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The cellular learning automata, which is a combination of cellular automata, and learn-

ing automata, is a new recently introduced model. This model is superior to cellular

automata because of its ability to learn and is also superior to a single learning automa-

ton because it is a collection of learning automata which can interact with each other.

The basic idea of cellular learning automata, which is a subclass of stochastic cellular

learning automata, is to use the learning automata to adjust the state transition prob-

ability of stochastic cellular automata. In this paper, we first provide a mathematical

framework for cellular learning automata and then study its convergence behavior. It is

shown that for a class of rules, called commutative rules, the cellular learning automata

converges to a stable and compatible configuration. The numerical results also confirm

the theoretical investigations.

Keywords: Cellular learning automata; cellular automata; learning automata; intercon-
nected automata.

1. Introduction

Decentralization is a common feature of natural and man-made systems in which,

due to large spatial separation of decision makers or limited bandwidth of commu-

nication channels, complete information exchange may not be feasible. The decision

makers in such a system can gather limited information about each other and the

overall system. Hence, the decisions must be made by individual decision makers

that have access to partial information regarding the state of the system. Decen-

tralization, by nature, introduces uncertainty into the decision process.
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In addition to spatial separation of the system and incomplete information

exchange, uncertainties regarding system parameters, control actions taken by

other decision makers and external events increase the complexity of decentral-

ized systems. Even in the absence of these uncertainties it is well known that the

coordination of decentralized decision makers is a formidable problem.

Adaptation (learning) in the decision process overcomes the introduced uncer-

tainty. By using learning, the different decentralized decision makers used in the

system attempt to converge to their optimal strategies by improving their perfor-

mance onIine, based upon the response of the overall system. Hence, learning can

be considered as a critical part for decision makers that have access to the partial

information. A subclass of such systems, which are modeled using cellular automata

(CA), use information exchange with neighborhood decision makers.

Cellular automata are mathematical models for systems consisting of large

numbers of simple identical components with local interactions. CA are non-linear

dynamical systems in which space and time are discrete. It is called cellular because

it is made up cells like points in a lattice or like squares of checker boards, and it

is called automata because it follows a simple rule [6].The simple components act

together to produce complicated patterns of behavior. Cellular automata perform

complex computations with a high degree of efficiency and robustness. They are

especially suitable for modeling natural systems that can be described as massive

collections of simple objects interacting locally with each other [19,25]. Informally,
a d-dimensional CA consists of an infinite d-dimensional lattice of identical cells.

Each cell can assume a state from a finite set of states. The cells update their states

synchronously on discrete steps according to a local rule. The new state of each cell

depends on the previous states of a set of cells, including the cell itself, and con-

stitutes its neighborhood [7]. The state of all cells in the lattice are described by

a configuration. A configuration can be described as the state of the whole lattice.

The rule and the initial configuration of the CA specifies the evolution of CA that

tells how each configuration is changed in one step. Formally, a CA can be defined
as follows:

Definition 1. A d-dimensional cellular automata is a structure A = (Zd, <P,N,F),
where

(i) Zd is a lattice of d-tuples of integer numbers. Each cell in the d-dimensional

lattice, Zd, is represented by a d-tuple (Zl, Z2,..., Zd).

(ii) <P= {I, . . . , m} is a finite set of states.

(Hi) N = {Xl,X2,... ,xm} is a finite subset of Zd called the neighborhood vector,

where Xi E Zd. The neighborhood vector determines the relative position of the

neighboring lattice cells from any given cell u in the lattice Zd. The neighbors

of a particular cell u are the set of cells {u + Xi li = 1,2,.. . ,in}.We assume

that there exists a neighborhood function N(u) that maps a cell u to the set

of its neighbors, that is

N(u) = (U+Xl,U+X2,...,U+xm). (1)
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(a.) The von Neuman neighborhood

Fig. 1. The von Neuman and Moore neighborhoods.

(b) The Moore neighborhood

For the sake of simplicity, we assume that the first element of the neighborhood

vector (Le. Xl) is equal to d-tuple (0,0,. ..,0) or equivalently u + Xl = u. The
neighborhood function N(u) must satisfy the following two conditions:

- u E N (u) for all u E Zd.

- UI E N(U2) {::}U2 E N(UI) for all UI,U2 E Zd.

For example, the neighborhood vectors NuN = {(O,0), (1,0), (0, 1), (-1,0),

(O,-I)} as shown in Fig. I(a) and NM = {(O,O),(I,O),(O,I),(-I,O),(O,-I),

(-1, -1), (-1,1), (1, -1), (1, I)} as shown in Fig. I(b) are called von Neuman

and Moore neighborhoods, respectively.

(iv) F: <I>m-+ <I>is the local rule of the cellular automata. It computes the new

state for each cell from the current states of its neighbors.

Learning in the learning automata (LA) has been studied using the paradigm

of an automaton operating in an unknown random environment. In a simple form,

the automaton has a finite set of actions to choose from and at each stage, its

choice (action) depends upon its action probability vector. For each action chosen

by the automaton, the environment gives a reinforcement signal with fixed unknown

probability distribution. The automaton then updates its action probability vector

depending upon the reinforcement signal at that stage, and evolves to the some final

desired behavior. A class of learning automata is called variable structure learning

automata and are represented by triple ((3,Ci.,T), where (3 is a set of inputs, Ci.is

a set of actions, and T is a learning algorithm [21]. The learning algorithm is a

recurrence relation and is used to modify the action probability vector E. Various
learning algorithms have been reported in the literature. In what follows, two learn-

ing algorithms for updating the action probability vector are given. Let Ci.ibe the

action chosen at time k as a sample realization from probability distribution p(k).

