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Abstract. In the present paper, a mathematical model, originally proposed by Danziger
and Elmergreen and describing the thyroid-pituitary homeostatic mechanism, is modified
and analyzed for its physiological and clinical significance. The influence of different sys-
tem parameters on the stability behavior of the system is discussed. The transportation
delays of different hormones in the bloodstream, both in the discrete and distributed forms,
are considered. Delayed models are analyzed regarding the stability and bifurcation be-
havior. Clinical treatment of periodic catatonic schizophrenia is discussed in presence of
transportation delays. Numerical simulations are presented to support analytic results.
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1. Introduction

Thyroid gland, situated in the region of the neck, is considered to be an ex-

tremely important endocrine gland in amphibians. Thyroid produces thyroxine, a

hormone that contains iodine obtained from the diet. Thyroxine controls the Basal

Metabolic Rate (BMR) and also controls metamorphosis in amphibians. The system

which regulates the concentration of thyroxine in blood is a negative feedback control

mechanism. The anterior lobe of pituitary gland produces the hormone thyrotropin

under the influence of the Thyrotropin Releasing Factor (TRF) secreted by the hy-

pothalamus in the brain. Thyrotropin, when it reaches the thyroid gland, activates a

thyroid enzyme which, in turn, catalyzes the shedding of thyroxine from the colloidal

follicles of the thyroid gland into the blood stream. Such an effect of thyrotropin was

observed by Vanderlaan and Greer [17], by Ghosh, Woodbury and Sayers [8] and by
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others, who reported that the thyroid of hypophysectomized animals was unable to

trap radioactive iodide, and that this ability was restored by the administration of

thyrotropin. Though, it is not necessary to identify the enzymes involved, they can

be thought to be a peroxidase which oxidizes iodide to iodine, before its incorporation

into the thyroxine hormone molecule.

Abnormal steady-state thyroxine level in the blood stream can cause system mal-

function leading to various types of physical and mental disorders. Physical disorders

include different forms of hypo- and hyperthyroidism. A system malfunction leading

to a severe mental disorder is known as periodic catatonic schizophrenia. In this dis-

ease, the symptoms vary with remarkably regular periodicity. This has been studied

at length by Gjessing et.al. [9], Maeda et.al. [13], Takahaski and Gjessing [16] and

others. R. Gjessing established a correlation between the rhythmic changes in the

Basal Metabolic Rate (BMR) and the periodic variations in the symptoms of cata-

tonic schizophrenia. Similar correlations between rhythmic changes in the thyroid

level and periodic variations in the symptoms have been observed by Richter [15] and

Durrell [7]. Since engineering studies of negative feedback systems in electrical cir-

cuits show that oscillations often occur in such systems, this suggests to investigate

how the thyroid levels change. This was the approach initiated and developed by

Danziger and Elmergreen [3]–[6] who set up a system of ordinary differential equa-

tions which are assumed to govern, among other quantities, the level of thyroxine in

the blood. Then they studied the oscillatory solutions of this system of differential

equations. As a treatment of periodic relapsing catatonia, they also analyzed the

effect of administering constant doses of thyroxine extract into the system.

In the present paper, we consider the thyroid-pituitary homeostatic mechanism as

is proposed by Danziger and Elmergreen [4]. The stability behavior of the system

is analyzed and the possibility of occurrence of periodic solutions is looked into.

Since there is a spatial separation between thyroid and pituitary gland in the body,

time is needed for transportation of thyrotropin and thyroxine between the glands.

Consequently, in Section 3 of the paper, instead of taking the transportation of

different hormones as an instantaneous process we have introduced distributed time

delays into the system to account for the time needed by the hormones to travel

from source to destination. In Section 4 of the paper we have replaced distributed

delays by discrete ones as the model with distributed delays was unable to explain

the phenomenon of periodic fluctuation of different hormones in the blood serum. We

also present a numerical study of the system of equations with and without delays

to illustrate the analytical results.
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2. Description of the model: Stability analysis

In the present study, a mathematical model concerning the thyroid-pituitary sys-

tem is considered. The anterior lobe of the pituitary gland produces the hormone

thyrotropin under the influence of TRF secreted by the hypothalamus. The thy-

rotropin, in turn, causes the thyroid gland to produce a thyroid enzyme which when

activated produces the hormone thyroxine. This hormone has a negative feedback

effect on the secretion of thyrotropin from pituitary. This mechanism can be depicted

as in the following block diagram.

