented by six different codons.
Mathematically, the triplet codon space can be regarded as

A C G T

A

C

G

T Ser

Thr

Ala

Arg

Gly Val

LeuPro

Ser

Stop

Tyr

Glu

Asp

His

Gln

Lys

Asn

Met

Iso

Cys

Leu

Phe

Arg

Stop

Trp

Arbitrary

third

letter

The Third Letter

Legend

G

A or C

or T

A

G

A or G

C or T

C or T

The Second Letter

T
h

e 
F

ir
st

 L
et

te
r

Fig. 2. Table of the genetic code. Each codon consists of three letters. For
all codons, the first and the second letters are important to define what the
codon represents for. For those squares without diagonal lines, it means that
the third letter does not matter. If a square has a diagonal line, the upper right
codon is represented by choosing the third letter as either T or C, and the
lower left codon can be represented with the third letter as either A or G.

the binary cartesian product or cartesian square on the set
{A,T,G,C}. As a nature evolution of life, we believe that the20
amino acids are the result of optimization. Chemical structures
of these molecules are unique for encoding information.

The genetic code provides the specificity for protein syn-
thesis. The genetic information in an mRNA molecule can be
regarded as a series of non-overlapping three-letter “words.”
Each sequence of the three nucleotides along the chain speci-
fies a particular amino acid. Each codon is complementary to
the corresponding triplet in the DNA molecule from which it
is transcribed [12].

The genetic code has great quality assurance, because of its
redundancy. Some degree of mis-binding results in no change
in the coding words. These mis-binded bases are called silent
or synonymous errors, which are not expressed in protein
expression. Similar to silence mutations in cells, the silent
or synonymous errors are quite common, and lead to genetic
diversity that is not expressed as phenotype differences.

From a mathematical point of view, the genetic coding
system is an optimal solution for encoding communication
signals. Since there are only four base letters (A,T,G,C), a one-
letter code clearly cannot unambiguously encode20 amino
acids. A two-letter code could only define4 × 4 = 16
codons – still not enough. But a triplet code could encode
up to 4 × 4 × 4 = 64 codons. It seems that it has enough
redundancies for errors during transcriptions and translation.
It is not necessary for four-letter codes, which could include
4× 4× 4× 4 = 256 codons for20 amino acids.

If a DNA computation problem is coded using redundant
genetic codes, the code will be highly error resistant and the
error rates will be low. Different from biological systems that
are highly diverging and require a large set of DNA codons to
code various genetic information, the set of “codons” for DNA
computation will be small. To take advantage of chemical
properties of the molecular structures and obtain a reduced
set of “codons” (called coding set for DNA computation),
we will reduce the regular codons of biological systems to



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 6

A C G T

A

C

G

T Code 7

Code 4

Code 5

Stop

Arbitrary

third letter

The Third Letter

Legend

A or G

T or C

The Second Letter
T

h
e 

F
ir

st
 L

et
te

r

Code 7

Code 5Code 6

Code 6 Code 1

Code 1

Code 3

Code 3

Code 2

Code 2

Stop

Start

Start

Code 4

Fig. 3. Coding set for DNA computation

obtain smaller coding sets. One additional concern is that all
coding sets should be closed, i.e., elements of a coding set
and their complementaries (anti-codon) are within the same
coding set. This is based on the concern that DNA computation
does not use the same mechanism as biological systems for
recognizing DNA strands. We expect to have a robust coding
system. Second, the triple code mechanism will still be used.
Since there may be biochemistry and stability reasons for the
triple codes, though it is not completely clear at the present
time.

