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Abstract. We present a mathematical model exhibiting the empirically observed
damping rates in elastic systems. The models studied are of the form (A the relevant
elasticity operator)

x + Bx + Ax = 0

with B related in various ways to the positive square root, A1'2, of A. Comparison with
existing "ad hoc" models is made.

1. Semigroup background. A wide variety of conservative linear elastic systems may
be represented by a second-order differential equation

x + Ax = 0 (1.1)

where • means d/dt, iel,a Hilbert space with inner product (, ) and associated norm
|| ||, and A is a positive self-adjoint operator on X, ordinarily bounded with domain 2(A)
dense in X. Under these circumstances A has a non-negative self-adjoint square root A112
defined on a domain @(a1/2) c X. Throughout the paper we will assume that A is
bounded below, i.e.,

(x, Ax) > a||x||2, xeX,

for some fixed a > 0. Then the spectrum of A is bounded away from zero and, as a
consequence 3i(A112) => Q){A\, indeed 3>(Ar) 3 3)(AP) if r and p are positive numbers with
r < p. Associated with (1.1) is the energy form

E(x, x) = i(||x||2 + \\Amx\\2) (1.2)

which is conserved when x(f) is a solution of (1.1). More on this shortly.
Perhaps the most notable disadvantage associated with conservative systems is the

fact that they do not occur in nature. Always there are dissipative mechanisms acting
within the system causing the energy to decrease during any positive time interval. The
most widely accepted mathematical model exhibiting such dissipative behavior takes
the form

x + Bx + Ax = 0 (1.3)
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DAAG29-75-C-0024 and DAAG29-80-C-0041, and the Air Force Office of Scientific Research under Grant
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where B is again a positive self-adjoint operator on X with domain S(B) dense in X. If
x(t) is a solution of (1.2), twice strongly continuously differentiable with x(t) e 3>(A),
x(t) e 2>(B), then

jtE(x(t), x(t)) = j^[x(t), x(t)) + (A1/2x(t), A1/2x(t))] = (x(t), x(t) + Ax(t))

= - (x(t), Bx(t)) < 0.

For the moment this is all formal since we have not discussed the existence of, or the
nature of, solutions of (1.3).

Letting

^ = (^2 z\z2eX,

the system (1.3) is formally equivalent, under the transformation z1 = x, z2 = x, to

z = ,c/0z, (1.4)
where

0 Ii/z1
-A ZH-ZI

We digress, briefly, to consider the case where A is only non-negative. In this case we
may write

X = X + @X°, x e AT=>x = |*0 ),

and, for x e Si (A),

Ho* x;ht)
Here X° is the null space of A. We will assume that A+ is bounded below. Then (1.5) is
the same as

(:No M
rxin-

Since (1.6) is almost trivial, only (1.7) need be studied. As a consequence, we may as well
assume that A is bounded away from zero in (1.1), (1.5) when proving theorems about
these systems. The space X° is usually finite-dimensional, encompassing free rigid body
motion.

With A bounded away from zero, A~\ A~1/2 are non-negative bounded self-adjoint
operators on X. The transformation

z1 = A' 1/2w\ z2 = w2 (1.8)
carries (1.5) into
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It should be noted that the transformation (1.8) maps <3(A1/2) ® X onto W = X © X. The
energy form (1.2) maps into

illHI2 — i(llwl||2 + llw2||2)- (1-10)
Applying the inequality

XI -Am\(wl
A112 XITJ>> l2(||w1||2 + ||w2||2), X real,

which is easily verified for w1, w2 e 3>(Al/2), we see that

\\R(X, y0)\\ ^ 1/1A |, X ̂  0 and real.
Then the Hille-Yoshida theorem ([2]) applies to give

Theorem 1.1. The operator

0 Ail2\
-A1'2 0

generates a strongly continuous group of bounded operators Sf0(t) on W = X@X, the
solutions

w(t) = y 0(t)w0, w-(d)
being strongly continuously differentiable and satisfying (1.9) in X for all t just in case

Wq, Wq e 3>(A112).

For B positive and self-adjoint in (1.3) the first-order system comparable to (1.9) is

z = siz, (1.11)

0 / Wz1
-A -B<z = ,)(;!) a.")

Treating first the case where A is strictly positive, A 1/2 is bounded and the transforma-
tion (1.8) yields

Unless B is bounded it cannot be expected that ££B will generate a group on W; a
semigroup is all we get. For X > 0, our assumptions imply that XI + B is self-adjoint and
non-negative. We compute

XI —A1'2 Ww1 \
Al/2 XI + B)\w2J

+ ((XI + B)w2, (XI + B)w2)x + ||/41/2w2||2 + (Al,1wl, Bw2)x + (Bw2, All2wl)

Since

((XI + B)w2, (XI + B)w2)x = X2\\w2\\x + 2X(w2, Bw2)x + (Bw2, Bw2)x

> X2\\w2\\l + \\Bw2\\l, X > 0,

= x2\\wl\\\ + ||/i1/2w|||
w



rj>> /l2(||w1||2 + ||w21|2), A>0 (1-14)
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and since

||i41/2w1||i + ||-Bvv2||2 + (A1/2wl, Bw2)x + (Bw2, Al'2w])x = ||X1/2w1 + Bw2||J > 0

we are able to conclude that

M -A112'

[A112 A I + Bj

as defined on the domain

w1 e @(A112), w2 e 3>(Alj2) n &(B). (1-15)

For such w = (w\ w2), then,

||R(X, &B)\\ < l/l A > 0.
The Hille-Yoshida theorem applies if the domain of if B is dense in W and if B is closed.
For the first of these requirements we assume

2s>(A112) n 3>(B) is dense in X.