Hypothalamus

Pituitary

Thyroid

TRF

ThyrotropinFeedback Loop

Similar type of negative feedback mechanism has been studied in various other

physiological models by different researchers. Mukhopadhyay et al. [14] consid-

ered a mathematical model describing the biochemical interaction of the hormones

luteinizing hormone (LH), luteinizing hormone releasing hormone (LHRH) and

testosterone (T). The model structure involved a negative feedback mechanism

together with transportation and secretion delays of different hormones.

Following Danziger and Elmergreen [4] we assume that the rate of thyrotropin

production is reduced by an amount proportional to the blood concentration of

thyroxine, and that the rate of loss of thyrotropin is proportional to the existing

thyrotropin concentration. As the pituitary gland can produce no output in pres-

ence of thyroxine concentration greater than a certain value, we have also included a

degenerate form of the equation for thyrotropin production. To describe the mech-

anism in the thyroid gland, we assume that thyrotropin activates a thyroid enzyme,

which when activated produces thyroxine. Thyroxine production, according to this

assumption, will depend on the concentration of the activated enzyme and not di-

rectly on the level of thyrotropin. We describe a mathematical realization of all these
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considerations by the following model:

dP

dt
=















c − hθ − gP
(

when θ 6
c

h

)

,

−gP
(

when θ >
c

h

)

,

(2.1)

dE

dt
= mP − kE,

dθ

dt
= aE − bθ

where P , E and θ represent the concentrations of thyrotropin, activated enzyme

and thyroxine, respectively, b, g and k represent the loss constants of thyroxine,

thyrotropin and activated enzyme, respectively, a, h, m are constants expressing the

sensitivities of the glands to stimulation or inhibition; c is the rate of production of

thyrotropin in the absence of thyroid inhibition. All constants are assumed to be

positive. This model is very useful in the study of causes and clinical treatment of

periodic catatonic schizophrenia.

Theorem 2.1. Let E(0) > 0, P (0) > 0, θ(0) > 0. Then the solution of the

system (2.1) is bounded and non-negative.

�✂✁☎✄✆✄✞✝
. We have dP

dt
+ gP > 0. Consequently, P (t) > 0 for all t > 0. The

same argument applied consecutively to E and θ yields E(t) > 0, θ(t) > 0 for all

t > 0. We therefore have dP
dt

+ gP 6 c, hence P (t) 6 Pmax = max{P (0), c
g
},

E(t) 6 Emax = max
{

E(0), mPmax

k

}

, θ(t) 6 θmax = max
{

θ(0), aEmax

b

}

for all t > 0.

This proves the theorem. �

For θ 6 c/h, the system possesses a non-trivial equilibrium point, namely, QS =

(PS , ES , θS) where

(2.2) PS =
kbc

D
, ES =

mbc

D
, θS =

amc

D
with D = amh + gkb.

The Jacobian matrix corresponding to this equilibrium point when θ 6 c/h is given

by

JQS
=





−g 0 −h

m −k 0

0 a −b





and the corresponding characteristic equation is

(2.3) λ3 + (k + g + b)λ2 + (gk + bk + gb)λ + (bgk + mha) = 0.
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Applying the Routh-Hurwitz criteria, the system will be asymptotically stable if

k2(b + g) + g2(k + b) + b2(k + g) + 2bgk > mha.

Therefore, when

(2.4) mha > k2(b + g) + g2(k + b) + b2(k + g),

the system will become unstable. If a andm are sufficiently large in comparison with

the loss constants then the inequality (2.4) holds. The above analysis indicates that

high production rate of the activated enzyme and of thyroxine may be the causes

of unstability of the system. Danziger and Elmergreen [4] also showed that the

system admits periodic solutions with sustained oscillations in the thyroxine level.

The oscillation, together with a high production rate of thyroxine, causes a system

malfunction known as periodic catatonic schizophrenia.