Based on the above discussions, the following coding sets
are obtained as shown in Fig. 3.
• Start coding set: ATG, ATA, TAC, or TAT.
• Coding set1: GAA, GAG, GAT, GAC, CTT, CTC, CTA,

or CTG.
• Coding set2: CAA, CAG, CAT, CAC, GTT, GTC, GTA,

or GTG.
• Coding set3: AAA, AAG, AAC, AAT, TTT, TTC, TTG,

or TTA.
• Coding set4: ACC, ACA, ACG, ACT, TGG, TGT, TGC,

or TGA.
• Coding set5: CCT, CCC, CCA, CCG, GGA, GGG, GGT,

or GGC.
• Coding set6: GCT, GCC, GCA, GCG, CGA, CGG, CGT,

or CGC.
• Coding set7: TCT, TCC, TCA, TCG, AGT, AGC, AGA,

or AGG.
• Stop coding set: TAA, TAG, ATT, or ATC.
It can be easily verified that all the above coding sets are

closed with respect to the DNA complementary operation. In
addition, the above coding scheme allows significant amount
of overlapping, which leads to high error resistance. The
coding sets are enough to code significantly large problems
by varying the length of wording. By coding this way, many
DNA base mutations may not cause changes in word meaning
for DNA computation.

C. Genetic Code Based DNA Computation to Solve the Hamil-
tonian Path Problem (HPP)

The HPP problem is to find (if there is) a Hamiltonian
path for a given graph. A Hamiltonian path is a sequence of

compatible one-way edges of a directed graph that begins and
ends at a specified vertex and enters every other vertex exactly
once. Known algorithms for this problem have exponential
worst-case complexity. The problem has been proved to be
NP-complete.

Assume that the graph hasn > 0 vertices (cities) andi
is the index of a vertex [2]. The following steps are usually
followed.

1) Associate the start vertexi = 1 with one code (three
bases) from the start coding set. Associate the end vertex
i = n with a code from the stop coding set. For the
convenience of later sequence extraction, it is preferred
to have all edges coded with equal length. So only the
first three DNA bases are needed for the start and end
cities. To match the sequence length requirements for
each vertex, fill in the rest sequences with random DNA
bases.

2) Associate each of the other verticesi (1 < i < n)
with a 3m-mer sequence generated bym codes (usually
an even number to keep the left and right side edges
of a city with equal length), and denote it byOi. For
each edgei → j, an oligonucleotideOi→j is created,
which is the 3’ 3m/2-mer of Oi followed by the 5’
3m/2-mer of Oj . This construction process preserves
edge orientation. ThēOi serves as splints to bring oligo-
nucleotides associated with compatible edges together
for ligation.

3) Keep only those paths that begin with codes from the
start coding set, and end with codes from the stop coding
set. This can be done by PCR amplifying products of
the Step1) using primers starting with codes from the
start coding set or the stop coding set. Thus only those
molecules encoding paths, which begin with vertex1
and end with vertexn, are amplified.

4) Keep only those paths that enter exactlyn vertices. The
product of Step2) is run on an agarose gel and the
3m base pair band (corresponding to dsDNA encoding
paths entering exactlyn vertexes) is excised and soaked
to extract DNA.

5) Keep only those paths that enter all vertices of the
graph exactly once. To achieve this by affinity purify the
product of Step4) using a biotin-avidin magnetic beads
system. This can be done by first generating single-
stranded DNA sequences from the dsDNA product of
Step4) and then incubating the ssDNA with̄O2 conju-
gated to magnetic beads. Only those ssDNA molecules
containingO2 (and hence encoded paths which enter
vertex2 at least once) anneal to the boundŌ2 and were
retained. The process repeat successively withŌ3, Ō4,
..., Ōn−1 and Ōn.

6) The remaining DNA sequences (paths) in the test tube
represent solutions.

To further illustrate the idea, consider ann = 7 vertex HPP
graph as given in [2], we use12 DNA bases (4 codes from
the coding sets) to uniquely code each of the7 cities. The
following is one possibility.

