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Introduction

Milestoning is a technique for estimating mean first passage times (MFPTs).

Exact Milestoning is a variant which yields exact times in a certain limit.

Milestoning and Exact Milestoning are both practical algorithms.

Both algorithms are appropriate for systems with rough energy landscapes.

Important application: in silico drug design.

Estimating characteristic time for a drug to dissociate from a protein target.
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Introduction

Efficiency is based on the use of short trajectories simulated in parallel.

These trajectories start on a milestone and end at a neighboring milestone.

The milestones are usually codimension 1 hypersurfaces.

Examples:

1D milestoning: milestones = level sets of a scalar reaction coordinate

Network milestoning: milestones = faces of Voronoi cell boundaries
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Introduction

The problem.

Let (Xt) be a stochastic dynamics and R ,P disjoint subsets of state space.

We want to compute the mean first passage time of (Xt) from R to P .

Source and sink.

When (Xt) reaches P , it immediately restarts at R .

This assumption does not affect the MFPT but it is useful for theory.

Examples to keep in mind:

State space is a torus, (Xt) is a diffusion;

State space is discrete, (Xt) is a continuous time Markov process.

Below we think of R as a point, though it can be a distribution too.
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Setup

Let (Xt) take values in a standard Borel space.

Our goal.

To efficiently compute E
R [τP ], where τP is the first time for (Xt) to hit P .

P

R

τP
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Setup

We coarse-grain (Xt) using closed sets called milestones.

Milestones.

The milestones are closed sets with pairwise disjoint interiors.

PτP

R
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Setup

We coarse-grain (Xt) using closed sets called milestones.

Milestones.

P and R are two of the milestones. M is the union of the milestones.

PτP

R
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Setup

Assume (Xt) is strong Markov with càdlàg paths.

Jump chain.

Keep the first hit points, Jn, on the milestones. (Jn) is a Markov chain on M.

J2

J3

J4

J1

R

J5 ∈ P

= J0 = J6
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Setup

Assume (Xt) is strong Markov with càdlàg paths.

Sojourn times.

Keep the times, τn, between the first hit points. τn depends only on Jn−1 and Jn.

R

τ1

τ4

τ5

P

τ2

τP = τ1 + . . .+ τ5

τ3
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Theory Semi-Markov viewpoint

Define Yt = Jn for τ0 + . . .+ τn ≤ t < τ0 + . . .+ τn+1, and let (Yt) start on M.

Theorem.

(Yt) is a semi-Markov process on M with the same FPT to P as (Xt).

Proof: This is clear from construction...

Definition.

Let τP = inf{t > 0 : Yt ∈ P} and σP = min{n ≥ 0 : Jn ∈ P}.

Assumption.

E
ξ[τP ] and E

ξ[σP ] are finite for all initial distributions ξ on M.

This ensures that (Yt) has finite MFPTs to P and is nonexplosive.
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Theory The invariant measure

Definition.

Let K (x , dy) be the transition kernel for (Jn) and K̄ (x , dy) =

{

K (x , dy), x /∈ P

0, x ∈ P
.

K and K̄ have left/right actions on measures/bounded functions in the usual way.

Theorem.

(Jn) has an invariant probability measure µ, defined by

µ = Z−1
∞
∑

n=0

δR K̄
n,

where Z is a normalization constant. Moreover, µ(P) > 0.

Proof: Show that the residence time E
R [

∑σP

n=0 ✶Jn∈·] is invariant.
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Theory The exact milestoning equation

Definition.

Let Mx be the milestone containing x and τ xM = inf{t > 0 : Yt ∈ M \ int(Mx)}.

P

x

R

τ
x

M
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Theory The exact milestoning equation

Definition.

Let Mx be the milestone containing x and τ xM = inf{t > 0 : Yt ∈ M \ int(Mx)}.

Theorem.

With µ the invariant distribution for (Jn),

µ(P)ER [τP ] = E
µ[τM ] :=

∫

M

µ(dx)Ex [τ xM ].

Proof: Write τP = (τP − τ xM) + τ xM , condition on Yτ x
M
= y , integrate w.r.t. µ(dy).

Note that Ex [τ xM ] can be obtained from short trajectories running in parallel.

So if we can sample efficiently from µ, we can efficiently estimate E
R [τP ].
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Theory Convergence to stationarity

Theorem.

Assume (Jn) is aperiodic in the following sense:

g.c.d.{n ≥ 1 : PR(σP = n − 1) > 0} = 1.

Then for any initial distribution ξ,

lim
n→∞

‖ξK n − µ‖TV = 0.

