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Synopsis This article provides models and code for numerically simulating muscle–fluid–structure interactions (FSIs).

This work was presented as part of the symposium on Leading Students and Faculty to Quantitative Biology through Active

Learning at the society-wide meeting of the Society for Integrative and Comparative Biology in 2015. Muscle mechanics

and simple mathematical models to describe the forces generated by muscular contractions are introduced in most

biomechanics and physiology courses. Often, however, the models are derived for simplifying cases such as isometric

or isotonic contractions. In this article, we present a simple model of the force generated through active contraction of

muscles. The muscles’ forces are then used to drive the motion of flexible structures immersed in a viscous fluid. An

example of an elastic band immersed in a fluid is first presented to illustrate a fully-coupled FSI in the absence of any

external driving forces. In the second example, we present a valveless tube with model muscles that drive the contraction

of the tube. We provide a brief overview of the numerical method used to generate these results. We also include as

Supplementary Material a MATLAB code to generate these results. The code was written for flexibility so as to be easily

modified to many other biological applications for educational purposes.

Introduction

Conceptual and mathematical models describing

muscular contraction are a standard topic in

introductory biology, physiology, and mathematical

biology courses (Schmidt-Nielsen 1997; Keener and

Sneyd 1998; Vogel 2013). Often these models are

introduced in the context of an isolated muscle

performing isometric or isotonic contractions. The

integration of muscle models within an organ or

organismal system that include changes in velocities

and loads can provide additional insights into the

implications of the dynamics of contractions.

The ways that organisms pump fluid, swim, and

fly are also standard topics in physiology and

biomechanics courses (Vogel 1996; Schmidt-Nielsen

1997). It is often noted that biological materials are

flexible, and the large deformations of these

structures can have significant implications for the

performance of the organisms. For example, the

deformations of flexible fish fins (Clark and Smits

2006; Shoele 2008) and flexible jellyfish bells

(Gemmell et al. 2013) can enhance swimming

performance, and the dynamics of flexible leaflets

on heart valves are important for the proper

transport of blood through the heart (Griffith et al.

2009). Mathematical models that integrate flexible

structures and fluids are, however, difficult to study

in the classroom because analytical solutions are

typically not available.

In this article, we incorporate a mathematical

model of muscle mechanics into a numerical

simulation of a flexible structure immersed in a

fluid. We have developed MATLAB software written

for versatility and ease of use rather than for

computational performance. We have made the

program flexible enough so that interested students

and faculty can modify the code for a variety of
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applications. We provide two simple examples to

illustrate the interaction of fluid–structure

interaction (FSI) and muscle mechanics. The first

example is a simple elastic band immersed in a

fluid that resists stretching. The second example is

an elastic tube with muscles that drive a periodic

contraction.

Methods

Simple models of muscle mechanics

One of the earliest mathematical models of the forces

generated by muscular contraction dates back to Hill

(1938). Since then, the Hill model has been extended

to consider additional features of muscles, such as

the compliance of filaments (Goldman and Huxley

1994; Campbell 2006) and the formation of

individual myosin cross-bridges (Huxley 1957;

Keener and Sneyd 1998). Here, for purposes of

illustration, we present one simple muscle model

that incorporates many of the salient properties of

muscles.

The force a muscle can exert depends upon how

fast it shortens as well as the length of the muscle

while it contracts. Let’s begin by first describing a

model that captures the force generated as a function

of the muscle’s velocity of contraction. In general,

the faster the muscle shortens, the less force it can

exert. The Hill model is commonly used to describe

this force–velocity relationship (Hill 1938; Fung

1993) and is given by the following equation:

VF ¼
bðFmax � FÞ

F þ a
; ð1Þ

where VF is the shortening velocity of the muscle

fiber, F is the force exerted by the fiber, and Fmax

is the maximum load with zero velocity of

contraction. The constants a and b may be

determined experimentally, and note that Vmax ¼ b

Fmax=a is the maximum velocity under no load. An

isometric contraction refers to the scenario when

the velocity of contraction is zero. An isotonic

contraction refers to the case when the tension

generated remains unchanged as the muscle’s

length changes. The maximum load possible for a

given velocity may be found on the force velocity

curve.