• City 1: code the start city with ATG plus three additional



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 7

City 1: start

City 7: end

City 2

City 3

City 4

City 5

City 6

ATGTAC
(start+3 random bases)

TAGATC
(stop+3 random bases)

GAACAG

AAATGC

CAATTC
ACAGGA

CCTGCT

GTCAGC

GCATCG

CTATTC

TCTCTG

CTAACG

Fig. 4. Coding for the seven cities of the HPP problem

DNA bases to match the length requirements. Only the
first three bases are used to identify the city. We choose
ATGTAC here.

• City 2: one edge is coded by GAACAG. Theoretically,
any pair of codes from the coding set1 and the coding
set 2 can be used. The other edge is coded by any pair
from the coding set3 and the coding set4. AAATGC is
used here.

• City 3: one edge is coded by any pair of codes from the
coding set2 and the coding set3. We choose CAATTC.
The other edge is coded by any pair from the coding set
4 and the coding set5, such as ACAGGA.

• City 4: one edge is coded by any pair of codes from a
pair of the coding set5 and the coding set6. CCTGCT
is used here. The other edge is coded by any pair from
the coding set7 and the coding set1, such as TCTCTG.

• City 5: one edge is coded by any pair of codes from the
coding set6 and the coding set7. GCATCG is used here.
The other edge is coded by any pair of codes from the
coding set1 and the coding set3, such as CTATTC.

• City 6: one edge is coded by any pair of codes from the
coding set2 and the coding set7. GTCAGC is chosen
here. The other edge is coded by any pair from the coding
set1 and the coding set4, such as CTAACG.

• City 7: code the end city with TAG, plus three random
DNA bases to match the length requirement. Only the
first three DNA bases will be used to identify the city.
We choose TAGATC.

Fig. 4 shows the final coding graph for each edge and
vertex. The next step is to apply DNA molecular techniques
to obtain biological solutions. The above coding approach
does not affect any of these operations. Similar to the work
in [2], same conclusion will be obtained. Compared with the
brute-force approach used for solving HPP problem in [2],
the proposed approach can save40% of the coding characters,
which will eventually speed up the problem solving time. More
importantly, the proposed approach has a much lower error
rate.

D. Computation Formulation

Through the above genetic coding, it is expected that the
error rates can be reduced. To demonstrate the idea, assume
that the following stochastic transfer matrix of DNA sequences

are held for DNA bases{A, T, G, C}.

Γ =




0.9990 0.0003 0.0004 0.0003
0.0003 0.9990 0.0003 0.0004
0.0004 0.0003 0.9990 0.0003
0.0003 0.0004 0.0003 0.9990


 (11)

After one transformation, a DNA sequenceX = GATCAG
coded by codons from the coding sets1 and2 can be expressed
in numerical values as

Γ1 =




0.0004 0.0003 0.9990 0.0003
0.9990 0.0003 0.0004 0.0003
0.0003 0.9990 0.0003 0.0004
0.0003 0.0004 0.0003 0.9990
0.9990 0.0003 0.0004 0.0003
0.0004 0.0003 0.9990 0.0003




(12)

where each element shows the probability that the correspond-
ing base is obtained after molecular manipulation.

It can be concluded that the original sequenceX =
GATCAG is still preserved very well. After about1000 trans-
formations, the sequence turns to be ambiguous as follows.

Γ2 =




0.2021 0.1748 0.4484 0.1748
0.4484 0.1748 0.2021 0.1748
0.1748 0.4484 0.1748 0.2021
0.1748 0.2021 0.1748 0.4484
0.4484 0.1748 0.2021 0.1748
0.2021 0.1748 0.4484 0.1748




(13)

It seems that the original sequence may be turned into a
different format. However, by following the proposed coding
scheme, the original word coded inX is still well preserved.
This is because of the redundancy of the coding scheme. There
are8× 8 = 64 different combinations of codings for the six-
base DNA sequenceX, and they are all coded for the same
word. Even mutation occurs after multiple transformations,
the original information remains intact. This is the beauty of
the genetic coding based method. However, if a brute force
fixed length coding approach is used, i.e., each combination
represents one scheme only, the original coding meaning
cannot still be kept intact. If any other redundancy coding
approach that has less than64 combinations to represent one
coding scheme is used, the proposed genetic coding scheme
still performs the best.