For the second we observe that if {(wl, w2)} converges in W and <£B(wl, wl) converges in
W, the latter implies that

{/41/2w2} converges in X, (1-16)

{Al/2wl + Bwj} converges in X. (1-17)

From (1.16) together with the fact that A1'2, being self-adjoint, is closed, we conclude
that w2 s lim^^ wl e S>(A112). It is not, however, easy to conclude from (1.17) that
either {Ai/2wk} or {Bwl} is convergent. Indeed, take the case where B = A. Using a
coordinate system based on an orthonormal system for A, we may represent

A = B — diag(Aj, A2, A3, ...), A1/2 = (Aj/2, A^'2, A\'2, ...)

and vectors x e X may be represented by their expansion coefficients:
00

x = (Xj, x2, x3, ...), £ | xk |2 < GO.
k= 1

Assuming that lim*.^ Xk = +oo, a sequence {xt} with positive elements may be found
such that

00 00 00

£ l*k|2 < °°> X \W2Xk\2 = t ^k\xk\2 = CO-
k= 1 fc=l k=l

Assuming no Xk = 0, let

w2k = (Xi/A}/2, x2/A^/2, ..., xJXl12, 0, 0, ...), wl = (-Xj, -x2, ..., xk, 0, 0, ...).

Then {w^}, {w^} are convergent, {/l1/2w2} is convergent, {Ai,2wl + Awl) = {0} is conver-
gent but neither

{All2wl} = {( — A}/2x1; -Xl2l2x2, ~K'2xk, 0, 0, ...)}

nor
{Awl} = {W2*1, *22x2, ■■■, tit2xk, 0, 0, ...)}
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is convergent. Thus the operator ¥A is not closed on the domain (1.15), which in this
case is

w1 e <2>(Alj2), w2 e 2>(Aljl) n £d(A) = 2>(A). (1-18)

The operator A is closable because it can be shown to have a complete set of eigen-
vectors in W = X@X and from that, via the Galerkin method [6], it can be shown that
there is a strongly continuous semigroup, £fA(t), of bounded operators which satisfy

d lw1\
— £fA(t)w = <£AyA(t)w whenever w = I 21 satisfies (1.18).

Then yA(t) has a closed generator, which we will still call <£A, defined by

SfAw = lim - (yA(t)-I)w
r|0 1

for all w such that this limit exists. Denoting this set of w by 3>(yA), i?A will be closed.
In general this domain is larger than the one described in (1.18).

Despite this eventually positive outcome for the case B = A, the example shows that it
will not be easy to characterize all instances wherein y B is a closed operator or, at least,
has a closed extension.

At least two procedures come to mind. For some applications it is reasonable to
assume that B is /l1/2-bounded, i.e., the domain of B includes the domain of A1'2 and
there is a positive number M such that

||Bx| < M(||x|| + ||v41/2x||), x e 3>(A1/2). (119)

In such an event the domain of is precisely {(w1, w2)^1 e 3>(A112), w2 e &i(Ait2)},
(1.16) implies that {Bw£} converges in X and that, with (1.17) implies that {All2wl}
converges in X. Then i?B is closed as defined on (1.15).

A second possibility is to show that is maximal dissipative or that it has a
maximal dissipative extension. The theory of Phillips [7] then applies to show that the
maximally extended dissipative operator generates a semigroup S^B(f) and is a closed
operator. This is essentially what we have already carried out for the case B = A.

2. Structural damping and holomorphic semigroups: implications. The basic property
of structural damping, which is said to be consistent with empirical studies [3, 9], is that
the amplitudes of the normal modes of vibration are attenuated at rates which are
proportional to the oscillation frequencies. We will see that this is an important property,
implying as it does that many distributed systems act in a manner more like finite-
dimensional systems than would otherwise be the case.

The subject of energy dissipation in elastic systems has been extensively studied in the
literature (see, e.g. [3]). Nevertheless, mathematical modelling appears to be rather primi-
tive and ad hoc. In [3] and [4] the representation

x + (1 ± Si)Ax = 0 (2.1)

is used. Assuming that A has discrete spectrum 0 < < X2 < " • < < A„+1 < • • •, with
corresponding orthonormal eigenvectors </>1; <f>2, <t>3, ..., (2.1) has solutions

xk(t) =
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Fig. 1. Spurious spectrum, x = (1 ± 5i)Ax.

Ck + (1 ± = 0>

<** = (-( 1 ± &K)1/2-

-(1 ± di)Xk = oilyj 1 + S2 e±i^n~ls+"\

where cok = , we have

<rt = ±cok^/l + S2 e±"1', ij/ = i(tan"1 d + n),

four values for each integer k. These lie in an "X" pattern in the complex plane,
symmetric with respect to both the real and imaginary axes (Fig. 1). In engineering use,
those lying in the right half-plane are rejected as extraneous, those in the left half-plane
are retained. This does not correspond to choosing one to the signs + or - in (2.1),
however.