When the level of thyroxine in the blood exceeds a certain value, namely c/h,

the anterior pituitary cannot produce any output. As the anterior pituitary cannot

produce any thyrotropin in this case, the production of thyroxine will decrease, and

in the process, when the level of thyroxine falls below c/h, the feedback mechanism

of the thyroid-pituitary system will again start, which in turn will increase the blood

concentration of thyroxine and consequently, the symptoms of catatonic schizophre-

nia will reappear with remarkable periodicity. The system may be stabilized by

administering thyroxine extract externally at a constant rate R where R > bc/h [4].

Physiologically it means that the ratio of constant external input of thyroxine to its

loss rate should cross a certain value, namely, c/h, for the stability of the system.

The system of equations (2.1) is integrated numerically using the routine rk45 in

Matlab. For θ 6 c/h, the results of simulation are shown in Figs. 1–2. Fig. 1 shows

the graphs of P (t), E(t) and θ(t) when mha < k2(b+ g)+ g2(k + b)+ b2(k + g). It is

observed from the graphs that all the concentrations exhibit stable behavior. Fig. 2

shows the behavior when (2.4) is satisfied. The graphs, in this case, demonstrate

the unstability of different components of the system leading to oscillatory behavior

of the solutions which symbolizes the periodic fluctuations of symptoms of periodic

schizophrenia.
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Figure 1. The graphs of P (t) vs. t, E(t) vs. t and θ(t) vs. t for the non-delayed system (2.1)
with θ 6 c/h when (2.4) is not satisfied. Parameter values are c = 100; h = 1;
g = 1.29; m = 8; a = 0.6; k = 0.97; b = 1.39. Initial conditions are (PS , ES , θS) ≡
(15, 158, 80). Stable behavior of solutions is observed.
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Figure 2. The graphs of P (t) vs. t, E(t) vs. t and θ(t) vs. t for the non-delayed system (2.1)
with θ 6 c/h when (2.4) is satisfied. Parameter values are c = 100; h = 1; g =
1.29; m = 12; a = 1.2; k = 0.97; b = 1.39. Initial conditions are (PS , ES, θS) ≡
(15, 158, 80). The graphs indicate periodic nature of solutions.

554



3. Stability analysis in presence of distributed delays

In this section, we consider the Danziger Elmergreen model (2.1) together with

distributed delays [12] caused by the transportation time taken by different hormones

in the blood plasma due to the spatial separation of the anterior pituitary and the

thyroid gland. As it is not usually possible to determine the past history of the

release of hormones, the delays are assumed to be continuous in nature. We assume

that the hormone thyrotropin which stimulates the thyroid gland at time t, was

released by the pituitary gland s time units ago, where s is distributed according to a

probability distribution F1(s), called the delay kernel, given by F1(s) = β exp (−βs).

Similarly, it is assumed that the delay in the hormone thyroxine is distributed as

F2(s) = α exp (−αs). The model (2.1) with these distributed delays takes the form

dP

dt
=















c − h

[∫ t

−∞

αe−α(t−s)θ(s) ds

]

− gP
(

θ 6
c

h

)

,

−gP
(

θ >
c

h

)

,

(3.1)

dE

dt
= m

[∫ t

−∞

βe−β(t−s)P (s) ds

]

− kE,

dθ

dt
= aE − bθ

where α, β > 0.

The equilibrium point of the system (3.1) is the same as that of the system (2.1)

and is given by (2.2). We first consider the case θ 6 c/h. Let

X =

∫ t

−∞

αe−α(t−s)θ(s) ds,(3.2)

Y =

∫ t

−∞

βe−β(t−s)P (s) ds.

With these substitutions, the system (3.1) reduces to

dP

dt
= c − hX − gP,

dE

dt
= mY − kE,(3.3)

dθ

dt
= aE − bθ,

dX

dt
= αθ − αX,

dY

dt
= βP − βY.
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The Jacobian matrix of the system (3.3) is given by

J =















−g 0 0 −h 0

0 −k 0 0 m

0 a −b 0 0

0 0 α −α 0

β 0 0 0 −β















.

According to the Routh-Hurwitz criteria, the necessary and sufficient condition that

all the eigenvalues have negative real parts are

tr J < 0, detJ < 0,(3.4)

tr J × M2 − |J | < 0

where M2 is the sum of second order principal minors of the Jacobian matrix J .

