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A mathematical model for peristaltic

transport of micro-polar fluids

S.K. Pandey and Dharmendra Tripathi∗

Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi 221005, India

Abstract. A mathematical model has been constructed for peristaltic transport of micro-polar fluid in a circular cylindrical tube

of finite length by letting sinusoidal waves propagate along the wall that induce contraction and relaxation but not expansion

beyond the natural boundary. Axial and radial velocities and micro-rotation components are formulated for micro-polar fluid

transportations by applying the method of long wavelength and low Reynolds number approximations in the analysis. Pressure

distribution along the tube length is studied to investigate temporal effects. An in-depth study has been done to learn the effects

of coupling number and micro-polar parameter. The effects of coupling number and micro-polar parameter are investigated also

on mechanical efficiency, reflux and trapping. A significant difference observed is that unlike integral wave-trains propagating

along the tube walls that have identical peaks of pressure, non-integral wave-trains have peaks of different sizes.
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1. Introduction

Taking into consideration the effects of individual

particles such as micro-rotation in the flow, a concen-

trated suspension of non-deformable neutrally buoyant

rigid particles in a viscous medium was formulated by

Eringen [1]. For the reason that the effects are micro-

rotational and micro-inertial, such a fluid was named

micro-polar.

Micro-polar fluids are very common type of fluids

such as blood, chyme, some edible solutions, poly-

mer solutions, colloidal solutions, drilling fluids in

oil industries. Some food materials such as solutions

of roasted cereal powders consumed in Indian sub-

continent may be viewed as micro-polar fluid.

Devi and Devanathan [2] investigated the peristaltic

transport of micro-polar fluid in a cylindrical tube

with a sinusoidal wave of small amplitude. Using

long wavelength approximations, Philip and Chandra

[3] worked on the peristaltic transport of a simple
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micro-polar fluid which accounts for micro-rotation

and micro-stretching of the particles contained in a

small volume element.

Recently, Bhargava et al. [4] modelled the peristaltic

flow of blood through stenosed arteries, by consider-

ing blood as micro-polar fluid and arteries as porous

channel. Srinivasacharya et al. [5] studied different

micro-polar properties on pressure across one wave-

length and trapping; Hayat et al. [6] investigated the

effects of different wave forms; Muthu et al. [7, 8]

studied wall properties in channels and tubes respec-

tively whereas Hayat and Ali [9] reported effects of an

endoscope. The same authors [10] studied the effects of

asymmetricity of wave propagation in a channel while

Mekheimer and Elmaboud [11] studied the flow in an

annulus.

All the researchers, cited above, applied long wave-

length and low Reynolds number approximations on

an infinite tube with the walls contracting and dilating

as well to the same extent. The fluid was considered as

micro-polar. In none of those studies, the inherent phe-

nomenon reflux and mechanical efficiency have found

place anywhere in discussion. The studies are con-

fined to the propagation of only integral number of
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waves. Moreover, investigations at micro-level such as

pressure at each point along the entire length of ves-

sel that we intend to carry out with regard to pressure

distribution have been ignored.

However, the fact is that the physiological vessels,

in general, and oesophagus, in particular, undergo only

contraction followed by relaxation, but no expansion

beyond the natural boundary. Oesophagus is an 18 to

26 cm long and 1.5 to 2.5 cm wide collapsible mus-

cular tube stretching from the upper sphincter to the

lower sphincter. Swallowing has hardly anything to do

with gravitational force on the fluid because even if

one is upside down, swallowing will take place. Cattle

grazing in the field have their neck down toward the

ground; yet they swallow easily.

This is revealed from the aforementioned discussion

that the oesophagus is finite in length in comparison

to its radius. The consideration of wall’s expansion

beyond the stationary boundary not only makes a vital

difference of qualitative nature but also a quantitative

difference is expected. Hence, none of the studies men-

tioned above is suitable for describing swallowing of

a micro-polar fluid in oesophagus.

Dodds [12] and Ren et al. [13] carried out exper-

imental investigations in this direction for different

viscosities and bolus-volumes. Li and Brasseur [14]

have done theoretical investigation on it for Newtonian

fluids considering finite length tubes, and focussed the

study on both the local and global dynamics. The issue

of local dynamics such as spatial-temporal variations

in local stresses in terms of the motility and efficacy

of the transport process was raised by Brasseur and

Dodds [15]. They found close resemblance with the

experimental findings of Dodds [12] and Ren et al.