In the linear reward-€penalty algorithm (LR-eP) scheme the recurrence equation

for updating p is defined as

if i = j,

if i :1=j,
(2)

(-1,0)

(0, -1) (0,0) (0,1)

(1,0)

(-1, -1) (-1, 0) (-1, 1)

(0, -1) (0,0) (0,1)

(1, -1) (1,0) (1,1)
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when j3(k) = 0 and

{

pj(k) x (1 - b) if i = j,

pj(k + 1) = ...1! + p.(k)(I- b) if i =F j,r-l 3
(3)

when j3(k) = 1. Parameters 0 < b « a < 1 represent step lengths and r is the

number of actions for LA. The a(b) determines the amount of increase (decrease)

of the action probabilities. If a = b, then the recurrence equations (2) and (3)

are called the linear reward penalty (LR-P) algorithm and if b = 0, then the

recurrence equations (2) and (3) are called the linear reward inaction (LR-I)

algorithm. LA have been used successfully in many applications such as telephone

and data network routing [26],solving NP-Complete problems [23],capacity assign-

ment [24], neural network engineering [12,13], and cellular networks [1,2,4,5],
to mention a few.

Automata are, by design, "simple agents for doing simple things." The full

potential of an LA is realized when multiple automata interact with each other.

Interaction may assume different forms such as a tree, mesh, array, etc. Depend-

ing on the problem that needs to be solved, one of these structures for interac-

tion may be chosen. In most applications, full interaction between all LA is not

necessary and is not natural. Local interaction of LA, which can be defined in

the form of a graph such as a tree, mesh, or array, is natural in many applica-

tions. On the other hand, CA are mathematical models for systems consisting

of large numbers of simple identical components with local interactions. In this

paper, we combine the CA and LA to obtain a new model called cellular learn-

ing automata (CLA). This model is superior to CA because of its ability to learn

and also is superior to single LA because it is a collection of LA which can inter-

act with each other. The basic idea of CLA, which is a subclass of stochastic CA,

is to use learning automata to adjust the state transition probability of stochas-

tic CA. The CLA can be classified into synchronous and asynchronous. In syn-

chronous CLA, all cells are synchronized with a global clock and executed at the

same time. In Ref. 10, an asynchronous CLA with several LA in each cell is given

and used as an adaptive controller. In this model, the state space of the system

under control is uniformly discretized into cells. The actions of each LA corre-

spond to discritized values of the corresponding control variable. Based on the

state of the system (So) one cell in the CLA is activated. Every LA of the acti-

vated cell chooses an action based on its action probability vector. These actions

are applied to the system and the state of the system is changed from So to SI.

The environment then passes a reinforcement signal to the LA of the activated

cell. Depending on this signal, LA in the activated cell and its neighboring cells

update their action probability vectors. This process continues until the termina-

tion state is reached. In Ref. 14, a model of synchronous CLA has been proposed

in which each cell can hold one LA. The CLA have been used in many appli-

cations such as image processing [8,9,14,16], rumor diffusion [18], modeling of
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commerce networks [16], channel assignment in cellular networks [3], and VLSI

placement [1].

Since the introduction of CLA, it has been used in a number of applications

but no mathematical framework for studying its behavior has been developed yet.

Having a mathematical framework for CLA enables us to investigate the charac-

teristics of this model deeper, which may help us to find more applications. Having

such a mathematical framework also makes it possible to study the previous appli-

cations more rigorously and develop better CLA based algorithms for these appli-

cations. In this paper, we develop a mathematical framework to study the behavior

of the CLA and investigate its convergence properties. It is shown that for class

rules, which will be called commutative rules, the CLA converges to a globally
stable state.

The rest of this paper is organized as follows. In Sec. 2, the CLA is presented.

Section 4 studies the behavior of the cellular learning automata and Sec. 5 stud-

ies the behavior of cellular learning automata when commutative rules are used.

Section 5 presents a numerical example, and Sec. 6 concludes the paper.

2. Cellular Learning Automata

Cellular learning automata (CLA) (Fig. 2) is a mathematical model for dynamical

complex systems that consists of a large number of simple components. The simple

components, which have learning capability, act together to produce complicated

behavioral patterns. A CLA is a CA in which a learning automaton is assigned

to every cell. The learning automaton residing in a particular cell determines its

CtA

Fig. 2. Cellular learning automata.
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state (action) on the basis of its action probability vector. Like CA, there is a

rule that the CLA operate under. The rule of the CLA and the actions selected

by the neighboring LAs of any particular LA determine the reinforcement signal

to the LA residing in a cell. The neighboring LAs of any particular LA constitute

the local environment of that cell. The local environment of a cell is nonstationary

because the action probability vectors of the neighboring LAs vary during evolution
of the CLA.

The operation of the CLA can be described as follows: At the first step, the

internal state of a cell is specified. The state of every cell is determined on the basis

of the action probability vectors of the LA residing in that cell. The initial value

of this state may be chosen on the basis of the past experience or at random. In

the second step, the rule of the CLA determines the reinforcement signal to the

LA residing in the cell. Finally, each LA updates its action probability vector on

the basis of the supplied reinforcement signal and the chosen action by the cell.

This process continues until the desired result is obtained. Ad-dimensional CLA is

formally defined below.

Definition 2. A d-dimensional cellular learning automata is a structure A =
(Zd,iP,A,N,F), where

(i) Zd is a lattice of d-tuples of integer numbers.

(ii) 2 is a finite set of states.

(iii) A is the set of LA each of which is assigned to one cell of the CLA.

(iv) N = {Xl,X2,. . . ,Xm} is a finite subset of Zd calledneighborhoodvector, where
Xi E zd.

(v) F: 2171.--+!!..is the local rule of the cellular learning automata, where!!..is the set

of values that the reinforcement signal can take. It computes the reinforcement

signal for each LA based on the actions selected by the neighboring LA.

In what follows, we consider CLA with n cells and the neighborhood function

N(i). The learning automaton, Ai, which has a finite action set Qi, is associated

to cell i (for i = 1,..., n) of the CLA. Let the cardinality of Qi be mi' The state

of the CLA represented by E = ~~'E;'''''E~)'' whereEi = (Pil,''',Pim;)' is the
action probability vector of Ai.