Now,

tr J = − [g + k + b + α + β] < 0,(3.5)

|J | = − αβ[kgb + ahm] < 0,

trJ × M2 − |J | = (−g − k − b − α − β)(αβkb + gbαβ

+ gkαβ + gkbβ + gkbα) + αβgkb + αβahm.

From (3.5) it is clear that tr J × M2 − |J | can be positive only if a and m are

sufficiently large in comparison with α, β, b, g, k. As large values of a and m signify

high production rate of both the activated enzyme and thyroxine, this situation

implies that the blood concentration of thyroxine will increase and will soon exceed

the value c/h. Under this situation the model with distributed delay will assume the

form

dP

dt
= −gP,

dE

dt
= mY − kE,(3.6)

dθ

dt
= aE − bθ,

dY

dt
= βP − βY.

Solving (3.6) explicitly for θ we get

θ = Ae−gt + Be−kt + Ce−bt + De−βt

where A, B, C, D are constants involving system parameters. As t → ∞, we have

θ → 0. So after a finite time, the thyroxine concentration (θ) will stay below c/h

forever. Thus it is not possible to analyze the case when the thyroxine level goes
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beyond the limit c/h using the present model. Consequently, we consider a clinical

modification of the model.

Danziger and Elmergreen [4] suggested a treatment of schizophrenia by adminis-

tering exogeneous thyroid extract into the system at a constant rate. They showed

that if R > bc/h (where R is the constant rate at which thyroxine is administered)

the system is asymptotically stable and the thyroxine level in blood is slightly higher

than that found in a normal system. In such a case, some improvement will occur

to the condition of the patient.

We assume the amount of thyroxine administered to depend on θ, the existing

thyroxine concentration of the system. This ensures the administration of the most

appropriate amount of hormone at any particular instant. For simplicity, we consider

this administration to be a linear function of θ, namely, R1θ+R2. Then, the modified

system will be

dP

dt
= − gP,(3.7)

dE

dt
= m

[∫ t

−∞

βe−β(t−s)P (s) ds

]

− kE,

dθ

dt
= aE − bθ + R1θ + R2.

Considering the second substitution in (3.2) the above system will reduce to

dP

dt
= −gP,

dE

dt
= mY − kE,(3.8)

dθ

dt
= aE − bθ + R1θ + R2,

dY

dt
= βP − βY.

The only equilibrium point of this system is
(

0, 0, R2

b−R1

, 0
)

. The roots of the charac-

teristic equation of the Jacobian matrix corresponding to (3.8) are −g, −k, R1 − b

and −β. The equilibrium point will exist if b > R1. Now for b > R1, all characteristic

roots are negative and consequently, the system is asymptotically stable. Therefore,

for asymptotic stability of the system we should have

(3.9)
R2

b − R1
>

c

h
.

Thus, the symptoms of catatonic schizophrenia will disappear when the ratio of the

constant part of the administration function (R2) to the net loss of thyroxine (b−R1)

will exceed a certain value c/h.
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4. Stability analysis for the model with discrete delay

In this section, we consider the Danziger Elmergreen model with discrete time

delays for transportation of different hormones. The model in this case will be

dP

dt
=















c − hθ(t − τ1) − gP
(

θ 6
c

h

)

,

−gP
(

θ >
c

h

)

,

(4.1)

dE

dt
= mP (t − τ2) − kE,

dθ

dt
= aE − bθ

where τ1 and τ2 represent the discrete time delays required for transportation of

the hormones thyroxine and thyrotropin, respectively. The equilibrium point of the

system (4.1) will be the same as that of the system (2.1). We analyze the model by

dividing it into two cases.

Case I : θ 6 c/h.

The characteristic equation will be

(4.2) λ3 + A1λ
2 + A2λ + A3 + A4e

−λτ = 0

where

A1 = g + k + b, A2 = gk + gb + kb,(4.3)

A3 = kbg, A4 = ahm, τ = τ1 + τ2.

Let

(4.4) λ = p + iq

be a root of the equation (4.2). Substituting (4.4) into (4.2) and separating the real

and imaginary parts we get

p3 − 3pq2 + A1(p
2 − q2) + A2p + A3 + A4e

−pτ cos qτ = 0,(4.5)

3p2q − q3 + 2pqA1 + A2q = A4e
−pτ sin qτ .