[13]. Misra and Pandey [16], who investigated similar

phenomena for power-law fluids, reported similar con-

clusions, although they didn’t discuss the experimental

findings. Pandey and Tripathi [17–20] have worked out

and reported similar aspects of various non-Newtonian

fluids.

We intend to investigate swallowing of a non-

Newtonian foodstuff of micro-polar nature through

oesophagus by assuming it a cylindrical tube of finite

length. This model may fit to blood flow in aorta and

flow of semi-digested food in duodenum. Propagation

of a non-integral number of waves along the tube walls,

which is an inherent characteristic of finite length ves-

sels, can also be investigated.

2. Mathematical model

We consider the flow of a micro-polar fluid in a tube

of length l̃ caused by continuous contraction waves

that propagate on the walls of the tube (cf. Fig. 1) and

are given by

h̃(x̃, t̃) = a − φ̃ cos2 π

λ
(x̃ − ct̃), (1)

where h̃, x̃, t̃, a, φ̃, λ and c respectively stand for radial

displacement of the wall, axial coordinate, time, radius

of the tube, amplitude of the wave, wavelength and

wave velocity.

The governing equations of the flow of micro-polar

fluid in the absence of body forces and body couple are

given by

ρ

(
∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂r̃

)
= −

∂p̃

∂x̃
+ k

1

r̃

∂(r̃w̃)

∂r̃
+ (µ + k)

(
∂2ũ

∂x̃2
+

1

r̃

∂

∂r̃

(
r̃
∂ũ

∂r̃

))
, (2)

ρ

(
∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂r̃

)
= −

∂p̃

∂r̃
− k

∂w̃

∂x̃
+ (µ + k)

(
∂2ṽ

∂x̃2
+

∂

∂r̃

(
1

r̃

∂ṽ

∂r̃

))
, (3)

ρσ̃

(
∂w̃

∂t̃
+ ũ

∂w̃

∂x̃
+ ṽ

∂w̃

∂r̃

)
= −2kw̃ + k

(
∂ṽ

∂x̃
−

∂ũ

∂r̃

)
+ γ

(
∂2w̃

∂x̃2
+

∂

∂r̃

(
1

r̃

∂w̃

∂r̃

))
+ (α + β + γ)∇̃(∇̃ · w̃), (4)

∂ũ

∂x̃
+

1

r̃

∂(r̃ṽ)

∂r̃
= 0, (5)

where ũ, ṽ, w̃, r̃, ρ, σ̃ are axial velocity, radial veloc-

ity, micro-polar vector, radial coordinate, fluid density,

micro-gyration parameter, respectively and µ, k, α,

β, γ are material constants and satisfy the following

conditions:

2µ + k ≥ 0, k ≥ 0, 3α + β + γ ≥ 0,

γ ≥ |β| . (6)



S.K. Pandey and D. Tripathi / A mathematical model for peristaltic transport of micro-polar fluids 281

x

h

l

Relaxed wall Contracted wall Stationary boundary

c Center line

Fig. 1. The diagram, based on Eq. (12), represents the propagation of a progressive wave along the walls of the tube containing fluid, which

undergoes contraction and relaxation but no expansion beyond the boundary. h is the radial displacement of the wall, c is the wave velocity, l is

the length of tube and x is the axial coordinate.

For the subsequent analysis, the following non-

dimensional parameters are introduced:

x =
x̃

λ
, r =

r̃

a
, t =

ct̃

λ
, u =

ũ

c
, v =

ṽ

cδ
, δ =

a

λ
, w =

aw̃

c
, h =

h̃

a
,

l =
l̃

λ
, φ =

φ̃

a
, σ =

σ̃

a2
, p =

p̃a2

µcλ
, Re =

ρcaδ

µ
, Q =

Q̃

πa2c
,

⎫
⎪⎪⎬
⎪⎪⎭

(7)

where δ = a/λ is wave number, Re is the Reynolds

number and Q is volume flow rate.