The operation of the CLA takes place as the following iterations. At iteration

k, each learning automaton chooses an action. Let ai E Qi be the action chosen

by Ai. Then all learning automata receive a reinforcement signal. Let (3i E!!..be the
reinforcement signal received by Ai, This reinforcement signal is produced by the

application of local rule P (aiHl , aiH2' . . . , aiH...) --+!!...The higher value of (3i

means that the chosen action of Ai will receive a higher reward. Since each set Qi is

finite, rule P (ai+Xl' ai+x2 , . . . , ai+Xm) --+!!..can be represented by a hyper matrix
of dimensions ml x m2 x ... x mm. These n hyper matrices constitute what we call

the rule of the CLA. When all of these n hyper matrices are equal, the CLA is called

uniform; otherwise it is called nonuniform. For the sake of simplicity in presentation,
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the rule P (ai+xl , ai+x2' . . . , ai+Xrn) is denoted by P (a1, a2, . . . , am). Based on

the nature of the set f!.., the CLA can be classified into three groups: P-model,

Q-model, and S-model CLA. When f!..= {O,I}, we refer to CLA as P-model CLA,

when f!..= {b1,..., bl}, (for l < 00), we refer to CLA as Q-model CLA, and when

f!..= [b1,b2],we refer to CLA as S-model CLA. If learning automaton Ai uses learning

algorithm Li, we denote CLA by CLA(L1,"', Ln). If Li = L for all i = 1,..., n,
then wedenotethe CLAby CLA(L).

2.1. Definitions and notations

In this section, we first give some definitions and derive some preliminary results

used later in this paper for the analysis of the CLA.

Definition 3. A configuration of the CLA at stage k is denoted by '!!.(k) =
{'f!.~(k), '!!.;(k), ... ''!!.~(k))', where '!!.i(k) is the action probability vector of learning
automaton Ai.

Definition 4. A configuration'!!.is calleddeterministic if the action probabilityvec-

tor of each learning automaton is a unit vector; otherwise it is called probabilistic.

Hence, the set of all deterministic configurations, lC*, and the set of probabilistic

configurations, lC, in CLA are

lC*= {'!!.I'!!.= {'f!.~,'!!.;,. .. ''!!.~)', '!!.i= (Pil,... ,Pim;)',

Piy = 0 or 1 Vy, i, LPiY = 1 Vi}y

and

lC = {'!!.I'!!.= {'f!.~,'!!.;,... ''!!.~)', '!!.i= (Pi1,... ,PimJ',

0:::; Piy :::;1 V y, i, LPiY = 1 Vi}:y

respectively.

In the following lemma, it is shown that lC is a convex hull of lC*.

Lemma 1. lC is the convex hull of lC*.

Proof. Let M = Ei mi and §.k be a unit vector of appropriate dimension in the

kth direction. Then any configuration'!!. E lC can be expressed by

mil mi2 min

'!!. = L 2: ...2: ((Plil§.il)' (P2i2§.iJ,.. . , (Pnin§.iJ) .
il=1i2=1 in=1

(4)

Since each M-vector (§.i1'§.i2' .. . , §.iJ is in lC*, then the aoove sum can be inter-

preted as a convex combination of the elements of lC*. 0



302 H. Beigy and M. R. Meybodi

The application of the local rule to every cell allows transforming a configuration

to a new one.

Definition 5. The global behavior of a CLA is a mapping Q: /C- /C that describes

the dynamics of the CLA.

Definition 6. The evolution of the CLA from a given initial configurationp"(O) E /C

is a sequence of configurations {p"(k)h~o, such that p"(k + 1) = Q~(k)).

Definition 7. The average reward for action r of automaton Ai for configuration

p..E /C is defined as

dir~)=L..'L.P(r'Y2'.'.,Ym) II Ply"
leR(;)

I,.;

(5)

Y2 YiR

and the average reward for learning automaton Ai is defined as

(6)
r

The above definition implies that if the learning automaton Aj is not a neigh-

boring learning automaton for Ai, then dir(P) does not depend on p..- -J

Definition 8. A configurationp.. E /C is compatible if

L dir~)Pir ;:::L dir~)qir (7)
r r

for all configurations 9. E /C and all cells i. The configuration p..E /C is said to be

fully compatible, if the above inequalities are strict.

The compatibility of a configuration implies that no learning automaton in CLA

have any reason to change its action.

Definition 9. The total average reward for the CLA at configuration p..E /Cis the

sum of the average rewards for all the learning automata in the CLA, that is,

(8)

Lemma 2. The CLA has at least one compatible configuration.

Proof. Let 7/Jir~) = dir~) - Di~) and <Pir~)= max{7/Jir~), O} for i = 1,..., n
and r = 1,..., mi. Note that 7/Jir~) and <Pir~) are continuous functions on /C.

Introducing the mapping T: /C- /C given by

- Pir + <Pir

Pir = 1 +"~ ,I...L."J=l 'l'tJ

for i = 1,..., nand r = 1,..., mi. It is evident that T is a continuous mapping.

Since /C is closed, bounded and convex, we can use the Brouwer's fixed point

theorem to show that every mapping T has at least one fixed point. We now show

that every fixed point of T is necessarily a compatible configuration of the CLA

(9)
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and conversely every compatible configuration of the CLA is a fixed point of T,

that is, l!.= TCl!.)thereby concluding the proof of the lemma. We first verify the

latter assertion: if P E JCis a compatible configuration, then for every q E JC,we

have l:r dirCl!.)Pir~ l:r dirCl!.)qirforall i = 1,..., n. Configuration9.als~ includes

9. = Cl!.~,...,gr"...,l!.~)'for fixed i (i = 1,...,n). Since dir,Cl!.)is independent

of l!.i' we obtain 1/Jir,Cl!.)::::;O. Hence, <Pir,= 0 for all i = 1,..., n and ri =

1,..., m and we have l!. = TCl!.), from which we conclude that l!. is a fixed
point of T.

Conversely, suppose that l!. E JC is a fixed point of T, but not a compatible

configuration. Then for some i (1 ::::;i ::::;n), there exists an action probability

vector P.i such that P. = Cl!.~,.. . ,P.~'.. . , l!.~)' and

L dirCl!.)Pir < L dirCl!.)Pir. (10)
r r

Let Yi (1 ::::;i ::::;mi) be an action for which dirCl!.)attains its maximum value. Then

Di(P) can be bounded from above by diy,(P), thus implying that 1/Jir,(P)> 0, which

implies <Pir,Cl!.)> O. But since <Pir,Cl!.)is no~egative for all ri, then fj <PijCl!.) > O.
Let ri (1 ::::;i ::::;mi) be an action for which dirCl!.)attains its minimum value. Then

by using inequality (10), it can be shown that DiCl!.)is bounded below by dir,Cl!.).