Eq. (2.1) has numerous disadvantages. First of all, it is not properly an equation and
there is no associated strongly continuous semigroup. Secondly, if A denotes a positive
symmetric matrix representing a discretization of the elastic operator A, the equation

x + (1 ± Si)Ax = 0, x e E",

is still not computationally useful for generating approximate solutions. There is the
obvious problem of introducing complex numbers into an equation which is supposed to
represent a real system. Further, the "extraneous" solutions will grow and eclipse the
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decaying solutions which are actually desired. This remains true for the real fourth-order
equation

$iv) + 2 Ax" + (1 + 8 2)A2x = 0 (2.2)

which has the same solutions as (2.1).
The form of (2.2) is, nevertheless, suggestive of the prototype model for this paper

which is
x + 2pA1/2x + Ax = 0, (2.3)

where A1/2 denotes the positive self-adjoint square root of A. For (2.3), trial
solutions

xk(t) = e"k'(pk

lead to the equation
a2k + 2pakXl/2 + Xk = 0

vk = 2pC°k ± ^p2Xk — = cok(-p ± iy/1 - pz) = a>ke±i\\) = tan"^ J\- p2\
P(2A)

if p2 < 1, which we would normally anticipate for lightly damped structures. In (2.4) we
have exponents forming a pattern " > " in the complex plane, a pattern quite similar to
the retained ak of the earlier model (2.1) (see Fig. 2).

The system (2.3) has many advantages in addition to not producing extraneous
spectral values. It is a bona fide dynamical system; we will see in the next two sections

Fig. 2. Spectrum for the system (2.3).
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that this system corresponds to a system (1.13) with

y B ~ 2pA
_ I 0 A112 \

_2 pA1'2)

such that yipAui generates a strongly continuous (in fact, holomorphic) semigroup in
W = X©X, and that this remains true for the operator &B if B "resembles" 2pA1/2
appropriately.

The eigenvectors of if 2(>avi also have properties which are desirable from the analyti-
cal point of view. If we denote the normalized eigenvectors of A (equivalently Alt2) in X
by (f>k, k = 1, 2, 3, ..then the normalized eigenvectors of the antihermitian operator

corresponding to iwk, — icok are seen to be

e: -O-   <«)
and it is easy to verify from the corresponding properties of the (pk in X that the vectors
(2.6) form an orthonormal basis for W — XSX—which would also follow from the fact
that the operator (2.5) is antihermitian. The normalized eigenvectors of SC2pavi corre-
sponding to the eigenvalues a>ke±vl/ are

= I M2 I v.- = / <W2 \
k k \e -VWy/2)' k= 1,2, ...,

which may be seen to be related to the vectors (2.6) by the transformation

r*> = l 1 0 )
\cos if/I sin iJ/1)

in W = X ©X. Since this transformation is bounded and boundedly invertible for nf.2 <
\\) < n, which corresponds to 0 < p < 1, we conclude that the x) form a uniform, or
Riesz, basis [1, 8] for W = X®X\ that is, given w e W, w may be expanded in the
convergent series

w= £ (wk + *¥? + wk - Vk )
k= 1

and there are positive constants c, C, such that

c_2||w||^< £(K+|2 + |wk" |2)< C2||w||S,.
k= 1

Among other things, this implies that if2paw's similar to a normal operator—which is
also easily seen from the operator identity

1—i —A'1 l±I -1/
V2 V2 t0 A1'2' ~

T e~¥, l-4''2 —2pAi,2f
W2 V2

y/2 V2 I te'i'A112 0
e-'"

V2 V2
I \ 0 (2.7)
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These observations lead to a number of significant consequences. Let

<-G)
be vectors in X. The transfer function for the forced system

with output

/c1)

WW wl = (w(0> c)Hco(f) =

is the function

R-W = ~ 2pAm) 1b, c]w .

This function is invariant under any transformation

w = Ty,
in particular for (cf. (2.7))

t = t* =

'_L; JL,*
p'* p~i*
 /   I

\V2 V2 /
in the sense that

R{X)={(U- T-lSe2pAmT)-lT-% T*C)W,

and in the case (2.9) this gives

((M - e^A112)-1 0
I 0 (XI — e'^A112)' . j |ti/T ib, TfC

(2.9)

From the fact that A, and hence A1'2, is positive, we see that if | arg(A) — |,
|arg(A) + \jt\ are bounded away from zero, |/?(A)| < K/|A| for some positive K. In
particular, as long as 0 < p < 1, we see that the frequency response function R(ioj) has
the property

|R(i<w)| < K/\(o\. (2.10)
This is emphatically not true for the undamped operator £f0, or for the operator 1£ ,,,
y > 0, corresponding to viscous damping. In those cases all that can be asserted is that
| R(iw) | is bounded. The inequality

IKAI-JSPb)-1! <M/|A|, |arg 11 < ^ — e, (2.11)
which follows from the above considerations for B = 2pA1'2, is the fundamental hypoth-
esis required in order that should generate a holomorphic semigroup in W. An
inequality of the form (2.10) easily follows from (2.11). Since systems whose frequency
response functions satisfy (2.10) may be modeled effectively by finite-dimensional
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systems—as will be shown elsewhere—structural damping and the closely allied property
of holomorphic semigroup generation have significant practical modeling implications.

