A mathematical framework for Exact Milestoning

David Aristoff (joint work with Juan M. Bello-Rivas and Ron Elber)

www.math.colostate.edu/~aristoff

July 2015

D. Aristoff (www.math.colostate.edu/~aristoff)

July 2015 1 / 23

- Milestoning is a technique for estimating mean first passage times (MFPTs).
- Exact Milestoning is a variant which yields exact times in a certain limit.
- Milestoning and Exact Milestoning are both practical algorithms.
- Both algorithms are appropriate for systems with rough energy landscapes.

Important application: in silico drug design.

Estimating characteristic time for a drug to dissociate from a protein target.

- Efficiency is based on the use of short trajectories simulated in parallel.
- These trajectories start on a milestone and end at a neighboring milestone.
- The milestones are usually codimension 1 hypersurfaces.

Examples:

1D milestoning: milestones = level sets of a scalar reaction coordinate *Network milestoning:* milestones = faces of Voronoi cell boundaries

The problem.

Let (X_t) be a stochastic dynamics and R, P disjoint subsets of state space. We want to compute the mean first passage time of (X_t) from R to P.

Source and sink.

When (X_t) reaches P, it immediately restarts at R.

This assumption does not affect the MFPT but it is useful for theory.

Examples to keep in mind:

- State space is a torus, (X_t) is a diffusion;
- State space is discrete, (X_t) is a continuous time Markov process.

Below we think of R as a point, though it can be a distribution too.

Setup

Let (X_t) take values in a standard Borel space.

Our goal.

To efficiently compute $\mathbb{E}^{R}[\tau_{P}]$, where τ_{P} is the first time for (X_{t}) to hit P.

Setup

We coarse-grain (X_t) using closed sets called *milestones*.

Milestones.

The milestones are closed sets with pairwise disjoint interiors.

Setup

We coarse-grain (X_t) using closed sets called *milestones*.

Milestones.

P and R are two of the milestones. M is the union of the milestones.

Assume (X_t) is strong Markov with càdlàg paths.

Jump chain.

Keep the first hit points, J_n , on the milestones. (J_n) is a Markov chain on M.

Setup

Assume (X_t) is strong Markov with càdlàg paths.

Sojourn times.

Keep the times, τ_n , between the first hit points. τ_n depends only on J_{n-1} and J_n .

Setup

Define $Y_t = J_n$ for $\tau_0 + \ldots + \tau_n \leq t < \tau_0 + \ldots + \tau_{n+1}$, and let (Y_t) start on M.

Theorem.

 (Y_t) is a semi-Markov process on M with the same FPT to P as (X_t) .

Proof: This is clear from construction...

Definition.

Let $\tau_P = \inf\{t > 0 : Y_t \in P\}$ and $\sigma_P = \min\{n \ge 0 : J_n \in P\}$.

Assumption.

 $\mathbb{E}^{\xi}[\tau_{P}]$ and $\mathbb{E}^{\xi}[\sigma_{P}]$ are finite for all initial distributions ξ on M.

This ensures that (Y_t) has finite MFPTs to P and is nonexplosive.

イロト イポト イヨト イヨト

Definition.

Let
$$K(x, dy)$$
 be the transition kernel for (J_n) and $\bar{K}(x, dy) = \begin{cases} K(x, dy), & x \notin P \\ 0, & x \in P \end{cases}$.

K and \bar{K} have left/right actions on measures/bounded functions in the usual way.

Theorem.

 (J_n) has an invariant probability measure μ , defined by

$$\mu = Z^{-1} \sum_{n=0}^{\infty} \delta_R \bar{K}^n,$$

where Z is a normalization constant. Moreover, $\mu(P) > 0$.

Proof: Show that the residence time $\mathbb{E}^R \left[\sum_{n=0}^{\sigma_P} \mathbb{1}_{J_n \in \cdot} \right]$ is invariant.

Definition.