This implies 1/Jiy,Cl!.)< 0, which implies <Piy,Cl!.) = 0, which when used in (9) yields

the conclusion Piy, < Piyn because l:j <PijCl!.) > 0, contradicting the hypothesis that
9.is a fixed point of T. 0

Lemma 3. Configurationl!.E JCis compatible if and only if

dir Cl!.) ::::;Di Cl!.),

for all i and r.

Proof. If l!. E JC is a compatible configuration, then from (7), for every

9. E JC and 1 ::::;i ::::;n, we have l:r dirCl!.)Pir~ l:r dirCl!.)qir.Since, 9. includes

9.= Cl!.~,... ,gr" .. . , l!.~)' for fixed i (i = 1,..., n) and dir, Cl!.)is independent of l!.i'

then we obtain dir, Cl!.)::::;DiCl!.).

Conversely, suppose that dir,Cl!.) ::::;DiCl!.) (i = 1,...,n and ri = 1,...,m)
but l!. is not compatible. Then for some learning automaton i with action prob-

ability vector 9.i there exists an action Yi such that 9. = Cl!.~,...,9.i,. . . ,l!.~)'and
diy, Cl!.)> Di(9.)' Action Yi denotes the action for which dir, Cl!.) attains its max-

imum value. Since q. is a probability vector, then Di(q) is bounded from above~ -
with diy, Cl!.) and we arrive at the strict inequality Di Cl!.) < Di(9.)< diy, Cl!.).But

this contradicts the hypothesis that dir, Cl!.)::::;Di(p), which concludes that l!. is a
compatible configuration. 0

Lemma 4. Let l!.E JC be a compatible configuration. Then for each i, we have

dirCl!.) = DiCl!.),

for all r such that Pir > O.
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Proof. From Lemma 3, we have

for all i and r. Suppose that for at least one action y of automaton Aj, the above

inequality is strict. Thus, we have

djy~) < Dj~).

From the above inequality and Eq. (6), we obtain

rn, mi rn,

Di~) = I:~r~)Pir = I: dir~)Pir < Di~) I: Pir = Di~)'
r=l =1

J'ir>O
=1

Pir>0

The above contradiction completes the proof of the lemma. o

Theorem 1. A configurationE. E K is compatibleif and only if 2:i 2:y diy~)

[Piy- qiy] ~ 0 holds for all ~ E K.

Proof. If E. is compatible, then from (7), we have

I:~y~)PiY ~ I:~y~)qiY'
Y Y

for any ~ E K. Summing over i we obtain

I:I:~y~)Piy ~ I:I:~y~)qiY'
i Y i Y

Conversely,if inequality (7) is solved by P, then for any q E K, fixed l, 1 ::; l ::; n,

and set ~ = ~~,...,~,... 'E.~)"we have - -

I:I:diy~) [Piy - qiy] = I:dly~) [Ply - qly]
i y y

~ O.

Since l is arbitrary, then the above inequality implies that E.is compatible. o

This theorem states that when the action probability vector of all the learning

automata except the specific learning automaton Ai are held fixed for some i, then

the configuration reached by the CLA at the point where the average reward of Ai

is maximum, is compatible.

Theorem 2. A cornerE.= (.~t1'§.t2'...,§.t,,)' is compatibleif and only if
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Proof. Let 1 = (~tl'~t2"" '~ri"" ,~J' for ri =1=ti be a compatible corner. From
Definition 8, we have

(11)
r r

Since l!.and 1 are two corners, then the above inequality can be simplified as

diti Cl!,) ~ dir i Cl!,).

Substituting dirCl!,)from Eq. (6), we obtain

(12)

:P(tl, t2,..., tm) ~ :P(rl, t2,..., tm).

Conversely,assumethat :P(t!, t2,..., tm) ~ :P(rl, t2,..., tm) but l!.is not com-
patible. From Definition8 and by some algebraic simplificationswe obtain

L [:P(tl' t2,"', tm - :P(r!, t2,..., tm))] qir ;:::O.
r

Since each term of the above inequality is nonnegative, the summation is also

nonnegative, which contradicts our assumption and hence l!.is compatible. 0

Corollary 1. A corner l!.= (~tl' ~t2'.. . ,~tJ' is fully compatible if and only if

:P(tl, t2,..., tm) > :P(r, t2,..., tm) for all r =1=ti.

Proof. The proof is trivial given the proof of Theorem 2. o

3. Behavior of Cellular Learning Automata

In this section, we analyze the CLA in which all the learning automata use the LR-I

learning algorithm. The process {l!.(k)h2:o which evolves according to the LR-I

learning algorithm is Markovian and can be described by the following difference

equation:

l!.(k + 1) = l!.(k) + ~Cl!,(k), (!.(k)), (13)

where (!.(k) is composed of components /3iy(k) (for 1 :::;i :::;nand 1 :::;Y :::;mi),

which are dependent on p(k). 9 represents the learning algorithm, Q is a M x M

diagonal matrix with ajj -= ai for L:1:i ml < i :::; L:1=1 ml, and ai represents the

learning parameter for learning automaton Ai. Now, define

~l!.(k) = EfE(k + l)Il!.(k)] -l!.(k). (14)

Since {l!.(k)h2:o is Markovian and (!.(k) depends only on l!.(k) and not on k

explicitly, then ~l!.(k) can be expressed as a function of l!.(k). Hence, we can write

~l!.(k) = g{ (E,(k)) . (15)
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Using the LR-I algorithm, the components of ill!.(k) can be obtained as follows:

ilPiy(k) = aiPiy(k)[l- Piy(k)]E(,BiY(k)] - ai LPir(k)Piy(k)E[,Bir(k)]
r,py

= aiPiy(k) LPir(k)E[,Biy(k)] - aiPiy(k) LPir(k)E[,Bir(k)]
r,py r,py

= aiPiy(k) LPir(kHE[,Biy(k)] - E(,Bir(k)]}
r,py

= aiPiy(k) LPir(k)[diY<'f!.) - dir<'f!.)]
r,py

=adiy <'f!.), (16)

where

fiy<'f!.) = Piy(k) LPir(k) [diy<'f!.)- dir<'f!.)]
r,py

=Piy(k) LPir(k) [diy<'f!.)- dir<'f!.)]
r

=Piy(k) [diY<'f!.)- Di<'f!.)] . (17)

For different values of g, Eq. (13) generates a different process and we shall use

l!.a(k) to denote this process whenever the value of g is to be specified explicitly.

