A mathematical framework for Exact Milestoning

David Aristoff (joint work with Juan M. Bello-Rivas and Ron Elber)

```
Www.math.colostate.edu/~aristoff
```

July 2015

- Milestoning is a technique for estimating mean first passage times (MFPTs).
- Exact Milestoning is a variant which yields exact times in a certain limit.
- Milestoning and Exact Milestoning are both practical algorithms.
- Both algorithms are appropriate for systems with rough energy landscapes. Important application: in silico drug design.

Estimating characteristic time for a drug to dissociate from a protein target.

- Efficiency is based on the use of short trajectories simulated in parallel.
- These trajectories start on a milestone and end at a neighboring milestone.
- The milestones are usually codimension 1 hypersurfaces.

Examples:

1D milestoning: milestones $=$ level sets of a scalar reaction coordinate Network milestoning: milestones $=$ faces of Voronoi cell boundaries

The problem.
Let $\left(X_{t}\right)$ be a stochastic dynamics and R, P disjoint subsets of state space.
We want to compute the mean first passage time of $\left(X_{t}\right)$ from R to P.

Source and sink.
When $\left(X_{t}\right)$ reaches P, it immediately restarts at R.

This assumption does not affect the MFPT but it is useful for theory.

Examples to keep in mind:

- State space is a torus, $\left(X_{t}\right)$ is a diffusion;
- State space is discrete, $\left(X_{t}\right)$ is a continuous time Markov process.

Below we think of R as a point, though it can be a distribution too.

Let $\left(X_{t}\right)$ take values in a standard Borel space.
Our goal.
To efficiently compute $\mathbb{E}^{R}\left[\tau_{P}\right]$, where τ_{P} is the first time for $\left(X_{t}\right)$ to hit P.

We coarse-grain $\left(X_{t}\right)$ using closed sets called milestones.

Milestones.

The milestones are closed sets with pairwise disjoint interiors.

We coarse-grain $\left(X_{t}\right)$ using closed sets called milestones.
Milestones.
P and R are two of the milestones. M is the union of the milestones.

Assume $\left(X_{t}\right)$ is strong Markov with càdlàg paths.
Jump chain.
Keep the first hit points, J_{n}, on the milestones. $\left(J_{n}\right)$ is a Markov chain on M.

Assume $\left(X_{t}\right)$ is strong Markov with càdlàg paths.
Sojourn times.
Keep the times, τ_{n}, between the first hit points. τ_{n} depends only on J_{n-1} and J_{n}.

Define $Y_{t}=J_{n}$ for $\tau_{0}+\ldots+\tau_{n} \leq t<\tau_{0}+\ldots+\tau_{n+1}$, and let $\left(Y_{t}\right)$ start on M.
Theorem.
$\left(Y_{t}\right)$ is a semi-Markov process on M with the same FPT to P as $\left(X_{t}\right)$.

Proof: This is clear from construction...

Definition.
Let $\tau_{P}=\inf \left\{t>0: Y_{t} \in P\right\}$ and $\sigma_{P}=\min \left\{n \geq 0: J_{n} \in P\right\}$.

Assumption.
$\mathbb{E}^{\xi}\left[\tau_{P}\right]$ and $\mathbb{E}^{\xi}\left[\sigma_{P}\right]$ are finite for all initial distributions ξ on M.

This ensures that $\left(Y_{t}\right)$ has finite MFPTs to P and is nonexplosive.

Definition.

Let $K(x, d y)$ be the transition kernel for $\left(J_{n}\right)$ and $\bar{K}(x, d y)=\left\{\begin{array}{ll}K(x, d y), & x \notin P \\ 0, & x \in P\end{array}\right.$.
K and \bar{K} have left/right actions on measures/bounded functions in the usual way.

Theorem.
$\left(J_{n}\right)$ has an invariant probability measure μ, defined by

$$
\mu=Z^{-1} \sum_{n=0}^{\infty} \delta_{R} \bar{K}^{n},
$$

where Z is a normalization constant. Moreover, $\mu(P)>0$.

Proof: Show that the residence time $\mathbb{E}^{R}\left[\sum_{n=0}^{\sigma_{P}} \mathbb{1}_{J_{n} \in .}\right]$ is invariant.