Let M_x be the milestone containing x and $\tau_M^x = \inf\{t > 0 : Y_t \in M \setminus \inf(M_x)\}$.

Definition.

Let M_x be the milestone containing x and $\tau_M^x = \inf\{t > 0 : Y_t \in M \setminus \inf(M_x)\}.$

Theorem.

With μ the invariant distribution for (J_n) ,

$$\mu(P)\mathbb{E}^{R}[\tau_{P}] = \mathbb{E}^{\mu}[\tau_{M}] := \int_{M} \mu(dx)\mathbb{E}^{\times}[\tau_{M}^{\times}].$$

Proof: Write $\tau_P = (\tau_P - \tau_M^x) + \tau_M^x$, condition on $Y_{\tau_M^x} = y$, integrate w.r.t. $\mu(dy)$.

Note that $\mathbb{E}^{x}[\tau_{M}^{x}]$ can be obtained from short trajectories running in parallel. So if we can sample efficiently from μ , we can efficiently estimate $\mathbb{E}^{R}[\tau_{P}]$.

イロン イヨン イヨン イヨン

Theorem.

Assume (J_n) is aperiodic in the following sense:

g.c.d.
$$\{n \ge 1 : \mathbb{P}^R(\sigma_P = n-1) > 0\} = 1.$$

Then for any initial distribution ξ ,

$$\lim_{n\to\infty} \|\xi K^n - \mu\|_{TV} = 0.$$

Proof: Coupling argument, using the fact that *R* is recurrent for (J_n) .

This suggests how to estimate μ : start with a "guess" $\xi = \mu_0$, and iterate.

イロト イヨト イヨト イヨト

Aside: 1D milestoning.

The milestones are $R = M_1, M_2, \ldots, M_m = P$. If $J_n \in M_1$, then $J_{n+1} \in M_2$. And if $J_n \in M_j$ for $j = 2, \ldots, m-1$, then $J_{n+1} \in M_{j-1}$ or $J_{n+1} \in M_{j+1}$, both w.p. > 0.

Here, $\|\xi K^n - \mu\|_{TV} \to 0$ for all $\xi \iff$ the number of milestones is odd.

Why? Say there are *m* milestones. Then (J_n) can go from *R* to *P* in m-1 or m+1 steps, and *m*, m+2 are coprime when *m* is odd.

If *m* is even and ξ is supported on the odd indexed milestones, then after an even (resp. odd) number of steps (J_n) lies in an odd (resp. even) indexed milestone.

イロト イヨト イヨト イヨト

Error Analysis.

The error in milestoning has two sources:

- Error in the approximation $\tilde{\mu}$ of μ ;
- Error due to time discretization $\tilde{X}_{n\delta t}$ of (X_t) .

Define

 $\tilde{\tau}_M^x = \min\{n > 0 : \text{ line segment from } \tilde{X}_{(n-1)\delta t} \text{ to } \tilde{X}_{n\delta t} \text{ intersects } M \setminus \operatorname{int}(M_x)\}.$

Theorem.

The error in the Milestoning approximation of the MFPT satisfies

$$|\mathbb{E}^{R}[\tau_{P}] - \tilde{\mu}(P)^{-1}\mathbb{E}^{\tilde{\mu}}[\tilde{\tau}_{M}]| \leq c_{1}|\mu(P)^{-1} - \tilde{\mu}(P)^{-1}| + \tilde{\mu}(P)^{-1}\left(c_{2}\|\mu - \tilde{\mu}\|_{TV} + \phi(\delta t)\right),$$

where ϕ is a function depending only on the time step error, and

$$c_1 = \mathbb{E}^{\mu}[\tau_M], \qquad c_2 = \sup_{x \in M} \mathbb{E}^{x}[\tau_M^x].$$

Proof: Triangle inequalities.

Theorem.