Define a sequence of continuous-time interpolations of (13), denoted by E.a(t) and

called an interpolated process, whose components are defined by

p~(t) = p.(k),-, -, (18)

where ai is the learning parameter of the LR-I algorithm for learning automaton Ai.

The interpolated process {~(t)h~o is a sequence of random variables that takes

values from nm1x...xmn, where nm1x...xmn is the space of all functions that, at

each point, are continuous on the right and have a limit on the left over [0,00)

and take values in K.,which is a bounded subset of nm1x",xmn. The objective is

to study the limit of sequence {E.a(t)k::o as max{g} -+ 0, which will be a good

approximation to the asymptotic behavior of (18). When learning parameter ai is

sufficiently small for all i = 1,2,. .., n, then Eq. (15)can be written as the following

ordinary differential equation (ODE):

i!.= L<'f!.), (19)

where i!.is composed of the following components:

dPiy
[ ]& = Piy diy<'f!.)- Di<'f!.) . (20)

We are interested in characterizing the long-term behavior of l!.(k) and hence

the asymptotic behavior of ODE (19). The analysis of process {l!.(k)h~o is done

in two stages. In the first stage, we solve ODE (19) and in the second stage, we

characterize the solution of this ODE. The solution of ODE (19) approximates the
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asymptotic behavior of E(k) and the characteristics of this solution specify the long-

term behavior of p( k). The following theorem gives the asymptotic behavior of :pa

as maxi!!} becom~s sufficiently small. We show that the sequence of interpolat~

processes {It(t)} converges weakly to the solution of ODE (19) with initial con-

figuration E(O). This implies that the asymptotic behavior of E(k) can be obtained
from the solution of ODE (19).

Theorem 3. Sequence {it(.)} converges weakly to the solution of

d: = [(X) (21)

with initial condition X(O) = Xo as a ~ 0, where Xo = p,a(O)and a = maxi!!}.

Proof. The following conditions are satisfied by the learning algorithm (13).

(i) {E(k), (g(k -1),f!.(k -1))h~o is a Markov process;

(ii) (Q(k),f!.(k)) takes values in a compact metric space;

(ill) 9 is bounded, continuous and independent of aj

(iv) ODE (21) has a unique solution for each initial condition X(O)j

(v) for a specific configuration, E(k) = E, {(Q(k),f!.(k))h~o is an independent
identically distributed sequence.

Therefore, using the weak convergence theorem [11], sequence {p,a(.)} converges

weakly, as maxi!!} ~ 0 to the solution of

dX -

dt = [(X), X(O) = Xo,

where l0£.(k)) = Epf0£.(k),Q(k),f!.(k)) and Ep denotes the expectation with

respect to the invariant measure MP and MP is the distribution of process

{(Q(k),f!.(k))h~o. Since for E(k) = E., (Q(k),f!.(k)) is an independent identically

distributed sequence whose distribution depends only on E. and the rule of the
CLA, then we have

BE) = E[[0£.(k),Q(k),f!.(k))] = [0£.),

and hence the theorem is proven. o

Theorem 3 enables us to understand the long-term behavior of E(k). The weak

convergence in this theorem implies that path Ea(t) will closely follow the solution to

the ODE on any finite interval with an arbitrarily high probability as maxi!!} ~ o.
As the length of the time interval increases and maxi!!} ~ 0, the fraction of time

that the path of the ODE must eventually spend in a small neighborhoodofEO, the

solution of the ODE, goes to one. Thus, ItO will eventually (with an arbitrarily

high probability) spend all of its time in a small neighborhood of EOas well. As
maxi!!} ~ 0, the time interval over which the evolution of the CLA follows the

path of the ODE goes to infinity. Although the speed of convergence depends on

the specific value of !!. The above point is summarized in the following lemma.
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Lemma 5. For large k and small enough value ofmax{g}, the asymptotic behavior

ofE(k) generated by the CLA can be approximated by the solution to ODE (21) with

the same initial configuration.

Proof. Let X(.) be the solution of ODE (21) with initial condition X(O) = Xo

sufficientlycloseto an asymptotically stable configurationof the ODE, sayEOE /C.
For any Y(t) E /C,t 2::0 and any positive T < 00, define

hT(Y) = sup IIY(t) - X(t)lI.
tS,T

Function hT(-) is continuous on /C. Then Theorem 3 says that E[hT(P)a] -

E[hT(X)] = 0 as max{g} - O. The limit is zero since the value of hT(X) on

the paths of limit process is zero with probability one. Thus, the sup of the dis-

tance between the original sequence E(t) and X(t) goes to zero in probability as

k - 00. With particular initial condition used, let EObe the equilibrium configu-
ration to which the solution of the ODE converges. Using this and the nature of

interpolation, given in (18), it is implied that for the given initial configuration and

any € > 0 and integers k1 and k2 (0 < k1 < k2 < 00), there exists a ao such that

Prob
[

SUp IIp(k) - poll> €
]

= 0 'Va< ao,
klS,kS,k2 - -

where a = max{g}. Since EOis an asymptotically stable equilibrium point of ODE

(19), then for all initial configurations in the small neighborhood of EO, the CLA
converges to EO. 0

In the following subsections, we first find the equilibrium points of ODE (19),

then study the stability property of equilibrium points of ODE (19), and finally

state a theorem about the convergence of the CLA.

3.1. Equilibrium points

The equilibrium points of Eq. (17) are those points that satisfy the set of equations

.6.pij(k) = 0 for all i,j, where the expected changes in the probabilities are zero.

In other words, the equilibrium points are zeros of 1. ('f!.),which are studied in the
following two lemmas.

Lemma 6. All the corners of /C are equilibrium points of 1.(.). All the other equi-

librium points E of !..O satisfy

diy{'f!.) = dir{'f!.),

for all r, yE {I, 2,..., md, and for all i = 1,.. . , n.