It is also well known that the maximum force a

muscle can generate is a function of its length. When

the muscle is stretched, only a fraction of the myosin

heads on each thick filament can reach a thin

filament. In this case, the active force that can be

generated is small. The maximum force is typically

generated at intermediate lengths when all of the

myosin heads are within reach of the thin filaments.

With further shortening, the thick filaments interfere

with the Z-disks, and the force generated falls

rapidly. A simple model describing the length–

tension relationship of muscle is as follows (Hatze

1981):

FI ¼ FIOexp �
Q � 1

SK

� �2
" #

; Q ¼
LF

LFO

; ð2Þ

where FI is the maximum isometric tension at a

given length, FIO is the maximum isometric force

produced at the optimum length of the muscle

fibers, LF is the length of the muscle fibers, LFO is

the length at which the muscle fibers exert their

maximum tension, and SK is a constant specific

for each muscle where SK40.28.

A simple model that combines the length–tension

and force–velocity profiles is derived by simply

taking the product of these normalized relationships

(Challis and Kerwin 1994). Let’s divide Equations (1)

and (2) by Fmax and FIO, respectively. Let af represent

the activation strength of the muscle which varies

from 0 to 1. Also let F~ max describe the maximum

isometric force produced at the optimum length of

the muscle fibers under full activation. Then the

model describing the force the muscle generates for

a given length and velocity, FMðLF;VFÞ, can be writ-

ten as

FM ¼ af
~F maxF1ðLFÞF2ðVFÞ; ð3Þ

where F1ðLFÞ and F2ðVFÞ are given by

F1ðLFÞ ¼ exp �
ðLF=LFOÞ � 1

SK

� �2
" #

; and ð4Þ

F2ðVFÞ ¼
1

Fmax

bFmax � aVF

VF þ b

� �
: ð5Þ

The immersed boundary method

Since its introduction by Peskin over 40 years ago

(Peskin 1972), the immersed boundary (IB) method

has been used successfully to model a variety of

problems in the dynamics of biological fluids.

Examples include insect flight (Miller and Peskin
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2009), lamprey swimming (Tytell et al. 2010), cardiac

blood flow (Peskin and McQueen 1996), cell

deformation by shear flows (Bottino 1998), and the

formation of blood clots by the aggregation of

platelets (Skorczewski et al. 2014).

One of the main advantages of the IB method is

that it is a straightforward way to compute FSIs in

the sense that a uniform computational grid can

be used to solve the equations of fluid motion with

a standard fluid solver. The IB is represented by a

collection of Lagrangian markers that move

independently from the grid, and the effect of the

motion of the boundary is transferred to the grid

through a local stencil near each marker point that

is simple to implement. The IB method does not

require a non-uniform or moving mesh.

We provide a short overview of the mathematical

formulation of the IB method and then provide some

intuition for its implementation. The equations of two-

dimensional (2D) motion for the fluid are given by the

Navier–Stokes equations in Eulerian form:

�
@u

@t
þ u x; tð Þ � ru x; tð Þ

� �
¼ �rp x; tð Þ þ ��u x; tð Þ þ f x; tð Þ;

ð6Þ

r � u x; tð Þ ¼ 0; ð7Þ

where u(x, t) is the velocity of the fluid, p(x, t) is the

pressure, f x; tð Þ is the force per unit area applied to the

fluid by the IB, � is the density of the fluid, and � is

the dynamic viscosity of the fluid. The independent

variables are the time t and the position x. Figure 1

shows the IB defined on a curvilinear mesh immersed

in a fluid defined on a fixed Cartesian grid. Note that

bold letters represent vector quantities, lower-case letters

represent Eulerian variables, and upper-case letters rep-

resent Lagrangian variables. Equation (7) is the condi-

tion that the fluid is incompressible.