The error in the Milestoning approximation of the MFPT satisfies

$$|\mathbb{E}^{R}[\tau_{P}] - \tilde{\mu}(P)^{-1} \mathbb{E}^{\tilde{\mu}}[\tilde{\tau}_{M}]| \leq c_{1} |\mu(P)^{-1} - \tilde{\mu}(P)^{-1}| + \tilde{\mu}(P)^{-1} \left(c_{2} \|\mu - \tilde{\mu}\|_{TV} + \phi(\delta t)\right),$$

where ϕ is a function depending only on the time step error, and

$$c_1 = \mathbb{E}^{\mu}[\tau_M], \qquad c_2 = \sup_{x \in M} \mathbb{E}^x[\tau_M^x].$$

This holds for Exact Milestoning as well as the original Milestoning.

Open problem.

Suppose (X_t) is Brownian dynamics: $dX_t = -\nabla V(X_t) dt + \sqrt{2\beta^{-1}} dW_t$, and $\tilde{\mu} = \mu_0 = Z^{-1} e^{-\beta V} dx$. When/how much can $\|\tilde{\mu} - \mu\|_{TV}$ be controlled?

Is an iteration scheme based on powers of a numerical approximant $ilde{K}$ consistent?

Theorem. (Ferré et. al., 2013)

Suppose (J_n) is geometrically ergodic (GE): there exists $\kappa \in (0,1)$ such that

$$\sup_{x\in M} \|\delta_x K^n - \mu\|_{TV} = O(\kappa^n).$$

Given $\epsilon > 0$, if \tilde{K} is sufficiently close to K in operator norm, then

$$\sup_{x \in M} \|\delta_x \tilde{K}^n - \tilde{\mu}\|_{TV} = O(\tilde{\kappa}^n), \qquad \|\mu - \tilde{\mu}\|_{TV} < \epsilon,$$

where $\tilde{\mu}$ is some probability measure on M and $\tilde{\kappa} \in (\kappa, 1)$.

Lemma.

 (J_n) is GE if the probability to reach P in n steps has a uniform lower bound.

Lemma.

 (J_n) is GE if it is strong Feller and aperiodic, and state space is compact.

Example.

Let (X_t) be Brownian dynamics:

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\beta^{-1}} dB_t,$$

and for N = 10 let

$$V(x_1, x_2) = \sum_{k_1 = -N}^{N-1} \sum_{k_2 = -N}^{N-1} C_{k_1, k_2} f_{k_1, k_2}(x_1, x_2),$$
(1)

where C_{k_1,k_2} is either 0 or sampled uniformly from $\left(-\frac{1}{2\pi},\frac{1}{2\pi}\right)$, each w.p. $\frac{1}{2}$, and

$$f_{k_1,k_2}(x_1,x_2) = \begin{cases} \cos(2\pi k_1 x_1)\cos(2\pi k_2 x_2), & \text{w.p. } \frac{1}{3}, \\ \cos(2\pi k_1 x_1)\sin(2\pi k_2 x_2), & \text{w.p. } \frac{1}{3}, \\ \sin(2\pi k_1 x_1)\sin(2\pi k_2 x_2), & \text{w.p. } \frac{1}{3}. \end{cases}$$

V defines a rough energy landscape on the torus $\mathbb{R}^2/\mathbb{Z}^2$.

イロト イヨト イヨト イヨト

Figure: Source R (center bottom), sink P (center), and other milestones (line segments).

▲□→ ▲圖→ ▲温→ ▲温→

 x_1

Figure: Contour map of the canonical Gibbs density $Z^{-1}e^{-\beta V}$.

・ロト ・御 と ・ ヨ と ・ ヨ と … ヨ

 x_1

Figure: The stationary measure μ , superimposed on contour lines of V.

イロン イロン イヨン イヨン

Figure: The MFPT vs. the number of iterations, starting at $\mu_0(dx) = Z^{-1}e^{-\beta V(x)}dx$.

イロト イヨト イヨト イヨ