Employing long wavelength and low Reynolds

number approximations, the dimensionless equations

obtained from Eqs. (2–5) reduce to

∂p

∂x
=

1

1 − N

{
N

r

∂(rw)

∂r
+

1

r

∂

∂r

(
r
∂u

∂r

)}
, (8)

∂p

∂r
= 0, (9)

2w +
∂u

∂r
−

2 − N

M2

∂

∂r

(
1

r

∂(rw)

∂r

)
= 0, (10)

∂u

∂x
+

1

r

∂(rv)

∂r
= 0, (11)

where N = k/(µ + k) is the coupling number i.e., a

measure of particle coupling with its surroundings

(0 ≤ N ≤ 1), M =
√

a2k(2µ + k)/γ(µ + k), is the

micro-polar parameter and α, β do not appear in the

governing equation as the micro-rotation vector is

solenoidal. In the limiting case, k → 0, i.e., N → 0, the

governing equations for the micro-polar fluid reduce

to the governing equations for Newtonian fluid.

In view of non-dimensionalisation, Eq. (1) takes the

following dimensionless form:

h(x, t) = 1 − φ cos2 π(x − t). (12)

The following are the boundary conditions imposed

on the governing equations:

u(x, t)|r=h = 0, v(x, t)|r=h =
∂h

∂t
,

(13)

v(x, t)|r=0 = 0,
∂u(x, t)

∂r

∣∣∣∣
r=0

= 0.

w(x, t)|r=0 = 0, w(x, t)|r=h = 0. (14)

2.1. Analysis

Integration of Eq. (8) once with respect to r yields

∂u

∂r
= (1 − N)

r

2

∂p

∂x
− Nw +

C1

r
. (15)

Further, integrating Eq. (10) twice with respect to

r, and also using Eq. (15), the micro-polar vector is

obtained as
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w = C2I1(Mr) + C3K1(Mr)

−
1

2 − N

{
(1 − N)

r

2

∂p

∂x
+

C1

r

}
, (16)

where C1, C2, C3 are arbitrary functions independent

of r and I1(Mr), K1(Mr) are respectively the modified

Bessel functions of the first and the second kind of the

first order.

Then, applying fourth boundary condition of Eq.

(13), and the boundary conditions (14), Eqs. (15) and

(16) become

∂u

∂r
=

1 − N

2 − N

∂p

∂x

{
r −

Nh

2

I1(Mr)

I1(Mh)

}
, (17)

w =
1 − N

2(2 − N)

∂p

∂x

{
hI1(Mr)

I1(Mh)
− r

}
; (18)

and further integrating Eq. (17) and applying the no-

slip condition of Eq. (13), the axial velocity is found

as

u =
1 − N

2(2 − N)

∂p

∂x

{
r2 − h2 +

Nh

M

(
I0(Mh) − I0(Mr)

I1(Mh)

)}
, (19)

where I0(Mr), I0(Mh) are the modified Bessel functions

of the first kind and the zeroth order.

The radial velocity is derived from Eq. (11), by sub-

stituting u from Eq. (19) and integrating it once with

respect to r. The regularity condition, given in Eq.

(13), determines the constant term and gives the radial

velocity as

v =
1 − N

2(2 − N)

[
∂p

∂x

∂h

∂x

{
rh −

N

M

{
r

2

∂

∂x

(
hI0(Mh)

I1(Mh)

)
−

I1(Mr)

M

∂

∂x

(
h

I1(Mh)

)}}

−
∂2p

∂x2

{
r3

4
−

rh2

2
+

Nh

MI1(Mh)

(
r

2
I0(Mh) −

1

M
I1(Mh)

)}]
. (20)

In order to get pressure gradient, we apply the radial

velocity of the wall, given in Eq. (13), on Eq. (20). This

gives

h
∂h

∂t
=

1 − N

2(2 − N)

[
∂p

∂x

∂h

∂x

{
h3 −

Nh

M

(
h

2

∂

∂x

(
hI0(Mh)

I1(Mh)

)
−

I1(Mh)

M

∂

∂x

(
h

I1(Mh)

))}

+
∂2p

∂x2

{
h4

4
+

Nh2

2M2

(
2 −

MhI0(Mh)

I1(Mh)

)}]
, (21)

integration of which, with respect to x, yields the pres-

sure gradient as

∂p

∂x
=

8(2 − N)

1 − N
⎧
⎪⎪⎨
⎪⎪⎩

G(t) +

∫ x

0

h ∂h
∂t

ds

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

)