Definition.

Let M_{x} be the milestone containing x and $\tau_{M}^{\times}=\inf \left\{t>0: Y_{t} \in M \backslash \operatorname{int}\left(M_{x}\right)\right\}$.

Definition.
Let M_{x} be the milestone containing x and $\tau_{M}^{\times}=\inf \left\{t>0: Y_{t} \in M \backslash \operatorname{int}\left(M_{x}\right)\right\}$.

Theorem.
With μ the invariant distribution for $\left(J_{n}\right)$,

$$
\mu(P) \mathbb{E}^{R}\left[\tau_{P}\right]=\mathbb{E}^{\mu}\left[\tau_{M}\right]:=\int_{M} \mu(d x) \mathbb{E}^{\times}\left[\tau_{M}^{x}\right] .
$$

Proof: Write $\tau_{P}=\left(\tau_{P}-\tau_{M}^{x}\right)+\tau_{M}^{x}$, condition on $Y_{\tau_{M}^{\star}}=y$, integrate w.r.t. $\mu(d y)$.

Note that $\mathbb{E}^{\times}\left[\tau_{M}^{\chi}\right]$ can be obtained from short trajectories running in parallel. So if we can sample efficiently from μ, we can efficiently estimate $\mathbb{E}^{R}\left[\tau_{P}\right]$.

Theorem.
Assume $\left(J_{n}\right)$ is aperiodic in the following sense:

$$
\text { g.c.d. }\left\{n \geq 1: \mathbb{P}^{R}\left(\sigma_{P}=n-1\right)>0\right\}=1 .
$$

Then for any initial distribution ξ,

$$
\lim _{n \rightarrow \infty}\left\|\xi K^{n}-\mu\right\|_{T V}=0
$$

Proof: Coupling argument, using the fact that R is recurrent for $\left(J_{n}\right)$.

This suggests how to estimate μ : start with a "guess" $\xi=\mu_{0}$, and iterate.

Aside: 1D milestoning.

The milestones are $R=M_{1}, M_{2}, \ldots, M_{m}=P$. If $J_{n} \in M_{1}$, then $J_{n+1} \in M_{2}$. And if $J_{n} \in M_{j}$ for $j=2, \ldots, m-1$, then $J_{n+1} \in M_{j-1}$ or $J_{n+1} \in M_{j+1}$, both w.p. >0.

Here, $\left\|\xi K^{n}-\mu\right\|_{T V} \rightarrow 0$ for all $\xi \Longleftrightarrow$ the number of milestones is odd.
Why? Say there are m milestones. Then $\left(J_{n}\right)$ can go from R to P in $m-1$ or $m+1$ steps, and $m, m+2$ are coprime when m is odd.

If m is even and ξ is supported on the odd indexed milestones, then after an even (resp. odd) number of steps (J_{n}) lies in an odd (resp. even) indexed milestone.

Error Analysis.
The error in milestoning has two sources:

- Error in the approximation $\tilde{\mu}$ of μ;
- Error due to time discretization $\tilde{X}_{n \delta t}$ of $\left(X_{t}\right)$.

Define
$\tilde{\tau}_{M}^{\chi}=\min \left\{n>0:\right.$ line segment from $\tilde{X}_{(n-1) \delta t}$ to $\tilde{X}_{n \delta t}$ intersects $\left.M \backslash \operatorname{int}\left(M_{x}\right)\right\}$.
Theorem.
The error in the Milestoning approximation of the MFPT satisfies
$\left|\mathbb{E}^{R}\left[\tau_{P}\right]-\tilde{\mu}(P)^{-1} \mathbb{E}^{\tilde{\mu}}\left[\tilde{\tau}_{M}\right]\right| \leq c_{1}\left|\mu(P)^{-1}-\tilde{\mu}(P)^{-1}\right|+\tilde{\mu}(P)^{-1}\left(c_{2}\|\mu-\tilde{\mu}\|_{T V}+\phi(\delta t)\right)$,
where ϕ is a function depending only on the time step error, and

$$
c_{1}=\mathbb{E}^{\mu}\left[\tau_{M}\right], \quad c_{2}=\sup _{x \in M} \mathbb{E}^{x}\left[\tau_{M}^{x}\right]
$$

Proof: Triangle inequalities.