To conclude this section we remark that, although A being a differential operator
does not at all ensure that A112 is such, this does not impede the usefulness of (2.3) in
computations. If one approximates A by a positive, self-adjoint finite-dimensional matrix
A, the positive self-adjoint square root matrix A112 may be calculated readily and the
finite dimensional system

w + 2 pAll2w + Aw = 0

is then available for computational use.

3. A sufficient condition for general damping operators B. We wish now to consider
the general second order equation

x + Bx + Ax = 0 (3.1)

with, as we have seen, the equivalent first-order representation

w -(S)-U» (32»
Following the discussion of the previous section, our objective is to determine conditions
on B sufficient in order that if B should generate a holomorphic semigroup in W— and
we want to do this without making overly restrictive assumptions on B, such as
B = yA112, B = yA, or, for that matter, B = yf(A) where /(A) is an analytic function of A
in a region containing the positive real A axis with/(A) > 0 for A > 0. Nevertheless, in the
present paper, we are concerned with operators B which are closely related to A112.
Specifically, we will assume at the outset that B is A1/2-bounded so that, as noted in
Sec. 1, if B is closed.

From [5] we know that a sufficient condition for ifB to generate a holomorphic
semigroup is the following: that ¥ B should be closed and that there should exist a
positive number 6U 0 < 0t < tt/2, such that

\\R(X,£>b)\\ = \\(M-J?b)-1\\<M1/\X\, Ml = M^O), (3.3)
for | A | sufficiently large in any sector

|arg(A)| +d, 0 <9<91 (3.4)

of the complex A plane. When this is true the semigroup £fB(t) generated by if B is
defined for t in the dual sector

{0} u {t||arg f| < 0!}

and for each w e W, £fR(t)w is a holomorphic (i.e., differentiate with respect to || ||^)
vector-valued function in {t||f | > 0, |arg t\ <6^.

We have already presented, in Sec. 2, a discussion of the significance of the holomor-
phicity of £f'B{t). From that work we know that solutions w(t) = £flB(t)w corresponding to
holomorphic semigroups fflB(t) exhibit a number of properties characteristic of structural
damping.
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Theorem 3.1. Let B, positive and self-adjoint, be A112—bounded and, in addition, let B
satisfy

B = 2pA112 + CA112 (3.5)

where C is a bounded operator. Then there exists a positive number m(p) (depending
only on p and A) such that whenever

||C|| < m(p),

B generates a holomorphic semigroup on W = XQX.
Proof. We begin by noting that R(A, if B) can be computed explicitly. Representing

AI — !£B: W = X©X -> in operator matrix form as
~Al/2i

B U1/2 U + bJ'
it must be true that

(AI — if B)(AI — if B)~1 = I. (3.6)

Representing the resolvent in matrix form also:

(3.6) is seen to be equivalent to
AW — A1I2Y = I, AX — AlilZ = 0, (3.7)

A1I2W+ (AI + B)Y = 0, Ai/2X + (AI + B)Z = /. (3.8)

From (3.7), we have, immediately,

W = A~\I + A1I2Y), X = A~1A1I2Z. (3.9)

Substituting (3.9) into (3.8) and multiplying the result by A, we have

A1'2 + AY + (A21 + AB)Y = 0,

AZ + (A21 + AB)Z = AI.
These give

Y = -(A2/ + AB + A)~1A1/2, Z = A(A2I + AB + A)'1. (3.10)

Then, returning to (3.9), we have

W = A~Ul + AinY) = A'Ul - A1I2(A2I + AB+ A)~ M1/2),
(3.11)X = A~ 1A1/2Z = A1I2(A2I + AB + A)~ \

Combining these results, and letting

P(A, A, B) = A2I + AB + A,

we have

Rn « > = l^\l-^2P{A,A,B)-^A^) A»2P(A,A,B)-i\
( ' b) [ -P(A,A,B)-1A1'2 AP(A, A, B)~1 / '
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Since ||AR(A, i?B)|| = | A| ||i?(A, ̂ B)\, all we need to show is that there is an Mj = Mj(0)
such that

\\AR(A, <t>B)|| < M (3.13)
for | A| sufficiently large, |arg A\ < (tc/2) + 9. Since A, B are self-adjoint,

P(A, A, B)* = P(I, A, B), (P(A, A, B)~ M1/2)* = A1I2P(I, A, B)~ \

and it is enough to show that the three operators

A1/2P(A, A, B)~1A112, AA1i2P(A, A, B)~\ A2P(A,A,B)~1 (3.14)

are all bounded in the indicated region.
Let p be the positive number referred to in the theorem. We have

P{A, A, B) = A21 + AB + A = A2 + 2pAAI/2 + A + A(B — 2pA112).