⎫
⎪⎪⎬
⎪⎪⎭

. (22)

Integrating it once again from 0 to x, the pressure

difference is obtained as

p(x, t) − p(0, t) =
8(2 − N)

1 − N

x∫

0

G(t) +

∫ s

0

h ∂h
∂t

ds1

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

)ds. (23)

Substituting x = l in Eq. (23), the pressure difference

between the inlet and the outlet of the tube, is obtained

as

p(l, t) − p(0, t) =
8(2 − N)

1 − N

l∫

0

G(t) +

∫ x

0

h ∂h
∂t

ds

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

)dx, (24)
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where G(t) is a function of t which is evaluated by a

simple manipulation as

G(t) =

1−N
8(2−N) (p(l, t) − p(0, t)) −

∫ l

0

∫ x

0

h ∂h
∂t

ds

h4+ 4Nh2

M2

(
1−

MhI0(Mh)

2I1(Mh)

)dx

∫ l

0

1

h4+ 4Nh2

M2

(
1−

MhI0(Mh)

2I1(Mh)

)dx

, (25)

where �pl(t) = p(l, t) − p(0, t), is the pressure differ-

ence between the inlet and the outlet of the tube.

The volume flow rate is defined as

Q(x, t) =

h∫

0

2rudr,

which yields, on performing the integration, the fol-

lowing expression:

Q(x, t) =
N − 1

4(2 − N)

∂p

∂x

{
h4 +

4Nh2

M2

(
1 −

MhI0(Mh)

2I1(Mh)

)}
. (26)
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Fig. 2. Pressure distribution along the axial distance of the finite length tube at five time instants based on Eq. (23). Dotted lines (· · · · · ·) represent

the position of wave, whereas continuous lines (—) represent the pressure distribution for N = 0.0–1.0, φ = 0.9, N = 1.0 and l = 2.0.
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The time-averaged volume flow rate is obtained by

averaging the volume flow rate for one time period.

This gives

Q̄ =
N − 1

4(N − 2)

1∫

0

∂p

∂x

{
h4 +

4Nh2

M2

(
1 −

MhI0(Mh)

2I1(Mh)

)}
dt. (27)

The time-averaged volume flow rate can be given in

terms of the flow rate in the wave frame, and also in

the laboratory frame, as

Q̄ = q + 1 − φ +
3φ2

8

= Q − h2 + 1 − φ +
3φ2

8
. (28)

This helps us express the pressure gradient in terms

of the time-averaged volume flow rate. With some

manipulations Eqs. (26) and (28) give

∂p

∂x
=

4(2 − N)

N − 1

⎧
⎨
⎩

Q̄ + h2 − 1 + φ −
3φ2

8

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

)

⎫
⎬
⎭ , (29)

on integration, which yields pressure difference, in

terms of the time-averaged volume flow rate, as

p(x) − p(0) =
4(2 − N)

N − 1

x∫

0

Q̄ + h2 − 1 + φ −
3φ2

8

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

)ds, (30)
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Fig. 3. Pressure distribution along the axial distance of the finite length tube at five time instants based on Eq.(23). Dotted lines (· · · · · ·) represent

the position of wave, whereas continuous lines (—) represent the pressure distribution for M = 1.0–5.0, φ = 0.9, N = 0.50 and l = 2.0.
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which gives for x = l

p(l) − p(0) =
4(2 − N)

N − 1

l∫

0

Q̄ + h2 − 1 + φ −
3φ2

8

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

)dx. (31)

Finally, the local wall shear stress is defined as

τw =
∂u

∂r

∣∣∣∣
r=h

,

which, by virtue of Eq. (17), takes the form

τw =
(1 − N)h

2

∂p

∂x
,

and further reduces, in view Eq. (22), to

τw = 4(2 − N)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(t) +

x∫

0

h ∂h
∂t

ds

h3 + 4Nh
M2

(
1 −

MhI0(Mh)
2I1(Mh)

)

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (32)

3. Mechanical efficiency

Mechanical efficiency (cf. [21]) is derived for micro-

polar fluid as

E =
Q̄�p1

2φ[−(1 + φ)�p1 + I11 + φI12]
, (33)
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Fig. 4. Pressure distribution along the axial distance of the finite length tube at five time instants based on Eq. (23). Dotted lines (· · · · · ·) represent

the position of wave, whereas continuous lines (—) represent the pressure distribution for N = 0.0–1.0, φ = 0.9, M = 1.0 and l = 1.8.
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where I11=
∫ 1