The interaction and forcing equations between the

fluid and the boundary are then given by:

f x; tð Þ ¼

Z
F n; tð Þ� x � X n; tð Þð Þdn; ð8Þ

@X n; tð Þ

@t
¼ U X n; tð Þð Þ ¼

Z
u x; tð Þ� x � X n; tð Þð Þdx;

ð9Þ

where F n; tð Þ is the force per unit length applied by

the boundary to the fluid as a function of Lagrangian

position and time, � xð Þ is a 2D delta function, X n; tð Þ

gives the Cartesian coordinates at time t of the mate-

rial point labeled by the Lagrangian parameter n.

Equation (8) applies force from the boundary to the

fluid grid, and Equation (9) evaluates the velocity of

the local fluid at the boundary. The boundary is then

moved at the local fluid’s velocity, and this enforces

the no-slip condition. Each of these equations involves

a 2D Dirac delta function �, which acts in each case as

the kernel of an integral transformation. These equa-

tions convert Lagrangian variables to Eulerian vari-

ables and vice versa.

Smoothed delta functions for force spreading and

interpolation of velocity

Since the Lagrangian array of boundary points does

not necessarily coincide with the fixed Eulerian lat-

tice used for the computation of the fluid velocities,

a smoothed approximation to the Dirac delta func-

tion is used to handle the fluid–boundary interac-

tion. This approximate delta function is used to

apply a force from the IB to the underlying fluid

grid in a specific region of the Eulerian lattice,

whose points are within two nodal points of the

Lagrangian structure. The approximate delta func-

tion is also used to interpolate the fluid’s velocity

onto the Lagrangian structure, by considering only

Fig. 1 An IB discretized on a curvilinear mesh immersed in a fluid

discretized on a fixed Cartesian grid. An Eulerian description is

used to describe the fluid where u is the velocity, p is the pressure,

and f is the force’s density. A Lagrangian description is used to

describe the IB where X is the position of the boundary point

labeled r and F is the force per unit length on the boundary.
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the velocity of Eulerian nodal points within two lat-

tice points of the IB. The approximate 2D Dirac

delta function, d�x , used in these calculations is

given by the following equations:

d�xðxÞ ¼ �x�2�
x

�x

� �
�

y

�x

� �
; ð10Þ

� rð Þ ¼

1

4
1þ cos

�r

2

� �� �
; jrj � 2

0; otherwise

8<
:

where �x is the size of the spatial step in the Eulerian

grid and x¼ (x, y). Peskin and McQueen (1996) pre-

viously described this choice of the delta function.

Other approximate delta functions have also been

used successfully (Peskin 2002). Note that since

d�xðxÞ is nonzero only in a small region centered

on the boundary, and the forces are spread to a

thin layer whose width decreases as the grid is refined.

The numerical algorithm

In an IB simulation, we discretize the Navier–Stokes

equations and solve for the velocities and pressures at

times tk ¼ k�t and positions xij ¼ ði�x; j�yÞ ¼

ðxi; yjÞ. We also discretize our boundaries and solve

for the position of each Lagrangian point n with re-

spect to the Cartesian grid at each time. We denote

the position of the point labeled n at time tk as

X nðtkÞ. To update the system of equations from

time tk to time tkþ1, we performed the following steps:

(1) Solved elasticity equations and any other equa-

tions describing the forces applied to the

boundary to determine the force Fn at each

boundary point with position Xn.

(2) Spread the forces on the Lagrangian curvilinear

mesh to the fixed Cartesian grid on which the

Navier–Stokes equations are solved. The total

force density fij on the Cartesian grid at loca-

tion xij ¼ ðxi; yjÞ is given by

f ij ¼
XN

n¼1

Fnd�xðxij � XnÞ�n: ð11Þ

Note that d�xðxij � XnÞ is the smoothed ap-

proximation to the 2D delta function that

was described in the section ‘‘Smoothed delta

functions for force spreading and interpolation

of velocity’’. The spacing between the IB points

is given by �n. A visual representation of this

process is given in the left panel of Fig. 2. Note

that the force is spread to nearby nodes on the

fixed Cartesian grid.

(3) Solved the Navier–Stokes equations using the

force density f ij to drive the fluid. Most Navier–

Stokes solvers can be used for this purpose.