In order for a stability change of the system to take place, the real part of λ should

be zero, that is, one of the characteristic roots is purely imaginary. Let τ0 be the
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value of τ such that p(τ0) = 0 and q(τ0) = q0. Putting these values of p and q in (4.5)

we obtain

A1q
2
0 − A3 = A4 cos (q0τ),(4.6)

−q3
0 + A2q0 = A4 sin (q0τ).

Combining the equations in (4.6) we get a cubic in q2
0 as follows:

Ψ(q2
0) ≡ (q2

0)3 + (A2
1 − 2A2)(q

2
0)2 + (A2

2 − 2A1A3)q
2
0 + A2

3 − A2
4 = 0,(4.7)

Ψ(q2
0) ≡ (q2

0)3 + B1(q
2
0)2 + B2q

2
0 + B3 = 0.

Obviously, B1 > 0, B2 > 0. So equation (4.7) will have a positive root only when

B3 < 0, that is, A2
3 − A2

4 < 0, which equivalently implies kgb < ahm.

From (4.6) it follows that the system will undergo a stability change when τ , the

sum of different transportation delays, crosses any one of the values given by

(4.8) τn =
1

q0
tan−1

[ A2q0 − q3
0

A3 − A1q2
0

]

+
nπ

q0
, n = 0, 1, 2, 3 . . .

Differentiating (4.5) with respect to τ at τ = τ0 we get

E
dp

dτ

∣

∣

∣

τ=τ0

− F
dq

dτ

∣

∣

∣

τ=τ0

= G,(4.9)

F
dp

dτ

∣

∣

∣

τ=τ0

+ E
dq

dτ

∣

∣

∣

τ=τ0

= H

where

E = A2 − 3q2
0 − A4τ0 cos (q0τ0),(4.10)

F = 2A1q0 − A4τ0 sin (q0τ0),

G = q0A4 sin (q0τ0),

H = A4q0 cos (q0τ0).

From equations (4.9), simple algebra reveals that

(4.11)
dp

dτ

∣

∣

∣

τ=τ0

=
GE + HF

E2 + F 2
.

Now,

GE + HF =
d

dq2
0

Ψ(q2
0).
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Since q2
0 is the only positive root of equation (4.7), we have

dp

dτ

∣

∣

∣

τ=τ0

6= 0.

Consequently, by the Hopf bifurcation theorem [10], the system will undergo a Hopf

bifurcation as τ crosses any one of the values given by (4.8) provided that

kbg

ahm
< 1.

Case II : θ > c/h.

The analysis of this case is similar to that of the distributed delay model and gives

the same qualitative result.

A numerical study of the delayed system (4.1) is performed and the results are

shown in Figs. 3–6. For θ 6 c/h, the system exhibits interesting dynamical behavior

depending upon the delay parameter. It is found that for kbg/amh 6 1, different

hormones and the enzyme will exhibit stable behavior when τ , the sum of different

system delays, is less than 0.9 (Fig. 3). When τ exceeds this value, the system grad-

ually changes its behavior from stable to unstable nature. Such a change in the sta-

bility behavior of the system is depicted in Fig. 4. This changing behavior ultimately

leads to periodic fluctuations of concentrations of different system components as is

shown in Fig. 5. Fig. 6 shows the limit cycle arising out of this periodic fluctuations.
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Figure 3. The graphs of P (t) vs. t, E(t) vs. t and θ(t) vs. t for the delayed system (4.1)
with θ 6 c/h. Parameter values are c = 100; h = 1; g = 1.29; m = 8; a = 0.5;
k = 0.97; b = 1.39; τ = 0.8. Initial conditions are (PS , ES, θS) ≡ (15, 158, 80).
Different system components exhibit stable behavior.
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Figure 4. The graphs of P (t) vs. t, E(t) vs. t and θ(t) vs. t for the delayed system (4.1)
with θ 6 c/h. Parameter values are c = 100; h = 1; g = 1.29; m = 8; a = 0.5;
k = 0.97; b = 1.39; τ = 0.96. Initial conditions are (PS , ES, θS) ≡ (15, 158, 80).
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Figure 5. The graphs of P (t) vs. t, E(t) vs. t and θ(t) vs. t for the delayed system (4.1)
with θ 6 c/h. Parameter values are c = 100; h = 1; g = 1.29; m = 8; a = 0.5;
k = 0.97; b = 1.39; τ = 1.0. Initial conditions are (PS , ES, θS) ≡ (15, 158, 80).
Different system components exhibit periodic oscillations.
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Figure 6. The phase portrait for the delayed system (4.1) with θ 6 c/h exhibiting limit
cycle arising out of Hopf bifurcation. Parameter values are c = 100; h = 1;
g = 1.29; m = 8; a = 0.5; k = 0.97; b = 1.39; τ = 1.0. Initial conditions are
(PS , ES, θS) ≡ (15, 158, 80).