By analogy with the quadratic formula, we set
A21 + 2pAA1'2 + A = (AI + [p + (p2 - 1 )ll2]All2)(AI + [p - (p2 - l)1'2]^1'2)

( = Q + (A,p,All2)Q-(A,p,Alt2).) (3.15)

Then
P(A, A, B)~1 = (AI + [p- (p2 - l)1/2]/41/2)_1[/ + (AI + [p + (p2 - l)1'2]^1'2)-1

x A(B - 2pAll2)(AI + [p- (p2 - l)1'2]^1'2)"1]"1^ + [p + (p2 - l)1/2]/41/2)~1

= Q~(A, p, Al'2yl[I + Q + (A, p, A112)' 1A(BA~112 - 2pI)A112

x Q-(A, p, Al,2)~ l]~lQ + (A, p, A112)-1. (3.16)

Now suppose we can establish that the operators
AQ±(A,p,A"2)~\ All2Q±(A,p,Ail2)~i (3.17)

are uniformly bounded for | arg A \ < (n/2) + 9. Then, using this in (3.16) we see that the
operators (3.14) are all bounded just in case

[I + Q +(A, p, Al,2)~ 1A(BA~112 - 2pI)All2Q~(A, p, /l1'2)-1]"1

is bounded. Again using the boundedness of the operators (3.17), this will be true if

||B/1~1/2 — 2pl\\ < m(p),

where m(p) is such that

m(p)\\Q+(A, p, Ai!2)~l|| \\All2Q-{A, p, A112)'11| < y < 1 (3.18)

uniformly for sufficiently large | A | in the sector | arg A \ < (n/2) + 9.
Letting E(p) be the spectral measure associated with the positive self-adjoint operator

A1/2, the operators (3.18) have the representations

AQ±(A, p, /I1'2)"1 = I A/(A + [p ± (p2 - l)1/2» dE(p),
•a(.AV2)

A1I2Q±{A, p, Alt2)~l = ) p/(A + [p± (p2 - l)1/2]n) dE(p),
a(AU2)
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and we have the desired result if the functions

p±(X,p, ») = x + ip±(p2_lyt2y P> = k + [,, ± £2 _ jji/2^

are uniformly bounded for ^G(t(A1/2), |1| sufficiently large in the sector
| arg 11 < (n/2) + 9.

We consider first the case where p > 1. Then (p2 — 1)1/2 is positive and

min{p + (p2 - 1)1/2, p - (p2 - 1)1/2} = p — (p2 — 1)1/2 = r~ > 0.

max{/> + (p2 - 1)1/2, p — (p2 — 1)1/2} = p + (p2 - 1 )1/2 = r+ > 0.

In this case we can take 6 to be any positive number < n/2. The modulus of p±(X, p, p) is
then the ratio of the distance from A to the origin to the distance from X to one of the
points — pr+ or —pr~. Let ijt be the angle between A and the negative real axis (see
Fig. 3). Clearly

•A > ̂  - o > o.
Then, by the law of cosines,

|A + /ir112 = |A|2 + l/zr112 - 2 cos \J/\X\ |^ur11
so that

(^Lf + Ug^l'-ZcosW,. 1^1 Il"'l 1-1. (3.19)
\\X + py-\! \ | A + pr~ | / \\X +pr~\ \X +p,r~\)
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Now it is clear geometrically that

1^ < CSC1X + pr
so that

-

~ - 9 j = sec 9 (3.20)

|q±(X, p, n)\ <y_

Then, using (3.20) in (3.19), we have

| X + pr± |
<^. (3.21)

2 111
2 cos sec 9 -r~—Up — 1 < 0

| X + pr±\J | A + 11
which implies that

| X + pri < cos i/* sec 9 + ^cos2 sec2 0+1. (3.22)

If p < 1 the argument is not very different. In this case the numbers
— P + {p2 ~ 1)1/2 = P + '(I — P2)112 — r± are conjugate complex numbers and — pr± lies
on one of the rays

i i | 7T _ . p 71 . _ ,Iarg A| =- + tan ^ ^ p2)1'2 =2 + sm~ p

in the left half-plane as shown in Fig. 4, where we have set

9l = sin~ lp.

The symmetry of the situation allows us to consider X in the upper half of this sector only.
We let ij/ be the angle between X and the ray arg X = (n/2) + 9y. Then

xj/ > 0i — 9 > 0.

Using the law of cosines in precisely the same way as before, we have (3.20) modified to

\pr± \/\X + pr± | < csc(0j - 9) (3.23)
and (3.22) is replaced by

|1|
U + ̂ ±l < cos \j/ csc(0j — 9) + ,/cos2 i// csc2(0i — 8) + 1. (3.24)

This completes the proof.
The result shows, in effect, that the set of operators B for which $£B generates a

holomorphic semigroup includes a neighborhood, relative to the operator topology
H^II-41/2 = \BA~ 1/2|| about B = 2p-41/2 for any positive number p. Inspection of the case
C = cl shows very quickly that this is the best result one can obtain in terms of || ||xi/2-
However, the result is not satisfactory for many purposes. What we would eventually like
to be able to prove is that if B is a positive self-adjoint operator such that

Pi A112 < B< p2A112, xe£>(A112), (3.25)
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Fig. 4.

or else (not, in general, equivalent)

p\ A < B2 < p\A, xe9(/l); (3.26)
then ££B generates a holomorphic semigroup on W = X(&X.

We can offer a partial result in this direction in the form of the following corollary to
Theorem 3.1.