(22)

Proof. From Eq. (16), it is obvious that fiy = 0 (for i = 1,2,..., n) if p. is a unit-z

vector and hence all corners of /C are equilibrium points of 1.(.). In order to find
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other equilibrium points of [(.), from (16) it is obvious that Jiy = 0 if Piy = O.

Since p. is a probability vector, then all components of p. cannot be at the same-, -,
time zero. Hence, when Piy ::I0, the following equation must hold:

LPir(k) [£4y~) - £4r~)]= O.
r"#y

The above equation can be rewritten as

(23)

LPir(k) [diy~) - dir~)] = LPir(k)£4y~) - LPir(k)dir~)
r"#y r"#y r"#y

= £4y~) [1- Piy(k)] - LPir(k)£4r~)
r"#y

= diy~) - LPir(k)dir~)
r

= £4y~) - LPir(k)£4r~) - Piq(k)£4q~)
r"#q

= diy~) - LPir(k)dir~) - £4q~)

[
1- LPir(k)

]r"#q r"#q

= £4y~) - £4q~) + L [£4q~) - £4r~)] Pir(k)
r"#q

=0. (24)

Thus, we obtain

L [£4q~) - £4r~)] Pir(k) = £4q~) - £4y~),
r"#q

for y = 1,..., mi and y::l q. The left-hand side of the above equation is the same,

say, as do for all y = 1,..., mi and y::l q. Thus, for all y::l q, we have

(25)

£4q<P.)- £41<P.)= £4q<P.)- £42<P.)= £4q<P.) - £43<P.) = .. . = £4q<P.) - £4m; <P.) = do.

When do ::I0, Eq. (25) implies that 2:r"#qPir(k) = 0, corresponding to the unit

vector ~ and considered already. When do = 0, then the E.that makes [<P.)zero
must satisfy the following:

or equivalently

£4q<p') = £4y<p'),

for Vi = 1,2, . . . , n and Vy ::Iq. When Piy are zero, for [ to be zero, Eq. (23) must

be satisfied for all 1 :::;y :::;mi such that Piy ::I 0 for each i, which completes the

proof of this lemma. 0

Lemma 7. All compatibleconfigurationsare equilibriumpointsof [(.).
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Proof. Let p. be a compatible configuration. Then by Lemma 4, for each i, either

Pir = 0 or dirCJ!.) = DiCJ!.). Hence, firCJ!.) = 0 for all i and r. 0

3.2. The stability property

In this subsection we characterize the stability of equilibrium configurations of

CLA, that is the equilibrium points of the ODE (19). From Lemmas 6 and 7,

all the equilibrium points of (19) are known. In order to study the stability of

the equilibrium points of (19), the origin is transferred to the equilibrium point

under consideration and then the linear approximation of the ODE is studied. The

following two lemmas are concerned with the stability properties of the equilibrium

points of ODE (19).

Lemma 8. A cornerP.0E J(,* is a fully compatible configuration if and only if it is

uniformly asymptotically stable.

Proof. Let configuration P.0= (~~l". . ,~n)' be a corner of J(,that is a fully com-

patible configuration. Using the transformation defined by

-
{

PiY if Y = ti,
Piy = .

1 - Piy If Y # ti,

the origin is translated to p.0.Since p.i (1::; i ::; n) is a probability vector, then only

L:i(mi - 1) components of P.0 are independent. Suppose that Pir for r # ti (for

1 ::; i ::; n) be the independent components. Using a Taylor expansion, /iy can be
expressed asa

(26)

We consider the following positive definite Lyapunov function V (E) =
L:i L:#ti Piy, where V(E) ~ 0 and is zero whenpiY = 0 for all i, y, and its derivative

is equal to V(E) = L:i L:Y#i /iy. Since corner P.0is a fully compatible configura-
tion, then from Theorem 2 we have P(y, t2,. . ., tm) - P(ti' t2,"', tm) < 0 for

i = 1,2,..., n. Thus, Eq. (26) implies that there is a neighborhood around P.0 such

that the linear terms dominate the high order terms. Hence, V(E) < 0 and P.0 is an

uniformly asymptotical stable configuration.

Conversely, assume that po is an uniformly asymptotical stable configuration,

then the linear approximati~n of ODE (19) can be written as p = Aft, where

A = diag(hy) and hy = P(y, t2,..., tm) - P(ti' t2,..., tm) for-i = 1,2,..., n.
SinceP.0is uniformly asymptotical stable, A should have eigenvalueswith negative

real parts and hence iiY < O. Using Theorem 2, this implies that P.0is a fully
compatible configuration. This completes the proof of this lemma. 0

aThe details for derivation of the above equation for linear CLA is given in Appendix.



A Mathematical Jilrameworkjor Cellular Learning Automata 311

Lemma 9. Non-compatible equilibrium points of [(.) are unstable.

Proof. Let '£0 be an equilibrium point of [(.) which is not compatible. Then from

Lemma 4, there is a learning automaton Aj and an action y such that djy(P) >

Dj(!!). Since djy(g) and Dj(g) are continuous, then inequality djy(g) > Dj(gf will

hold in a small open neighborhood around po. Using (20), it is implied that for all

points in this neighborhood d~!I > 0 if Pjy-:/: o. Hence, no matter how small this

neighborhood we take, there will be infinity many points starting from which ,£(k)

will eventually leave that neighborhood, which implies that '£0 is unstable. 0

Remark 1. In Lemmas 8 and 9, the solution of ODE (19) is well characterized

and it is shown that full compatibility implies uniformly asymptotic stability of

the corners. In order to obtain necessary and sufficient conditions for uniformly

asymptotic stability, it is essential to consider in detail the nonlinear terms in the

differential equation, which appears to be a difficult problem.

Remark 2. An almost sure convergencemethod [22]can be used to show the

convergence of CLA. Using this method, it can be shown that the evolution of CLA

essentially follows the solution to the ODE (for large k) and also if the CLA enters

the domain of attraction of an asymptotically stable configuration '£0 infinitely

often, it will eventually converges to '£0. Therefore, if we use almost sure methods

then the stability analysis performed above is not needed.