Similarly, the HPP can be programmed and described at the
test tube level as:

• Input Ti(X), i ∈ N , which contains DNA segments
encoding all the cities.

• Amplification: ×Ti, (i ∈ N ) generate new large sets of
DNA sequences representing all different cities.

• Mergence: mixT1 ∪T2 to generate new test tubeT . The
process finds connections between different cities.

• Separation:−(T, X) separating strandX from the test
tube T , where X is a DNA strand of length84 and
connecting edges of all cities.

• Detection:T?X to find final DNA strandX representing
pathes connecting all cities exact once.

The problem can be programmed and described at DNA
strand level as:



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 8

• For a city coded byXiYi, i ∈ N , hybridization may lead
to (XiX̄i)(YiȲi). The process can be described asXiYi•
X̄iȲi → (XiX̄i)(YiȲi).

• Ligation may happen during the process.
Ȳi−1(XiX̄i)(YiȲi)Ȳi+1 + Xi−1Yi−1 →
[Xi−1(Yi−1Ȳi−1)(XiX̄i)(YiȲi)Ȳi+1].

IV. A PPLICATIONS

The above mathematical formulation of DNA computation
may be used in the following applications.

A. Word design for DNA computation

In DNA computation, to reliably store and retrieve in-
formation in synthetic DNA strands, DNA word design is
very important. DNA word design is to design sets of equal-
lengthed words over the alphabet{A, T,G, C} satisfying
certain constraints. The primary constraint is∀X, Y ∈ {DNA
words}. There are at leastd mismatches betweenX and Y ,
and betweenXR and Ȳ , whereXR represents the reverse of
X [11].

Based on the above formulation, the word design problem
is equivalent to the following mathematical problem: choosing
X andY sequences from characters{A, T, G,C}, so that the
number of non-zero bases from the base-by-base operation of
f(X) plus f(Y ), andf(XR) plus f(Ȳ ) are greater or equal
to d. Based on the above discussion, the solvability of the
problem and the upper and lower bounds of DNA word design
can be answered [6].

B. Natural DNA processing

The above formulation may also be used to process natural
DNA for sequencing, fingerprinting and mutation detection.
The idea is to first convert character-based DNA sequences
into numerical sequences, then apply numerical computation
techniques.

An example is multiple DNA sequence alignment. The pro-
posed mathematical formulation may save significant amount
of machine time, if the sequences are expressed and compared
in the numerical domain.

For example, to detect long DNA sequence mutations as
shown in equation (14), the proposed method can be applied
first to convert the character-based sequences into numerical
sequences as shown in (15). A numerical minus operation
can then be conducted. If the final result is non-zero, this
implies that there is mutation. The comparison is efficient
by avoiding tedious character-based side-by-side comparison.
This is called re-coding DNA. As pointed in [13], the re-
coding has great potential application for DNA engineering
applications. The formulation proposed in this paper provides
an ideal mechanism for the re-coding process.

ATTCCAGA · · ·GACCTTGAGT
ATTCCATA · · ·GACCTCGAGT

(14)

03311020 · · · 2011332023
03311030 · · · 2011312023 (15)

where “· · · ” may represent thousands or millions of DNA
bases.

C. Combinatorial chemistry

The mathematical formulation may also be used in com-
binatorial chemistry for pseudo-enzyme design [4]. The goal
is to create molecules with desired properties, which may be
difficult or expensive by direct experimental studies. With the
above mathematical formulation, the molecule design process
can be done in a numerical simulation mode. The beauty
of this approach is that the tedious and expensive pseudo-
molecule experimental design process may be avoided.