Corollary 3.2. For each p > 0 there exists e(p) such that if B is a positive self-adjoint
operator satisfying

[2p - e{p)]A112 < B < [2p + e(p)]X1/2, (3.27)

then generates a holomorphic semigroup on W = X©X.
Proof. Multiplying (3.27) on the right and on the left by A~1/A we have

[2p — s(p)]I < A~1,4BA~114 < [2p + e(p)]I.
Then

-e(p)/ < A~mBA~llA - 2pi < e(p)I

and since A~ l!ABA~1/4 is self-adjoint, we conclude that

\\A-ll4BA-114 - 2/j/|| < e(p). (3.28)
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Now the term Q+(X, p, /11/2)~U(B - 2pAll2)Q~(X, p, A1'2)'1 which occurs in (3.16) can
be rewritten as

Q + {1 p, All2)~ 1X1/2A1ia(A~ 1/4B/1~1/4 - 2pI)Xll2All4Q~(X, p, A1'2)-1.

The proof then proceeds as before except that it is now necessary to establish the
boundedness of the operators

Q+(A, p, A112)-1 A112 A11*, ^i2A1iaQ-(X, p, A112)-1.

Going over to the spectral analysis again, it is sufficient to establish the uniform bound-
edness of the functions

^(1, p,n) = A + [p ± (p2 - l)1/2]/i

for p e o(A1'2), | A| sufficiently large in the sector |arg X\ < (n/2) + 9. But since

|S±(A, p, yu)|2 = |p±(l p, /i)||g±(A, p,n)\.
This follows immediately from the work already done in the proof of Theorem 3.1 and
Corollary 3.2 is proved.

It is possible to prove Theorem 3.1 in a slightly different way by first carrying out the
proof for the case

B = 2pA1'2

and then applying a result in [5] on perturbation of holomorphic semigroups. One needs
only to observe that, with

0 A112 \
11/2 /

the operator

-A112 — 2pA:

= 1° ° I
\0 CA11 f

(3.29)

is ,s/-bounded with s/ norm tending to 0 as ||C|| tends to zero. The cited result in [5]
then shows that $i + <€ generates a holomorphic semigroup. The proof that (3.29) gener-
ates a holomorphic semigroup is almost immediate when one notes that, as pointed out
in Sec. 2, A is similar to a normal operator.

4. A result for strong structural damping. We have noted our conjecture that if B in
(1.13) should generate a holomorphic semigroup if B is self-adjoint and positive and
(3.25) or (3.26) is valid. Though unable to obtain a result of this strength at the moment,
we can present a theorem valid under hypotheses significantly different from those made
in Theorem 3.1. Assuming that

pj \\x\\2 < \\BA~ 1/2x||2 < p\ ||jc||2, (4.1)

equivalently,

p\ A < B2 < p\A, Pi > Pi > 0. (4.2)
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The theorem applies, basically, when pj is large and p2 is not "too large" in relation to
pi. We will call this the case of "strong" structural damping.

Let us note, first of all, that (4.1), (4.2) imply that ||Bx|| < kt ||^41/2^c|| for some k1 not
greater than p2. We will see later that (4.1) implies

p2||x||2< ||y4~1/2Bx||2 < pi ||x||2 (4.3)

so that \A~ 1/2BA~ 1/2/11/2x|| < k2 ||x|| with k2 not greater than p2. We let
£ = sup(/c1; k2). Then

||5x|| < k\Alj2x\, \A~ll2BA~lt2y]\ < £||/i~ 1/2y||. (4.4)

Theorem 4.1. Let B be positive and self-adjoint; let A be as in Sec. 1. Let BA~112 satisfy
(4.1) and let the range of BA~112 be X—so that BA~1/2 is bounded and boundedly
invertible. Then the operator (cf. (1.13)) generates a holomorphic semigroup SfB(t)
for t in the interior of the sector

£ = {te C|[arg t| < tan" *9},
9

for some 3 > 0, provided that for some e, 0 < ke < 1,

(i)

(ii) 1+|"TJfa>0;

(iii) 1- "(i + 2)?f +  ; 11 H—5 i S1 > 0.
1 — e 1 — ke \ p2j

For future reference we observe that (4.4) implies that for some k <2H

\(Ax, Bx) — (Bx, Ax)\ < k\\All2x\\\\Ax\\, x e 2(A). (4.5)

If B: @(A312) -> 3>(A\ this can be replaced by the commutator condition

| (x, (AB — BA)x) | < /c||/l1/2x|| ||/4x||, x e @>(A3'2). (4.6)

The proof of Theorem 4.1 involves, as before in Theorem 3.1, showing that the three
operators

A1,2P(k, A, B)^1 A1'2, /L41/2P(A, A, B)~ \ A2P(A, A, B)~1 (4.7)

are uniformly bounded in the sector

£ |tan_1 9 + = jl e € | |arg A| < ^ + tan"1 $j. (4.8)

To this end, we establish

Lemma 4.2. Given (i)—(iii), (4.5), there exist positive constants cu c2 such that

||P(A, A, £)x||2 > Ci |/l|4||x||2 + c2 ||/lx||2, x e 3>(A), A e £ |tan_1 9 + ^I (4.9)

if 9 is sufficiently small.
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Proof. Let X = t; + it]. Then for x e &(A)

(P(JI, A, B)x, P(X, A, B)x) = ((A2/ + XB + A)x, (X2I + AJ5 + /l).x)

= |/l|4||x||2+ |A|2||£x||2 + ||/lx||2 + 2£\X\2(x, Bx) + 2(£2 - ri2)(x, Ax)