5. Discussion

The work of Dangizer and Elmergreen showed a correlation between various con-

ditions of catatonic schizophrenia and the blood concentration of thyrotropin and

the thyroid hormone thyroxine. Their work emphasizes the utility of mathemat-

ical representation of the endocrine control system. The feedback aspects of the

thyroid-pituitary homeostatic mechanism make an analogy with this and perhaps

other physiological phenomena on the one hand and feedback amplifiers on the other

hand possible. A basic difference in the philosophy of study in these fields arises

from the fact that from the engineering point of view, the main thrust is on synthe-

sis whereas from the endocrinological point of view the primary aim is the analysis

of a system in which measurements are difficult and numerical values of parameters

are either unknown or known with little accuracy.

In the thyroid-pituitary feedback system considered here, since the solutions are

bounded, the patients’ symptoms will never be worse than a certain level [1], [2]. The

stability analysis with instantaneous transportation of different hormones revealed

that high production rate of activated enzyme (m) and thyroxine (a) may be the

causes of unstability of the system. Numerical simulation of the system (2.1) estab-

lished the significance of the parameters m and a in controlling the stability criteria

of the system.
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To make the model of Danziger and Elmergreen more realistic, we have modified it

by incorporating time lags [11] needed for transportation of different hormones from

source to destination. In Section 3 of the paper, we have taken the transportation

delay to be a distributed one, as it is not usually possible to know the past history of

hormone release. The analysis in this section demonstrated that the system remains

unstable for a very rare situation, namely when the generation rate of the hormone

thyroxine is very high. Moreover, this unstable state of the system is seen to be

transient. Therefore, the periodic oscillation of the thyroxine level in the bloodstream

cannot be explained when the time lag is of a continuous nature.

In view of the above, we have considered discrete time delay instead of distributed

delay in Section 4 of the paper. Our study in this section showed that with discrete

transportation delay, the system will undergo a Hopf bifurcation which results in

periodic fluctuation of the thyroxine level in the blood. Thus the discrete time delay

is able to explain the phenomenon of periodic oscillation of blood concentration of

thyroxine and hence the reappearance and disappearance of symptoms of periodic

catatonic schizophrenia. Numerical simulation of the delayed model reaffirms the

remarkable periodic behavior of the system. From these simulations we have ob-

tained a critical value of the delay parameter (which is the sum of the two system

delays considered) below which the system exhibits stable behavior. When this crit-

ical value is exceeded, a gradual increase in oscillation of different concentrations is

observed which ultimately leads to perfectly periodic oscillations of different system

components. In the literature of biological delay systems, distributed time delays are

considered to be more general than discrete delays. But interestingly, our analysis

in this paper showed that in some situations discrete delays are much more realistic

than distributed delays. This assertion is amply demonstrated in this case, by the

fact that discrete delays are able to explain the practical phenomenon of the peri-

odic nature of symptoms of schizophrenia. Furthermore, since the time taken by

any particular hormone to travel from source to destination in the body through the

bloodstream is fixed for an individual, the choice of discrete delay should be preferred

over distributed delay in the mathematical models describing hormone dynamics.

Danziger and Elmergreen suggested a treatment of the disease by administering

thyroid extract at a constant rate into the system. As the thyroxine level in any

individual changes continuously with time, administering thyroid extract at a con-

stant rate to such a system could not be a realistic clinical treatment. Thus we

have modified the mode of the treatment by allowing thyroxine administration to

depend upon the existing thyroxine concentration of the system. The analysis with

the above modification revealed that the disease may be cured by allowing the ratio

of the constant part of administered thyroxine (R2) to the net loss of thyroxine from

the system (b − R1) to exceed a certain value c/h.
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