It is also interesting to note that most advanced numerical
operations for conventional computers require combinations of
a number of basic silicon computer operations. However, they
may be completed by much less operations using DNA com-
putation as shown in the mathematical operations. The above
symbolic operation may be used for algorithm implementation
in DNA computation.

V. D ISCUSSION ANDCONCLUSIONS

A mathematical formulation of DNA computation has been
proposed in this paper. Propositions related to the formulation
have also been presented. Even though DNA computation is
still an open problem for practical implementation, numerous
studies have suggested that it is an interesting field for fast
computation of large NP-complete problems.

Currently, the high error rate is a major concern for DNA
computation. This paper proposes a genetic code based DNA
computation method to reduce the error rate. The idea is
inspired by the genetic code of biological systems, except
that the codon sets have been reduced for DNA computation.
Redundancy in the genetic codes plays an important role in
reducing error rates. Different from many methods proposed in
the open literature [6], the proposed method does not require
any additional bio-molecular techniques or steps, and it is
not limited to any specific type of errors, which is a great
advantage compared with other methods in the open literature.

In addition, the formulation can easily convert a character-
based DNA computation problem into a numerical value
based computing problem. This will allow researchers to
build theoretical framework for DNA computation, and an-
alyze algorithmic as well as computational efficiency of DNA
computation. Some potential problems may be further studied
within the proposed mathematical framework, such as how
can we increase DNA computational efficiency? what is the
ultimate limit of the error-rate for DNA computation using
genetic coding? what are the solvability and the upper or lower
bounds for the DNA word design?

We may also easily conclude from the formulation that
DNA computation is very fast. This is partially due to many
fundamental operations, such as plus, minus, multiplication,
division, and set operations are single step operations, which
are much faster than conventional silicon computation.

The goal of this paper is to start a discussion on mathemat-
ical formulations of DNA computation. The formulation may
be further used to understand the theoretical aspects of DNA
computation, and be used for natural DNA processing as well
as pseudo-enzyme design for combinatorial chemistry. The
proposed genetic code based DNA computation demonstrates



IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, 2006 9

promising potential to reduce high reduce error rates. However,
this paper is in no way a complete mathematical subject on
DNA computation. We hope more discussions can be inspired
in that regard.

ACKNOWLEDGMENT

The authors would like to thank the reviewers’ constructive
comments and excellent suggestions to bring the paper into
current format.

REFERENCES

[1] J. Adams. On the Application of DNA Based Computation.
http://publish.uwo.ca/ jadams/dnaapps1.htm, 1998.

[2] L. Adleman, Molecular Computation of Solutions to Combinatorial
Problems,Science, vol.266, pp. 1021-1024, Nov. 1994.

[3] L. Adleman, On Constructing A Molecular Computer,DNA Based
Computers, Eds. R. Lipton and E. Baum, DIMACS: series in Discrete
Mathematics and Theoretical Computer Science, American Mathematical
Society, pp. 1-21, 1996.

[4] D. Bartel, and J. Szostak, Isolation of new ribozymes from a large pool
of random sequences.Science, vol. 261, pp. 1411-1418, September 1991.

[5] E. Baum, and D. Boneh, Running dynamic programming algorithms on
a DNA computer.the 2nd DIMACS workshop on DNA based computers,
pp. 141-147, 1996.

[6] D. Boneh, and R. Lipton, Making DNA computers error resistant.
Technical report, Princetion University, CS-TR-491-495, 1996.

[7] R. Durrett, Probability models for DNA sequence evolution.New York :
Springer, 2002.

[8] T. Eng, and B. Serridge, A Surface-Based DNA Algorithm for Minimal
Set Cover.the 3rd DIMACS workshop on DNA based computers, pp.
74-82, June 1997.

[9] R. Lipton, Using DNA to solve NP-Complete Problem.Science, vol. 268,
pp. 542-545, April 1995.