+ £[(Bx, Ax) + (Ax, B.x)] + irj[ — (Ax, Bx) + (Bx, Ax)\

sT. + ^ + Tj + ^+Ts + T^T,. (4.10)
We divide the discussion into the treatment of two cases.
Case I. Re A = ^ ^ 0. In this Ccisc, Tjj 72 , 7^ , 7^ cire cill non-ii6^stivc. For wc hsvc^

using (4.2) twice,

2(Z2 - 12)(x, Ax)> (^2 -^\)\\Bx\\2,
\ P2 Pi I

while for T6, with s such that 0 < ke < 1,
<?2

11t[(Bx, Ax) + (Ax, B.x)]| < 2£||y4x|| ||Bx|| < _ ^ \\Bx\\2 + (1 - ks)\\Ax\\2, (4.11)

and for T7, with £ > 0, using (4.5),

\iri[-(Ax, Bx) + (Bx, Ax)]| < k \ r\ \ \\A1/2x\\ \\Ax\\ < ~ri2\\All2x\\2 + ks\\Ax\\2

-4^|>?2"'B'X"2 + /Cg"/4X"2" (4'12)

Combining these, we see that (4.10) satisfies

- (1 - ke)\\Ax\\2 -^^rj2\\Bx\\2 - ks\\Ax\\2

+ k(e - e)||/l.x||2. (4-13)

Let e be such that 0 < ke < 1 and (i), (ii) are satisfied. Clearly, if 0 < e < e and e is
sufficiently close to e, the coefficient of ||£x||2 is nonnegative.

Case II. Re X = £ < 0, X e £ (tan"1 3 + (it/2)), i.e., — £ < 31 f/1. In this case only Tu
T2, T3 are obviously non-negative. We have, for 0 < e < e < 1, 0 < ke < 1,

I T.I - 2|{||A|!(*. Bx) < (1 - £)|in«|2 + ||Bx||!,

pi Pi

\T6\ < yz~j^- llBxll2 + (1 ~ k£)\\AxW2 (cf- (4-u))>

\T7\ < —>;2||B.x||2 + fce||/l.x||2 (cf. (4.12)).
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Hence

£ 7]> £ Tj — (1 — e)|l|4||x||2 — —^ ||B.x
i = 1 i = 1 I — £

2

+ 2pj~2pi llBxH2 ~ Y^Ys ~ ^ ~ ~ \\Bx\\2 - te\\Ax\\

= e|/l|4||x||2 + (1_^-4^fJ"1 + f1 "T^ +?2 "T^fa)4'
x ||Bx||2 + k(e — e)||/lx||2 > e|A|4||x||2

+ k(e - e)||.4x|| > e|A|4||x||2 + k(e — e)||v4x||2 (4.14)

if ^ e Z (tan~1 $ + (tc/2)), (i)-(iii) hold, 0 < s < e and e is sufficiently close to e.
Combining (4.13), (4.14) and taking ci = min(l, e) = e, ci = k(e — e), we see that (4.9)

holds and the proof of Lemma 4.2 is complete.

Proof of Theorem 4.1. As we noted before Lemma 4.2, we must establish that the
operators (4.7) are uniformly bounded in the sector (4.8). For the third operator in (4.7),
the result is now immediate.

||A~2P(A, A, jE?)x ||2 = ||P(A, A, B)(l"2x)||2 > ct |A|4||A~2x||2 + c2 ||/l(l~2x)||2 > ct ||x||2.
(4.15)

To treat the first operator, we note that with the transformation

C = 1 IK
which may be seen to leave any sector (4.8) invariant, and with

= A'mBA~m, A1=A~t,

we have

/1~ 1/2P(A, A, B)A~1/2 = /l2P(/l, Au Bi). (4.16)

We verify that P(£, A1, Bt) satisfies the hypotheses of Lemma 4.2. From the second
inequality in (4.4) it follows that

\\A~ 1/2B|| = ||(P-4_ 1/2)*|| = ||^~ 1/2|| ^ Pi => 1/2Px||2 < p2 ||x||2. (4.17)

The first inequality gives, in the same way,

||B"M1/2|| = II(A^B'1)*|| = WA^B-'W < l/Pl
so that, with y = A~ll2Bx,

\\B-'A^yf <-2\\y\\^\\A-^BxY > p\\\x\\\ (4.18)
Pi

Combining (4.17) and (4.18), we have

Pi||x||2 < ||/4_1/2.Bx||2 < p2|lxl|2- (4-19)
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Since A~ 1,2B = A' 1,2BA~1/2 A = Bx A\1/2, we see that B^A^112 is bounded on the
domain of A1'2 and, since that domain is dense in X, BXA\112 extends to a bounded
operator on X, which we still call /lj~ 1/2. Then we note that, just as we obtained (4.5),
we have, readjusting k in (4.5) if necessary,

\{Arx, Bxx) — (BiX, Alx)\ </c||/li/2x|| H^i^ll (4-20)
Proceeding as in Lemma 4.2, we see that if the inequalities (i)-(iii) are satisfied we

have
||P(C, Au Bi)x||2 > Cj ||cn|x||2 + c2 \\Axx\\2

so that

II X2P((, Au Bj)x||2 > Cj ||x||2 |recall X = ^j.

But, as we have noted in (4.16), this is the same as

||(/T 1/2P(A, A, B)A-^)x\\2>Cl\\x\\2

and we conclude that the first operator in (4.7) is bounded uniformly in the sector
£ (tan-1 9 + n/2).