3.3. Converyence results

We study the convergenceof CLA for the followingfour differentinitial configura-

tions, which covers all the points in K:

(i) '£(0) is closeto a compatiblecorner'£0. From Lemma 8, there is a neighborhood

around '£0 entering which, the CLA willbe absorbed by that corner. Thus, the
CLA converges to a compatible configuration.

(H) '£(0) is close to a non-compatible corner '£0. From Lemma 9, no matter how

small the neighborhoodwetake around '£0 is, the solution of (19)will leavethat
neighborhood and enter K-K*. The convergence when the initial configuration

is in K - K* is discussed in (iv) below.

(m) '£(0) E K*. Using the convergence properties of the LR-I learning algorithm

[21], no matter whether '£(0) is compatible or not, the CLA will be absorbed

to '£(0).

(iv) ,£(0) E K - K*. The convergence of the CLA for these initial configurations is
stated in Theorem 4.

Theorem 4. Suppose there is a bounded differential function V: nm1 +"+m", -+ n

such that for some constantc > 0, :::r(g) = cdir(g) for all i and r. Then the CLA
for any initial configuration in K - K* and with a sufficiently small value of the
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learning pammeter (max{Q} - 0), always converyes to a configumtion that is stable

and compatible.

Proof. Consider the variation of V along the solution paths of ODE (19); V is

non-decreasing because

= cL L
(

LPiYPir diy~)[diy~) - dir~)] + LPiYPir diy~)[diy~) - dir~)]\
i y r>y r<y /

=CL L
(

LPiYPir diy~)[diy~) - dir~)] + LPirPiY dir~)[dir~) - diY~)]\
i Y r>y r>y /

= eLL LPiYPir[diy(E)- dir~)j2
i y r>y

;:::o.
(27)

The CLA updates the action probabilities in a such a way that E(k) E ICfor all

E(O) E IC and k > O. Since IC is a compact subset of nm1 +..+mm, asymptotically

all solutions of ODE (19) will be in IC. Inequality (27) shows that CLA updates

the configuration probabilities in gradient ascent manner and hence, converges to

a maximum of V, where ~~ = O. From (27), the derivative of V is zero if and

only if for all i, y, r, we have PirPiy = 0 or Piy = Pir' From Lemmas 6 and 7, these

configurations are equilibrium points of fiY~)' Thus, the solution to ODE (19) for
any initial configuration in IC- IC*will converge to a set containing only equilibrium

points of the ODE (19). Since all equilibrium configurations that are not compatible

are unstable, the theorem follows. 0

Remark 3. If the CLA satisfies the sufficiency conditions needed for Theorem 4,

then the CLA will converge to a compatible configuration; otherwise the conver-

gence of the CLA to a compatible configurations cannot be guaranteed and it may

exhibit a limit cyclic behavior [20].

4. Cellular Learning Automata Using Commutative Rules

In this section, we study the behavior of the CLA when the commutative rules

are used. Commutativity is a property of hyper matrix P as given in the
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following definition:

Definition 10. A rule ?(aiHu ai+x2'"'' aiH..J is called commutative if and

only if

?(ai+Xl' ai+x2"'" ai+xm)

= ?(ai+x..., ai+Xl"'" ai+x J = ... = ?(ai+X2'ai+X3"'" ai+Xl)' (28)

.

In order to simplify the algebraic manipulations, we give the analysis for

the linear CLA, as shown in Fig. 3, which uses the neighborhood function

N(i) = {i - 1,i,i + 1}. The followingtheorem is an additional property for com-

patible configurations when the CLA use a commutative rule.

Theorem 5. If a CLA uses a commutative rule, then a configuration l!. at which

'D~) is a local maximum, is compatible.

Proof. Since /C is convex, then for every 0 :::;A :::;1 and ~ E /C, we have A~ + (1-
A)l!.E /C. Suppose that l!.is a configuration for which 'D~) is a local maximum, then

'D~) does not increase as one moves away from l!., that is

d'D(A~ + (1 - A)l!.)

I

< O.
dA ),=0-

Thus using chain rule, we obtain V''D~)(~ - l!.) :::;O.V''D(~)has M elements in

which (l,r)th component of V'F(~) is denoted by qlr and calculated by the following
equation:

(29)

qlr = aa LLLL?(y,x,Z)PjXPiyPkz
Plr i y x Z

= L L L L[?(y, x, z)8lj15rxPiyPkz+ ?(y, x, Z)8li8ryPjxPkz
i x y z

+ ?(y, x, Z)8Ik8rzPjxPiY]

=LL?(y,r,z)piyPkz + LL?(r,x,z)pjxPkz + LL?(y,x,r)pjXPiY
y z x z x y

x z x z x z

x z

Fig. 3. The linear CLA.
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where Y = Qi+Xl' X = Qi+x2' Z = Qi+X3' j = i-I, and k = i + 1. Using the above

result and VVCJ!.)(2.- E) :5 0, we have

VVCJ!.)(2. - E) = 3 L LL L.P(y,x,Z)P;xPkz[qiY- PiY]

i Y x z

= 3 L L diyCJ!.)[qiY - Piy]
i Y

:5 0,

for all 2.E /C.So,E satisfiesthe condition of Theorem 1, and henceEis a compatible

configuration. 0

Now, using the analysis given in Sec. 3, we can state the main theorem for the

convergence of the CLA when it uses commutative rules.

Theorem 6. A synchronous GLA, which uses uniform and commutative rule,

starting from E(O) E /C - /C* and with a sufficiently small value of the learning

parameter, (max{g} -+ 0), always converyes to a deterministic configuration, that

is stable and compatible.

Proof. Let function V: nm1 +"+m", -+ n be the total average reward for the CLA.

Hence, we have t:r CJ!.) = 3dirCJ!.)for all i and r. Using Theorem 4 convergence of
CLA can be concluded. 0

Remark 4. From the proof of the Theorem 6, we can conclude that the CLA

converges to one of its compatible configurations, if any. If the CLA has one com-

patible configuration, then CLA converges to this configuration for which DCJ!.)
is the maximum. If there are more than one compatible configurations, then the

CLA depending on the initial configuration E(O)converges to one of its compatible

configurations for which DCJ!.)is a local maximum.