(4) Moved the IB points at the velocity of the local

fluid, uij , to enforce the no-slip condition. It is

necessary to interpolate the grid velocity to the

IB point to obtain the fluid’s velocity at the

boundary point, Un, as follows:

Xkþ1
n � Xk

n

�t
¼ Un ¼

XN

n¼1

uijd�xðxij � XnÞ�x2 ð12Þ

(5) A visual representation is given on the right

panel of Fig. 2. Note that nearby nodes on

the fixed Cartesian grid are used to determine

the velocity at the IB point.

Any updates in target-point positions, resting curva-

tures, or resting spring lengths can be made at this time.

The elastic boundaries

The immersed boundaries will be made of elastic

springs that resist stretching (Hookean springs) and

bending (torsional springs). To model the resistance

to stretching, assume that elastic links connecting

adjacent boundary points act as linear springs. Let

boundary points m and n have the corresponding

position coordinates Xm and Xn, and let these

points be connected by elastic link w. The stretching

energy function for this link can then be written as

ES Xm;Xnð Þ ¼
1

2
ks kXm � Xnk � lwð Þ

2; ð13Þ

where lw is the resting length of the spring and ks is

its stiffness coefficient. Note that ES is equal to zero

when the distance between the points equals the rest-

ing length.

Resistance to bending can be modeled by a pair of

elastic links that emanate from the same IB point.

Deviations in the angle between these links from a

prescribed angle, �, are penalized. Consider a triplet

of consecutive points labeled m, n, and o with cor-

responding position coordinates Xm, Xn, and Xo. The

bending energy is then defined as

EB Xm;Xn;Xoð Þ ¼
1

2
kb z � Xo � Xnð Þ � Xn � Xmð Þ � �ð Þ

2;

ð14Þ

904 N. A. Battista et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/55/5/901/607419 by guest on 20 August 2022



where kb is the bending stiffness, � is the prescribed

curvature, and z¼ [0,0,1]. � is determined using

the preferred angle, �, and the resting lengths between

the IB points, lm,n and ln,o, using the following

equation:

� ¼ lm;nln;osinð�Þ: ð15Þ

In some applications, it is desirable to move the

boundary with some prescribed motion. In the

framework of the IB, the position of the boundary

is not prescribed. Preferred motion, however,

can be imposed by penalizing deviations from a

prescribed location that may change in time.

This is done using a ‘‘tether’’ energy. Assume that

the IB point n with coordinates Xn is connected to

a tether point with position XT
n by a linear spring of

zero resting length. The resulting energy is then

given as

ET Xnð Þ ¼
1

2
kT kXn � XT

nk
� �2

; ð16Þ

where kT is the stiffness of the tether spring. The

difference between the actual location of the IB

point and its preferred position can be controlled

with the constant kT. Note that tether points do not

interact with the fluid and are not IB points.

The total elastic energy is calculated as the sum of

the stretching, bending, and target energies for each

IB point. For example, if one side of a 2D heart tube

is made up of a line of N IB points arranged in order

so that each pair of consecutive points is joined by a

linear spring that resists stretching and each consec-

utive triplet resists bending, then

E X; tð Þ ¼
XN�1

i¼1

ES Xi;Xiþ1ð Þ þ
XN�1

i¼2

EB Xi�1;Xi;Xiþ1ð Þ þ
XN

i¼1

ETðXiÞ:

ð17Þ

The elastic force at point n is then calculated using

the derivatives of the elastic energy with respect to the

coordinates in Xn:

Fn X; tð Þ ¼ �
@EðX; tÞ

@X n

: ð18Þ

Values of the constants ks, kb, �, and l must be

chosen to specify reasonable energies and forces as-

sociated with the boundary. Each of these constants

can also vary in space and time. More details on this

approach are provided by Peskin (2002).