Now consider the second operator in (4.7). We have seen (cf. (4.9)) that

||P(A, A, B)x||2 > Cj | X |4||x||2 + c2 ||v4x||2. (4-21)

Let us note that the hypothesis that A is self-adjoint and positive implies the same for
A112. Then it is easy to establish that for X e £ (tan -1 3 + n/2) the range of XI + A1'2 is
the whole space X. With

x = (/4-1/2 + X~ lI)y

(4.21) gives
||P(A, A, B)(A~112 + A-1/)y|| > ci |AH|(,4-1/2 + X~lI)y\\2 + ca^yr1'2 + X'lI)y^2

so that

\\X~1P(X, A, B)A~1,2(XI + /l1/2)y|| > ct |^|2||(/ + XA~lll)y\2 + c2||(/l1/2 + X~1A)y\\2

> Cj |A|2||y||2 + c2 ||v41/2y||2 > c||(A/ + All2)y\2, c > 0, (4.22)

provided we can establish that there are positive numbers cu c2 such that for
X £ £ (tan~1 3 + n/2),

\\{I + XA-l'2)y\\2 >cy\\y\\2, yeX, (4.23)

\{A112 + X~iA)y\2 >c1\All2y\2, y e &(A112). (4-24)

This can again be done with the aid of the spectral representation for A which, being
self-adjoint and positive, can be written as

, 00

A=\ n dE(n),
Jo

where E(fi) is the spectral family for A. Then

||(/ + XA~ 1/2)y||2 = [ °° 11 + A/T1/212 d\\E(n)y\\2.
J n
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Since 1/2 > 0, Xn~1/2 e ]T (tan"1 S + n/2) and

Then

11 + Xn 1/212 > cos2(tan *(3)) = 1 +^2 .

«(/ + XA~ll2)y\2 > (^JjllE^H2 =T±_

and we can take cl = 1/(1 + D2) in (4.23). In the case of (4.24) similar considerations lead
to examination of the ratio

/i"2 + rV
n112

because A~ V1/2 e X (tan-1 $ + W2)). Thus (4.24) is satisfied also with c2 = 1/(1 + $2).
Since 3$(XI + A1'2) = X, (4.22) shows that Ail2P(X, A, B)'1X is uniformly bounded for

X e £ (tan"1 9 + (rc/2)). Since this sector is invariant under conjugation, we conclude
that AmP(X, A, B)-1X = [XP(X, A, B)~lAll2~]* is uniformly bounded for that Xe
£(tan-1 9 + {n/2)) and then XP(X, A, B)~lA1/2 is uniformly bounded in that sector.

At this point we have established the uniform boundedness of the three operators
(4.7) in Y, (tan-1 3 + (n/2)). From our earlier observations we conclude that B gener-
ates a holomorphic semigroup if our conditions are satisfied, completing the proof of the
theorem.

Corollary 4.1. Let Cu C2 be two compact operators on X. Let B satisfy the assump-
tions of Theorem 3.1 or 4.1 so that generates a holomorphic semigroup. Then the
operator

0 A112 \
-A112 -B + ClA1'2 + All2C2)

also generates a holomorphic semigroup.
Proof: From a result in [10], the operator

All2\ I 0 ,41/2 \
II 0W 0 A \_[ 0 >
[c, l)\-A1/2 -Bj\-A1/2 C1A 1/2

generates a holomorphic semigroup. By the same theorem,

I 0 A1'2 \II — C2 \ / 0 A112 \
\-Am C1A1I2-bI\0 I IX-A1'2 -B + CiA112 + A1I2C2)

also generates a holomorphic semigroup.
Examples. Let X = L2(0, I) and

A = d4/dx4 with D(A) = {w e H4(0, /) | w(0) = w(l) = w"(0) = w"(l) = 0}.

Let B be defined by
// //u;

+ kb2(x)w, pi > 0
d

Bw = - —
ax (Pi +

where bu b2 are sufficiently smooth functions on [0, /] and k > 0, with

D(B) = {w e H2(0, I) | w(0) = w(l) = 0}.
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Then B is positive, self-adjoint and satisfies

p\A<B2<p\A

for some p2> pi-
If fci(x) and b2{x) are not identically zero then A and B do not commute in general.

We have, for w e D(A312),

<ab-ba»-{?\-£

\dx

(Pi + kbi(x))^ + kb2(x)w|

(Pi + W»i(*))i3s ~kbi ,4

= k

d5w d*w
d^~kb2dx~\

d^w d^w d3w

- (5f>TO - 6b'Hx))~ - WW - 4»?>(*))^

Since X3/2 = -d6/dx6, from interpolation one easily sees that the commutator condition
(4.6) is satisfied provided that b[5>(x) and b^2\x) are continuous functions on [0, /] and
that k is appropriate.

For any we X, define Cu C2: X ->X by

(C, w)(x) = I c,(x, £)w(£) d£, i = 1,2
Jo

where the kernels Cj(x, £), c2(x, c) are Hilbert-Schmidt, and (d2/dx2)c2(x, q) is contin-
uous in x for almost all ^ e [0, /]. By Corollary 4.1, we know that

0 A1/2

-A112 -B + CtA112 + A1t1/2cj

generates a holomorphic semigroup.
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