0
∂p
∂x

cos 2π xdx, I12 =
∫ 1

0
∂p
∂x

cos4(π x)dx,

and �p1 = p(1) − p(0) is the pressure difference

across one wavelength and it is evaluated, by using

Eq. (30), as

�p1 =
4(2 − N)

N − 1

1∫

0

Q̄ + h2 − 1 + φ −
3φ2

8

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

)dx, (34)

and Q̄0, the maximum flow rate, is obtained by virtue

of Eq. (34) and for �p1 = 0 as

Q̄0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − φ +
3φ2

8
−

1∫

0

1

h2+ 4N

M2

(
1−

MhI0(Mh)

2I1(Mh)

)dx

1∫

0

1

h4+ 4Nh2

M2

(
1−

MhI0(Mh)

2I1(Mh)

)dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

4. Reflux limit

Reflux is an important phenomenon of peristaltic

movement, which refers to the presence of fluid parti-

cles that move, on the average, in a direction opposite

to the net flow in the close vicinity of the wall (cf. [21]).

-40

-30

-20

-10

0

10

20

30

40

50

0 0.5 1 1.5 2

x

∆p

M = 1.0 

M = 3.0 

M = 5.0

(a) 0.1,0.0=t

-40

-30

-20

-10

0

10

20

30

40

0 0.5 1 1.5 2

x

∆p

M = 1.0 

M = 3.0 

M = 5.0

(b) 25.0=t

-40

-30

-20

-10

0

10

20

30

40

0 0.5 1 1.5 2

x

∆p

M = 1.0 

M = 3.0 

M = 5.0

(c) 5.0=t

-60

-50

-40

-30

-20

-10

0

10

20

0 0.5 1 1.5 2

x

∆p

M = 1.0 

M = 3.0 

M = 5.0

(d) 75.0=t

Fig. 5. Pressure distribution along the axial distance of the finite length tube at five time instants based on Eq. (23). Dotted lines (· · · · · ·) represent

the position of wave, whereas continuous lines (—) represent the pressure distribution for M = 1.0–5.0, φ = 0.9, N = 0.50 and l = 1.8.
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For the axisymmetric case, the dimensional form of

the stream function in the wave frame is defined as

dψ̃ = 2πR̃(ŨdR̃ − Ṽ dX̃), (36)

where ψ̃, X̃, R̃, Ũ and Ṽ are stream function, axial

coordinates, velocities components respectively.

Using the following transformations between the

wave and the laboratory frames, defined as

X̃ = x̃ − ct̃, R̃ = r̃, Ũ = ũ − c, Ṽ = ṽ,

q̃ = Q̃ − ch̃2, Ψ̃ = ψ̃ − r̃2, (37)

where the left side of the parameters is in the wave

frame while the right side of the parameters are in the

laboratory frame, we obtain stream function as

ψ = −

⎡
⎣

(
Q̄ + h2 − 1 + φ −

3φ2

8

) {
r4 − 2r2h2 + 2Nh

M2I1(Mh)
(MI0(Mh)r2 − 2rI1(Mr))

}

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

) + r2

⎤
⎦ . (38)

Stream function at the wall, ψw, is solved from

Eq. (38) by substituting r = h. A simplification yields

ψ|r=h = ψw = Q̄ − 1 + φ −
3φ2

8
. (39)

-15

-10

-5

0

5

10

15

20

25

30

0 0.5 1 1.5 2

x

τ w

N = 0.0

N = 0.25

N = 0.5

N = 0.75

(a) 0.1,0.0=t

-15

-10

-5

0

5

10

15

20

25

30

0 0.5 1 1.5 2

x

τ w

N = 0.0

N = 0.25

N = 0.5

N = 0.75

(b) 25.0=t

-15

-10

-5

0

5

10

15

20

25

30

0 0.5 1 1.5 2

x

τ w

N = 0.0

N = 0.25

N = 0.5

N = 0.75

(c) 5.0=t

-15

-10

-5

0

5

10

15

20

25

30

0 0.5 1 1.5 2

x

τ w

N = 0.0

N = 0.25

N = 0.5

N = 0.75

(d) 75.0=t

Fig. 6. Local wall shear stress vs. axial distance along the finite length tube at five time instants based on Eq. (32). Dotted lines (· · · · · ·) represent