Fig. 2 Visual representation of force spreading and interpolation of velocity. Left panel: The three points represent a beam that resists

bending. The large vector labeled F(q,t) gives the elastic force due to the resistance to bending. This force is spread to the fluid using a

smoothed approximation to the delta function. The points of the fluid grid that feel this force are shaded in gray. Right panel: The fluid velocity

at the Lagrangian point labeled X(q,t) is determined by taking a weighted average of local fluid grid-points highlighted in the gray box.
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The MATLAB code

The version of the MATLAB code at the time of

submission of this article is available as a

Supplementary File. As we continue to update the

code with additional features, the most recent ver-

sion will be available from https://github.com/fairy-

flies9/2D_IBM_MATLAB. The main folder includes

an ‘‘Examples’’ folder and an ‘‘IBM_Blackbox’’

folder. The README file provides a general over-

view of how the code may be modified to simulate

new applications. To run one of the example sim-

ulations, go into that simulation folder and type

‘‘main2d’’ in the MATLAB command window.

You can also modify the input parameters in the

input2d file. This allows one to change properties

of the fluid, temporal information, the Eulerian

grid structure, flags for the mathematical model(s)

used in constructing the IB, and flags for printing

and displaying output. More details on the input2d

file are given in Appendix 2. The ‘‘IBM_Blackbox’’

folder includes all of the functions necessary to run

the IB simulations, including functions to calculate

elastic deformation forces, functions to spread the

forces from the boundary to the fluid grid, the

Navier–Stokes solver, and functions to interpolate

the fluid velocity at the boundary and update its

position.

The particular numerical scheme used in this

article has been described in detail by Peskin and

McQueen (1996), and more details on the method

may be found in Peskin (2002). The system of

integro-differential equations given by Equation

(6) was solved on a rectangular grid with periodic

boundary conditions in both directions. The

Navier–Stokes equations were discretized on a

fixed Eulerian grid, and the immersed boundaries

were discretized on a Lagrangian array of points.

Details of the fluid solver used are given in

Appendix 1.

The computational domain for the fluid was set to

128 � 128 spatial steps. Note that this allows for fast

simulations, but complicated boundaries and flows

will require a much finer grid to accurately describe

the dynamics of the fluid. The boundary was con-

structed such that the distance between each bound-

ary point was set to dn ¼ dx=2, where dx is the

spatial step size of the fluid grid. The stiffness coef-

ficient of the virtual springs attaching the boundary

to tether points was chosen to minimize deviations

from the preferred position. The time step size, dt,

was chosen to ensure stability of the numerical

method. If the code is modified such that the simu-

lation becomes unstable where very large and unre-

alistic velocity fields are generated, the size of the

time step should likely be reduced.

Dimensionless units are used in the code, and the

Reynolds number (Re) is varied from about 0.1 to

100. The Re may be found by nondimensionalizing

the Navier–Stokes equations as follows:

@u0

@t
¼ u0 � r0u0 ¼ r0p0 þ

1

Re
r0

2
u0 þ f 0;

r0 � u0 ¼ 0; ð19Þ

Re ¼
�LU

�
; ð20Þ

u0 ¼
u

U
t 0 ¼

tU

L

p0 ¼
p

�U 2
x0 ¼

x

L

f 0 ¼
�U 2f

L
r0 ¼ Lr: ð21Þ

where L is the characteristic scale of the length (such

as the diameter of a rubber band or the tube) and U

is the characteristic velocity. In the case of the

pumping-tube example, U ¼ L t 0, where t 0 is the

characteristic time and is set equal to the pumping

period. The dimensionless variables are u0, x0, p0, t0,

and f0 which represent the dimensionless velocity,

position, pressure, time, and force per unit area, re-

spectively. Re may be thought of as being roughly

proportional to the ratio of inertial to viscous forces

in the fluid.

We have written the examples using dimension-

less numbers to make it easier to apply the code to

new situations. We have found that students find

it challenging to change all of the necessary param-

eters when moving between problems that differ

in scale by orders of magnitude. Such changes

require modifications of spring stiffnesses, bend-

ing stiffnesses, velocities, and scales of length and

time.