Theorem.
The error in the Milestoning approximation of the MFPT satisfies
$\left|\mathbb{E}^{R}\left[\tau_{P}\right]-\tilde{\mu}(P)^{-1} \mathbb{E}^{\tilde{\mu}}\left[\tilde{\tau}_{M}\right]\right| \leq c_{1}\left|\mu(P)^{-1}-\tilde{\mu}(P)^{-1}\right|+\tilde{\mu}(P)^{-1}\left(c_{2}\|\mu-\tilde{\mu}\|_{T V}+\phi(\delta t)\right)$, where ϕ is a function depending only on the time step error, and

$$
c_{1}=\mathbb{E}^{\mu}\left[\tau_{M}\right], \quad c_{2}=\sup _{x \in M} \mathbb{E}^{x}\left[\tau_{M}^{x}\right]
$$

This holds for Exact Milestoning as well as the original Milestoning.
Open problem.
Suppose $\left(X_{t}\right)$ is Brownian dynamics: $d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}} d W_{t}$, and $\tilde{\mu}=\mu_{0}=Z^{-1} e^{-\beta V} d x$. When/how much can $\|\tilde{\mu}-\mu\|_{T V}$ be controlled?

Is an iteration scheme based on powers of a numerical approximant \tilde{K} consistent?
Theorem. (Ferré et. al., 2013)
Suppose $\left(J_{n}\right)$ is geometrically ergodic (GE): there exists $\kappa \in(0,1)$ such that

$$
\sup _{x \in M}\left\|\delta_{x} K^{n}-\mu\right\|_{T V}=O\left(\kappa^{n}\right)
$$

Given $\epsilon>0$, if \tilde{K} is sufficiently close to K in operator norm, then

$$
\sup _{x \in M}\left\|\delta_{x} \tilde{K}^{n}-\tilde{\mu}\right\|_{T V}=O\left(\tilde{\kappa}^{n}\right), \quad\|\mu-\tilde{\mu}\|_{T V}<\epsilon
$$

where $\tilde{\mu}$ is some probability measure on M and $\tilde{\kappa} \in(\kappa, 1)$.

Lemma.
$\left(J_{n}\right)$ is GE if the probability to reach P in n steps has a uniform lower bound.

Lemma.
$\left(J_{n}\right)$ is GE if it is strong Feller and aperiodic, and state space is compact.

Example.

Let $\left(X_{t}\right)$ be Brownian dynamics:

$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}} d B_{t}
$$

and for $N=10$ let

$$
\begin{equation*}
V\left(x_{1}, x_{2}\right)=\sum_{k_{1}=-N}^{N-1} \sum_{k_{2}=-N}^{N-1} C_{k_{1}, k_{2}} f_{k_{1}, k_{2}}\left(x_{1}, x_{2}\right) \tag{1}
\end{equation*}
$$

where $C_{k_{1}, k_{2}}$ is either 0 or sampled uniformly from $\left(-\frac{1}{2 \pi}, \frac{1}{2 \pi}\right)$, each w.p. $\frac{1}{2}$, and

$$
f_{k_{1}, k_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}\cos \left(2 \pi k_{1} x_{1}\right) \cos \left(2 \pi k_{2} x_{2}\right), & \text { w.p. } \frac{1}{3} \\ \cos \left(2 \pi k_{1} x_{1}\right) \sin \left(2 \pi k_{2} x_{2}\right), & \text { w.p. } \frac{1}{3} \\ \sin \left(2 \pi k_{1} x_{1}\right) \sin \left(2 \pi k_{2} x_{2}\right), & \text { w.p. } \frac{1}{3}\end{cases}
$$

V defines a rough energy landscape on the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.

x_{1}

Figure: Source R (center bottom), sink P (center), and other milestones (line segments).

Figure: Contour map of the canonical Gibbs density $Z^{-1} e^{-\beta V}$.

Figure: The stationary measure μ, superimposed on contour lines of V.

Figure: The MFPT vs. the number of iterations, starting at $\mu_{0}(d x)=Z^{-1} e^{-\beta V(x)} d x$.

