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Introduction

Milestoning is a technique for estimating mean first passage times (MFPTs).
Exact Milestoning is a variant which yields exact times in a certain limit.

Milestoning and Exact Milestoning are both practical algorithms.

Both algorithms are appropriate for systems with rough energy landscapes.

Important application: in silico drug design.

Estimating characteristic time for a drug to dissociate from a protein target.
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Introduction

o Efficiency is based on the use of short trajectories simulated in parallel.
@ These trajectories start on a milestone and end at a neighboring milestone.

@ The milestones are usually codimension 1 hypersurfaces.

Examples:

1D milestoning: milestones = level sets of a scalar reaction coordinate
Network milestoning: milestones = faces of Voronoi cell boundaries
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Introduction

The problem.

Let (X;) be a stochastic dynamics and R, P disjoint subsets of state space.
We want to compute the mean first passage time of (X;) from R to P.

Source and sink.

When (X;) reaches P, it immediately restarts at R.

This assumption does not affect the MFPT but it is useful for theory.
Examples to keep in mind:

@ State space is a torus, (X;) is a diffusion;

@ State space is discrete, (X;) is a continuous time Markov process.

Below we think of R as a point, though it can be a distribution too.
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Let (X;) take values in a standard Borel space.

Our goal.
To efficiently compute ER[7p], where 7p is the first time for (X;) to hit P.
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We coarse-grain (X;) using closed sets called milestones.

Milestones.
The milestones are closed sets with pairwise disjoint interiors. J
P
¢
R
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We coarse-grain (X;) using closed sets called milestones.

Milestones. J

P and R are two of the milestones. M is the union of the milestones.

”n
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Assume (X;) is strong Markov with cadlag paths.

Jump chain.
Keep the first hit points, J,, on the milestones. (J,) is a Markov chain on M. J
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Assume (X;) is strong Markov with cadlag paths.

Sojourn times. J

Keep the times, 7,, between the first hit points. 7, depends only on J,_; and J,.

1
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Define Yy =J,for o+ ...+ 7, <t <7+ ...+ Tpr1, and let (Y;) start on M.

Theorem.
(Y:) is a semi-Markov process on M with the same FPT to P as (X;). J

Proof: This is clear from construction...

Definition.
Let p =inf{t >0 : Y; € P} and op = min{n >0 : J, € P}. J

Assumption.
E¢[7p] and E&[op] are finite for all initial distributions & on M. J

This ensures that (Y;) has finite MFPTs to P and is nonexplosive.
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Definition.

K(x,dy), x¢&P

Let K(x, dy) be the transition kernel for (J,) and K(x, dy) = {O cp
: X

K and K have left/right actions on measures/bounded functions in the usual way.

Theorem.

(J,) has an invariant probability measure i, defined by

n= z ! i(SRRn,
n=0

where Z is a normalization constant. Moreover, p(P) > 0.

Proof: Show that the residence time ERf [>°77 1, ¢ ] is invariant.
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Definition.
Let M, be the milestone containing x and 773 = inf{t >0 : Y; € M\ int(M,)}. J

R
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Definition.
Let M, be the milestone containing x and 73 = inf{t >0 : Y, € M\ int(M,)}.

V.

Theorem.
With p the invariant distribution for (J,),

H(PYER[7p] = B [ry] := /M (B[]

Proof: Write 7p = (7p — 7p;) + Tp, condition on Y.« =y, integrate w.r.t. u(dy).

Note that EX[7}] can be obtained from short trajectories running in parallel.
So if we can sample efficiently from p, we can efficiently estimate ER[7p].
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Theorem.

Assume (J,) is aperiodic in the following sense:
gcd{n>1:PRlop=n-1)>0}=1
Then for any initial distribution &,

EK" — pl|7v = 0.

lim
n— oo

Proof: Coupling argument, using the fact that R is recurrent for (J,).

This suggests how to estimate yu: start with a “guess” £ = g, and iterate.
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Aside: 1D milestoning.

The milestones are R = My, My, ..., M,, = P. If J, € My, then J,11 € M. And
if Jye Mjforj=2,...,m—1, then J, 11 € Mj_; or Joy1 € Mj;1, both w.p. > 0.

M, =R My Ms M, M, =P

Here,

|EK" — p]| v — 0O for all £ <= the number of milestones is odd.
Why? Say there are m milestones. Then (J,) can go from R to P in m—1 or
m + 1 steps, and m, m + 2 are coprime when m is odd.

If mis even and & is supported on the odd indexed milestones, then after an even
(resp. odd) number of steps (J,) lies in an odd (resp. even) indexed milestone.
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Error Analysis.
The error in milestoning has two sources:
@ Error in the approximation fi of y;
e Error due to time discretization X,s of (X2).

Define
779 =min{n > 0 : line segment from )N((,,_l)(;t to X,s: intersects M \ int(M,)}.

Theorem.
The error in the Milestoning approximation of the MFPT satisfies

ER[rp]—fi(P) "X [Fm]| < calu(P) "t =fa(P) M +(P) "t (callu — fill 7v + (61))
where ¢ is a function depending only on the time step error, and

a = Ef[rum], ¢ = sup EX[ry].
xEM

Proof: Triangle inequalities.
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Theorem.
The error in the Milestoning approximation of the MFPT satisfies

[ER[7p]—i(P) "B [Fm]| < clp(P) " —ji(P) M +ia(P) ™ (calli — ill v + ¢(61)) ,
where ¢ is a function depending only on the time step error, and

a = Ef[rum], ¢ = sup EX[r5].
xeM

This holds for Exact Milestoning as well as the original Milestoning.

Open problem.

Suppose (X;) is Brownian dynamics: dX; = =V V/(X;) dt + /28~ dW,, and
fi = po = Z~*e#Y dx. When/how much can ||ji — || v be controlled?
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Theory Numerical error

Is an iteration scheme based on powers of a numerical approximant K consistent?

Theorem. (Ferré et. al., 2013)
Suppose (J,) is geometrically ergodic (GE): there exists k € (0,1) such that

sup [|6xK" — pflrv = O(k").
xeM

Given € > 0, if K is sufficiently close to K in operator norm, then
sup [|0,K” — fill rv = O(R"),  |lpw—fill7v <,
xeM

where fi is some probability measure on M and & € (k,1).

Lemma.

(Jn) is GE if the probability to reach P in n steps has a uniform lower bound.

Lemma.

(J,) is GE if it is strong Feller and aperiodic, and state space is compact.
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Example.

Let (X;) be Brownian dynamics:
dX; = =V V(X)) dt + /28~ 1dB,

and for N = 10 let

V(x1, %) Z Z Cho ko fra ko (X1 32))4 (1)

k=—N kg=—N
where Cy, , is either 0 or sampled uniformly from (—%, %) each w.p. % and

cos(2mkyx1) cos(2mkaxa),
fio ko (X1, X2) = { cos(2mkyx1) sin(2mkaxa),
sin(2mkixq ) sin(2mkoxs),

g 2 =
T T T
Wl Wl Wl

V defines a rough energy landscape on the torus R?/Z2.
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T2

x1

Figure: Source R (center bottom), sink P (center), and other milestones (line segments).
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Figure: The stationary measure u, superimposed on contour lines of V.
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Figure: The MFPT vs. the number of iterations, starting at po(dx) = Z te #V®dx.
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