For 2D simulations, stiffnesses are given for a

sheet of unit length in the third dimension. In
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dimensional form, ks and kT have units of N/m. Both

can be nondimensionalized using the following equa-

tions:

k0s;T ¼

ks;T

�U 2L
;Re� 1

ks;T

�U
;Re� 1:

8>>><
>>>:

ð22Þ

Similarly, kb has units of N*m and may be non-

dimensionalized as follows:

k0b ¼

kb

�U 2l2
nL
;Re� 1

kb

�Ul2
n

;Re� 1;

8>>><
>>>:

ð23Þ

where ln is the length of the elastic links making up

the triplet that forms the torsional spring. Typically,

ln will be set to ds, the distance between boundary

points. Note that the exact nondimensionalization

for intermediate Re is not straightforward, but

using the higher Re approximation for Re 4 1 and

the lower Re approximation for Re 5 1 should pro-

vide a reasonable estimate. Since elastic boundaries

are approximated using linear and torsional springs,

the values of kb;s;T are not equivalent to the flexural

stiffness or tensile stiffness used in a continuum

model of the material.

Results

A variety of examples are included in the current

release of the MATLAB code to illustrate the various

capabilities of the program. We highlight a simple

FSI problem of a rubber band and a more compli-

cated muscle–FSI simulation of a pumping tube

below. Some of the additional examples in the cur-

rent release include a deformed beam that is free to

move in a fluid, flow past a cylinder, and flow driven

by an impedance pump. We will continue to develop

and post examples, particularly those that include the

use of muscle fibers. Specific lesson plans that make

use of this code will be added to the github reposi-

tory in the future, and the best examples will be

submitted to the SICB Digital Library. We strongly

encourage educators who use the code in their

courses to send us new examples and lesson plans.

We will be happy to add these examples to the

github repository.

The rubber band

The rubber band is one of the simplest examples of a

problem in fully coupled FSI. We have found it

useful to begin with this example to allow students

to gain intuition for FSI before moving to more

complicated models. In this problem, we modeled

an elastic band using spring connections between ad-

jacent Lagrangian points. The springs all have a pre-

ferred zero resting length, as well as fixed stiffness of

the spring.

The simulation is initialized with the rubber band

stretched into an elliptical shape with a fixed volume

of fluid trapped within the elastic band. Since the

resting length is zero, the rubber band will be

driven toward the lowest state of energy that mini-

mizes length for a given internal volume, i.e., a circle.

As it moves toward this equilibrium position, it will

contract and expand periodically across the semi-

major and semi-minor directions of the axis.

We illustrate three different examples of the

rubber-band model, each with the same spring pa-

rameters, e.g., the same resting lengths, spring stiff-

nesses, and equivalently perturbed initial state (see

Fig. 3). The structures are, however, immersed

within fluids of different dynamic viscosities. The

case with the highest viscosity, m¼ 10, damps the

oscillations such that the structure reaches its equi-

librium shape within 0.05 s. For the lowest viscosity

case, m¼ 0.1, the rubber band oscillates along the

long and short semi-major and semi-minor axes.

The elastic tube

A straightforward example of muscular driven

motion of a fluid is the contraction of elastic tubes

within organisms. Muscle-driven contraction of a

tube can be seen in the hearts of many invertebrates,

all vertebrate embryonic hearts, and the lymphan-

gions of the lymphatic system.

We have constructed a simplified 2D (not axisym-

metric) example of an elastic tube. Note that this is

analogous to the case of two infinitely long elastic

plates that are driven by muscle fibers that run

normal to the two plates. We immerse this 2D elastic

tube in fluid and tether it in place at both ends. The

walls of the tube resist bending and stretching. The

strength of the muscle’s activation is given by a si-

nusoidal function of time. The muscles are activated

by a traveling contractile wave throughout the

middle section of the elastic tube, generating a
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contraction that is similar to that observed in the

lymphangions under some conditions.

Snapshots showing the x-component of velocity,

vorticity, and pressure fields at several instances in

time are shown in Fig. 4. The output can be changed

in the input2d file to view vectors and magnitude of

velocity, and other quantities of interest (Appendix

2). The user is encouraged to view the output files in

vtk file format using freely available software pack-

ages such as VisIt and Paraview. These packages

allow the user to easily modify plots, analyze volu-

metric flow rates, and include colorbars through a

GUI interface.