[10] C. C. Maley, DNA computation: theory, practice, and prospects,Evolu-
tionary computation, vol. 6, no. 3, pp. 201-229, 1998.

[11] A. Marathe, A. E. Condon, and R. M. Corn, On combinatorial DNA
word design,J. Computational Biology, vol. 8, no. 3, pp. 201-220, 2001.

[12] W. K. Purves, D. Sadava, G. H. Orians and H. C. Heller. Life: the
science of biology,Sinauer Associates, Inc., 6th edition, 1994.

[13] J. H. Reif. Paradigms for Biomolecular Computation,Unconventional
Models of Computation, edited by C. S. Calude, J. Casti, and M. J.
Dinneen, Springer-Verlag, New York, January 1998, pp 72-93.

[14] P. W. K. Rothemund. A DNA and restriction enzyme implementation
of Turing machines. In R. J. Lipton & E. B. Baum (Eds.), DNA Based
Computers, pp. 1-22, Providence, RI: American Mathematical Society,
1996.

Mingjun Zhang (S’98-M’01) received the D.Sc.
degree from Washington University in St. Louis,
USA in 2000. Since 2001, he has been with the Life
Sciences and Chemical Analysis Division of Agi-
lent Technologies, USA. He was awarded the Early
Career Award (Industry) by the IEEE Robotics and
Automation Society in 2003. Currently, he serves
as an Associate Editor for the IEEE Transactions
on Automation Science and Engineering, and is on
the Editorial Board of the Journal of Nanomedi-
cine: Nanotechnology, Biology and Medicine. His

research interests include DNA nanotechnology, micro-/nano-scale system
dynamics and control, and automation for the life sciences.

Maggie Cheng (M’03) received her Ph.D in Com-
puter Science and Engineering from the University
of Minnesota at the Twin Cities in 2003. She is
currently an assistant professor at the Computer
Science Department in the University of Missouri,
Rolla. Her current research interests include wireless
networking and mobile computing, sensor networks,
network security, theory of computing, and combi-
natorial optimization. She is a member of the IEEE.

Tzyh-Jong Tarn (M’71-M’83-F’85) received the
D.Sc. degree in control system engineering from
Washington University in St. Louis, USA. Currently,
he is a Professor in the Department of Electrical
and Systems Engineering and the Director of the
Center for Robotics and Automation at Washington
University. He served as the President of the IEEE
Robotics and Automation Society from 1992 to
1993, the Director of the IEEE Division X, from
1995 to 1996, and was a member of the IEEE Board
of Directors, from 1995 to 1996. At present, he

serves as the Vice President for Conferences of the IEEE Robotics and
Automation Society. He received the NASA Certificate of Recognition for
the creative development of a technical innovation on “Robot Arm Dynamic
Control by Computer” in 1987. The Japan Foundation for the Promotion
of Advanced Automation Technology presented him with the Best Research
Article Award in March 1994. He also received the Best Paper Award
at the 1995 IEEE/RSJ International Conference on Intelligent Robots and
Systems. He is the first recipient of both the Nakamura Prize and the Ford
Motor Company best paper award at the Japan/USA Symposium on Flexible
Automation in 1998. In addition, he is the recipient of the prestigious Joseph
F. Engelberger Award of the Robotic Industries Association in 1999, the Auto
Soft Lifetime Achievement Award in 2000 and the Pioneer in Robotics and
Automation Award in 2003 from the IEEE Robotics and Automation Society.
He was featured in the Special Report on Engineering of the 1998 Best
Graduate School issue of US News and World Report and his recent research
accomplishments were reported in the “Washington Times”, Washington D.C.,
the “Financial Times”, London, “Le Monde”, Paris, and the ”Chicago Sun-
Times”, Chicago, etc.


	A Mathematical Formulation of DNA Computation
	Recommended Citation

	A mathematical formulation of DNA computation IEEE Transactions on Nanobioscience