Proof: Coupling argument, using the fact that R is recurrent for (Jn).

This suggests how to estimate µ: start with a “guess” ξ = µ0, and iterate.
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Theory Convergence to stationarity

Aside: 1D milestoning.

The milestones are R = M1,M2, . . . ,Mm = P . If Jn ∈ M1, then Jn+1 ∈ M2. And
if Jn ∈ Mj for j = 2, . . . ,m− 1, then Jn+1 ∈ Mj−1 or Jn+1 ∈ Mj+1, both w.p. > 0.

M2 M3 M4
. . . Mm = PM1 = R

Here, ‖ξK n − µ‖TV → 0 for all ξ ⇐⇒ the number of milestones is odd.

Why? Say there are m milestones. Then (Jn) can go from R to P in m − 1 or
m + 1 steps, and m, m + 2 are coprime when m is odd.

If m is even and ξ is supported on the odd indexed milestones, then after an even
(resp. odd) number of steps (Jn) lies in an odd (resp. even) indexed milestone.
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Theory Convergence to stationarity

Error Analysis.

The error in milestoning has two sources:

Error in the approximation µ̃ of µ;

Error due to time discretization X̃nδt of (Xt).

Define
τ̃ xM = min{n > 0 : line segment from X̃(n−1)δt to X̃nδt intersects M \ int(Mx)}.

Theorem.

The error in the Milestoning approximation of the MFPT satisfies

|ER [τP ]−µ̃(P)−1
E
µ̃[τ̃M ]| ≤ c1|µ(P)

−1−µ̃(P)−1|+µ̃(P)−1 (c2‖µ− µ̃‖TV + φ(δt)) ,

where φ is a function depending only on the time step error, and

c1 = E
µ[τM ], c2 = sup

x∈M

E
x [τ xM ].

Proof: Triangle inequalities.
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Theory Convergence to stationarity

Theorem.

The error in the Milestoning approximation of the MFPT satisfies

|ER [τP ]−µ̃(P)−1
E
µ̃[τ̃M ]| ≤ c1|µ(P)

−1−µ̃(P)−1|+µ̃(P)−1 (c2‖µ− µ̃‖TV + φ(δt)) ,

where φ is a function depending only on the time step error, and

c1 = E
µ[τM ], c2 = sup

x∈M

E
x [τ xM ].

This holds for Exact Milestoning as well as the original Milestoning.

Open problem.

Suppose (Xt) is Brownian dynamics: dXt = −∇V (Xt) dt +
√

2β−1 dWt , and
µ̃ = µ0 = Z−1e−βV dx . When/how much can ‖µ̃− µ‖TV be controlled?
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Theory Numerical error

Is an iteration scheme based on powers of a numerical approximant K̃ consistent?

Theorem. (Ferré et. al., 2013)

Suppose (Jn) is geometrically ergodic (GE): there exists κ ∈ (0, 1) such that

sup
x∈M

‖δxK
n − µ‖TV = O(κn).

Given ǫ > 0, if K̃ is sufficiently close to K in operator norm, then

sup
x∈M

‖δx K̃
n − µ̃‖TV = O(κ̃n), ‖µ− µ̃‖TV < ǫ,

where µ̃ is some probability measure on M and κ̃ ∈ (κ, 1).

Lemma.

(Jn) is GE if the probability to reach P in n steps has a uniform lower bound.

Lemma.

(Jn) is GE if it is strong Feller and aperiodic, and state space is compact.
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Example

Example.

Let (Xt) be Brownian dynamics:

dXt = −∇V (Xt) dt +
√

2β−1dBt ,

and for N = 10 let

V (x1, x2) =
N−1
∑

k1=−N

N−1
∑

k2=−N

Ck1,k2 fk1,k2(x1, x2), (1)

where Ck1,k2 is either 0 or sampled uniformly from
(

− 1
2π ,

1
2π

)

, each w.p. 1
2 , and

fk1,k2(x1, x2) =











cos(2πk1x1) cos(2πk2x2), w.p. 1
3 ,

cos(2πk1x1) sin(2πk2x2), w.p. 1
3 ,

sin(2πk1x1) sin(2πk2x2), w.p. 1
3 .

V defines a rough energy landscape on the torus R2/Z2.
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Example

x1

x
2

Figure: Source R (center bottom), sink P (center), and other milestones (line segments).
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Example
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Figure: Contour map of the canonical Gibbs density Z−1e−βV .
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Example
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Figure: The stationary measure µ, superimposed on contour lines of V .
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Example
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Figure: The MFPT vs. the number of iterations, starting at µ0(dx) = Z−1e−βV (x)dx .
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