A simple exercise using this example would be to

ask students to vary the dynamic viscosity of the

tube. At low Re, it becomes difficult for the tube

to re-expand. To compensate for this, the bending

and stretching stiffnesses of the tube can be in-

creased. Note that the maximum force generated by

the muscles should also be increased to generate a

Fig. 4 x-Component of velocity (top), vorticity (middle), and pressure (bottom) illustrating the activation wave traveling down the

channel at three time-points. Note that the pumping frequency is set to 5 Hz.

Fig. 3 Vorticity plots showing the evolution of an elastic band in a fluid during six snapshots in time. For the most viscous fluid with

dynamic viscosity, m, set to 10, the band deforms continuously from the initial ellipse (t¼ 0) to the circle. For the least viscous fluid, the

band oscillates about the major and minor axes.
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significant contraction. At higher Re, strong mixing

can be observed through the action of separated vor-

tices that persist in the fluid.

Another modification that students can make is to

change the code to consider the case of a uniform

contraction rather than a traveling wave. This results

in a situation in which the fluid moves symmetrically

from each side of the tube during contraction. The

fluid then moves back into the tube during the pas-

sive expansion. The symmetry in flow may be broken

either by introducing one-way valves, as in the case

of the lymphangions, or by introducing a unidirec-

tional traveling wave of contraction.

Discussion

In this article, we developed 2D MATLAB software

for solving muscle—FSI problems with the IB

method. We wrote the code such that students

can create their own geometries and elastic proper-

ties by connecting boundary points with linear and

torsional springs. Each linear spring requires a spe-

cified stiffness and resting length of the spring as

parameters; however, both can be changed at each

time-step if desired. Torsional springs need a speci-

fied stiffness and curvature as parameters, and can

also be modified at each time-step. Prescribed

motion can be achieved using a target point formu-

lation and updating the target-point positions at

each time-step. We also included a simple muscle

mechanics model that can be used to apply a force

to the boundary.

We have used this code, or a similar code, for

undergraduate research experiences, an undergradu-

ate course in quantitative biology, and a graduate

course in mathematical modeling. In the research

experiences and graduate course, students were ex-

pected to create new examples of FSI and muscle–FSI

problems as course projects. Some example projects

have included the swimming of jellyfish and of co-

pepods, cross-sections of wings in flow, and the

pumping of tubular hearts. In the undergraduate

courses, students used existing examples to explore

suggested parameter spaces. We intend to more ex-

tensively use this code in the following year as part

of a laboratory component for the introductory

quantitative biology course. The only prerequisite

for this course is the first semester of calculus, and

the majority of students enrolled are biology majors.

We will include additional examples and lesson plans

in future releases of the code available on the github

repository.

The current program is written for ease of use.

There are also some limitations. This IB method

works best for Reynolds numbers between 10�2

and 102. It is not well-suited for very high

Reynolds numbers with significant turbulence. The

numerical method works best when all terms are

balanced, including forces due to the resistance to

bending, resistance to stretching, inertial forces, and

viscous forces. The 2D simulations run relatively

quickly for problems of modest size. Finer grids

and stiffer springs and beams require smaller time-

steps. One can quickly design a simulation that re-

quires on the order of 105 to 106 times-steps. For

simulations with complex boundaries or complex

fluid motion, the spatial grids required for solving

the Navier–Stokes equations can become prohibi-

tively large.

For the student or faculty who would like to per-

form more sophisticated simulations, there are alter-

native packages available. One example is the IB

Method with Adaptive Mesh Refinement, or IBAMR

(Griffith 2015). IBAMR is a distributed-memory par-

allel implementation of the IB method with support

for Cartesian-grid adaptive-mesh refinement. This li-

brary is used broadly within the immersed-boundary

community. In addition to the immersed-boundary

method, there are other approaches for numerically

solving FSI problems. Some of these methods include

front-tracking methods (Unverdi and Tryggvason

1992), level-set methods (Sussman et al. 1994;

Legaya et al. 2006), the segment-projection method

(Tornberg and Engquist 2003), the immersed-inter-

face method (Lee and LeVeque 2003), and other var-

iations on the immersed-boundary method (Mittal

and Iaccarino 2005).
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Appendix 1