Remark 5. Theorem 6 guarantees that limit cycle for CLA does not exist and

CLA always converges to an equilibrium of ODE.

5. Numerical Examples

This section discusses patterns formed by the evolution of cellular learning automata

from a random initial configuration. For the sake of simplicity in our presentation,

we use the following notation to specify the rules for the cellular learning automata

for which each cell has a learning automaton with m actions. The actions of each

learning automaton are represented by integers in the interval [0,m-I]. Hence,

the configuration of each cell and its neighbors form an m-digit number in the

interval [0,mm -1] with mm possible values. The value of reinforcement signal for

all of the above mm configurations constitute an mm bit number. We identify a

rule by the decimal representation of this mm-bit number. We use notation (j)m

to specify the rules of the CLA, where j is a decimal number representing the rule
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and m is the number of actions of the learning automaton. For example, Table 1

represents the rule (22h for a linear CLA with two-actions learning automata and

the neighborhood function N(i) = {i - 1,i, i + 1}. In this table, each of the eight

possible configurations for a cell and its neighbors appear on the first row, while the

second row gives the value of the corresponding reinforcement signal to be output
to the learning automata.

Figures 4 through 6 show the time-space diagram evolution of CLA using com-

mutative rules with 20 cells and a two-action LR-Ilearning automaton in each cell.

Figure 7 shows the time-space diagram evolution of CLA using noncommutative

rules with 20 cells and a two-action LR-I learning automaton in each cell.

Figure 8 shows the time-space diagram evolution of CLA with eight cells and a

three-action LR-Ilearning automaton in each cell.

Table 1. The scheme for the rule numbering for two actions learning
automata.

Configuration

Reinforcement signal

111

o
000

o

110

o
101

o
100

1
011

o
010

1
001

1

Fig. 4.

rule (22)2

Time-space diagram of synchronous CLA using commutative rules.

... --- .... ..... ........ ... .... . - - .... . . . . .. . . . . ..... . . . . . ... . . . . . -.. . . . . . ... . . . . . ... . . . . ... . - -- . ... . . . .. .. . . . . . ... . . . . . ... . . . . . ... . . . - . ... . . . . ... . . . . . ... - . . . . ... . . . .. .. . . . . . ... . - . -. .. . . . . . ... . . . . . ... . . . .. .. . . . . . ... . . . - . ... . . . . . ..

rule (23h rule (126h

Time-space diagram of synchronous CLA using commutative rules.

rule (128h

Fig. 5.

rule (127h
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rule (150)2

6. Conclusions

rule (233h

rule (180h

Fig. 7. Time-space diagram for CLA.

rule (190)2

rule (1562h

Fig. 8.

rule (9754h

rule (151h rule (232h

Time-space diagram of synchronous CLA using commutative rules.

rule (254h

Fig. 6.

.. .. -.. .......... ... .. .... .................... ........ .. ... .... .. .. ....... ...... .. .... ... .... ......... ... .... ...... ...... .. .. .. .. .. .. ............ ................... .. .. .......................................................... .................................................................. .. .. .. .. ... .. .. ................. .. .. .. .. ... .. .. .... .. .. .. -.. .. .. .. ............................................................................

Time-space diagram of synchronous CLA using commutative rules.

In this paper, a formal description of cellular learning automata has been given and

its convergence behavior studied. It has been shown that for commutative rules, the

cellular learning automata converges to a stable configuration for which the average
reward for the CLA is maximum. The numerical results have also confirmed the

theory.
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Appendix

In this appendix, we give the derivation of the Taylor expansion of fiy(g) for the

linear CLA; let j = i-I, k = i + 1, Y = Cl:i+xl'Yj = Cl:i+X2'and Yk = Cl:i+X3.

fir = Pir(k) I:PiY(k)[dir<:e.) - diy(g)]
Y:Fr

=Pir I: Pir I:
[
I: :P(Yi, Yj, Yk)Pky"

lIi;<\r y;:Ft; y":Ft"
tli~ti

+:P(Yi,Yj,tk)
(

l- L PkY,,
)]

PjY;

Yk'Ft"

- Pir I: Pir L
[
L :P(r, Yj, Yk)Pky"

lIi;<\r y;:Ft; y":Ft"
lIi#ti

+ :P(r, Yj, tk)
(

1 - I: PkY,,
)]

PjY;

y":Ft"

+ Pir I: Pir
[
L :P(Yi, tj, Yk)Pky"

lIi,,<r y":Ft,,
lIi :Ft.

+:P(Yi' tj, tk)
(

1- L PkY,,
)] (

1- I: pjYi

)Y":Ft" Y;:Ft;

- Pir I: Pir

[
L :P(r, tj, Yk)Pky"

lIi,,<r y":Ft,,
Yi:Fti

+:p(r,tj,tk)
(

l- I: PkY,,
)] (

1- I: pjy;

)Y":Ft,, Y;:Ft;

+ Pir

(
1- L PiYi

)
L

[
L :P(ti, Yj, Yk)Pky"

Yi:Fti Y;:Ft; Y":Ft"

+ :P(ti' Yj, tk)
(1 - L PkY,,

)]
Pjy;

Y":Ft,,
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- Pir

(
1 - L PiY.

)
L

[
L P(ti, tj, Yk)PkYk

y.#-t. Yj#-tj Yk#-tk

+P(ti, tj, tk)
(

1- L PkYk

)]
PjYj

Yk#-tk

+Pir

(
1- L PiY.

) [
L P(ti,tj,Yk)PkYk

Y.#-t. Yk#-tk

+P(ti' tj, tk)
(1- L PkYk

)] (
1- L pjyj

)Yk#-tk Yj#-tj

- Pir

(
1 - L PiY.

) [
L P(ti' tj, Yk)PkYk

y.#-t. Yk#-tk

+P(ti, tj, tk)
(1- L PkYk

)] (
1- L pjyj

)
,

Yk#-tk Yj#-tj

I

I

I

1

Using the transformation

-
{
PiY if Y = ti,

Piy= .
1 - Piy if Y =1=ti,

to change the origin to EO,fiy can be approximated linearly:

(30)
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