A brief overview of the method used to numerically

solve the Navier–Stokes equations (6) and (7) is pro-

vided below. More details can be found elsewhere

(Peskin and McQueen 1996). The discretization

method is implicitly defined as follows:

�
ukþ1 � uk

�t
þ S�x uk

� �
uk

� �
þ D0pkþ1

¼ �
X2

	¼1

Dþ	 D�	 ukþ1 þ Fk:

ð24Þ

D0 � ukþ1: ð25Þ

where � is the density of the fluid and � is the

viscosity of the fluid. D0 is the central difference
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approximation to r. It is defined as follows:

D0 ¼ D0
1;D0

2

� �
; ð26Þ

D0
	�

� �
xð Þ ¼

� x þ�xe	ð Þ � � x ��xe	ð Þ

2�x
; ð27Þ

where [e1, e2] is the standard basis of R2. The

operators D�	 are forward and backward difference-

approximations of @=@x	. They are defined as follows:

Dþ	 �
� �

xð Þ ¼
� x þ�xe	ð Þ � � xð Þ

�x
; ð28Þ

D�	 �
� �

xð Þ ¼
� xð Þ � � x ��xe	ð Þ

�x
: ð29Þ

Thus, the viscous term given as
P2

	¼1Dþ	 D�	 is a

difference-approximation to the Laplace operator.

Finally, S�x (u) is a skew-symmetric difference

operator that serves as a difference-approximation of

the nonlinear term u � ru. This skew-symmetric dif-

ference operator is defined as follows:

S�x uð Þ� ¼
1

2
u �D0

�x�þ
1

2
D0

�x � u�ð Þ: ð30Þ

Since the equations are linear in the unknowns ukþ1

and pkþ1, the Fast Fourier Transform (FFT) algorithm

was used to solve for ukþ1 and pkþ1 from uk, pk, and

fk (Press et al. 1992; Peskin and McQueen 1996).

Appendix 2

The examples provided above and some additional

examples are available on github in the ‘‘Examples’’

folder. Each example contains a file named

input2d. This file contains the parameters and flags

necessary to run a simulation, e.g., properties of the

fluid, temporal information, the structure of the

Eulerian grid, flags for the mathematical model(s)

used in constructing the IB, and flags for printing

and displaying output. A user manual is also available

on github with additional details and updates.

The user has the option to change the dynamic

viscosity, �, and density, �, of the fluid using the

input2d file. Changing these parameters allows one

to easily vary the Re and explore scaling effects in the

system. It is important to note that changing Re may

require the user to modify the simulation’s time-step,

as the stiffness of the equations of the model may

demand better temporal refinement for stability of

the numerical solver. The user also has the ability

to change the time-step and final time of the simu-

lation. The grid parameters pass the resolution and

dimensions of the computational domain to the IB

solver. The resolution, Nx and Ny, set the number of

uniformly spaced fluid points in the x and y cardinal

directions, respectively, within the domain of dimen-

sions [0, Lx]� [0, Ly]. Note that Lx/Nx should equal

Ly/Ny.

The input2d file also contains saving data and

plotting options. The user can specify the interval

between successive saves of the Eulerian and

Lagrangian data in the simulation, i.e., print_dump.

The data are saved in .vtk format, which can be vi-

sualized with open-source visualization tools such as

VisIt and Paraview. The option is also available to

plot the data in MATLAB using the plot_Matlab flag.

Moreover, the user can choose which dynamic quan-

tities MATLAB is to plot while running the simula-

tion. In this case, MATLAB will plot the desired

quantities during the same time-steps in which the

dynamical data are being saved. Please be aware that

plotting during the simulation may significantly in-

crease the simulation time.

The Lagrangian structure flags indicate the model

boundaries to be used in the simulation. Boolean

logic indicates whether an elastic model is to be

used. Note that if the simulation does not have the

necessary input files for a particular elastic model but

such an elastic model is indicated, the code will

throw an error. An example would be the case in

which there is no struct_name.beam file, but beams

are indicated in the input2d file.
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