the position of wave, whereas continuous lines (—) represent the local wall shear stress for N = 0.0–1.0, φ = 0.9, M = 1.0 and l = 2.0.
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Reflux flow rate, Qψ(x), associated with a particle at

the position x, is given by

Qψ(x) = ψ + r2(ψ, x), (40)

which, on averaging over one cycle, gives

Q̄ψ = ψ +

1∫

0

r2(ψ, x)dx (41)

Moreover, in order to evaluate the reflux limit, Q̄ψ is

expanded in a power series, in terms of a small param-

eter ε about the wall, where ε(= ψ − ψw) is subjected

to the reflux condition

Q̄ψ

Q̄
> 1 as ε → 0. (42)

The coefficient of the first two terms in the expan-

sion of r is obtained only for small values of M. Sub-

stituting the expansion r2(ψ, x) = h2 + a1ε + a2ε
2 + · · ·

into Eq. (38), and using Eq. (39), we get

a1 = −1, (43)

a2 =−

⎡
⎣

(
1 − 1

4
MNh

I1(Mh)

) (
Q̄ + h2 − 1 + φ −

3φ2

8

)

h4 + 4Nh2

M2

(
1 −

MhI0(Mh)
2I1(Mh)

)

⎤
⎦ .

(44)

Then integrating Eq. (40) with respect to x, and

using Eqs. (41–44), we obtain the reflux limit (i.e. the

occurrence of reflux) as
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Fig. 7. Pressure distribution by local wall shear stress at five time instants based on Eq. (32). Dotted lines (· · · · · ·) represent the position of

wave, whereas continuous lines (—) represent the local wall shear stress for M = 1.0–5.0, φ = 0.9, N = 0.50 and l = 2.0.
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Q̄ < 1 − φ +
3φ2

8
−

∫ 1

0

(
1− 1

4
MNh

I1(Mh)

)

h2+ 4N

M2

(
1−

MhI0(Mh)

2I1(Mh)

)dx

∫ 1

0

(
1− 1

4
MNh

I1(Mh)

)

h4+ 4Nh2

M2

(
1−

MhI0(Mh)

2I1(Mh)

)dx

(45)

5. Numerical results and discussion

We apply the model to the flow through oesophagus;

and therefore, we consider two boluses of a micro-polar

fluid through an oesophagus. The case, we consider,

is that of free pumping, i.e., the case when the pres-

sure across the two ends (viz., the upper and lower

sphincters) of the oesophagus is zero.

A keen examination of the effects of coupling

number and micro-polar parameter, which together

determine micro-polar character of the fluid, on the

flow pattern, is carried out by computer simulation.

We wrote programs in C and studied the graphs drawn

based on the computational results.

First of all, we perform temporal examination of

the pressure distribution along the length at various

instants, i.e., for discrete values of t = 0.0–1.0 (cf. Fig.

2). At t = 0 (cf. Fig. 2a), it is observed that the pressure

tends to rise sharply at the upper sphincter, reaches

some peak, then falls at a lower rate to zero at the mid-

dle of the bolus, comes down further to a lower trench

and finally rises sharply to meet the leading end of the

bolus. The same distribution is repeated for the next

bolus. The pressure at the lower sphincter is zero. This

divulges the fact that the bolus is under complete con-

trol of the oesophagus. This is the beauty of this sort of

pumping which is more for safe and controlled trans-

portation than merely trying to pump with minimum

effort for maximum load. After one fourth of the peri-

odic cycle (cf. Fig. 2b), the bolus has moved ahead

and a trailing bolus is on the way to entry, which is

permitted by the upper sphincter by lowering the pres-

sure which is once again zero at the head of it and rises

very sharply so that the leading bolus does not suf-

fer from any retrograde motion; whereas at the lower

sphincter, pressure declines to zero in order to pave

way for the outgoing bolus. The graphs for higher val-

ues of t represent a systematic progress of the boluses

in the oesophagus. Eventually, at the time t = 1, which

represents the completion of one period, the pressure

distribution resembles that at t = 0: this indicates that a

new cycle is ready to set out (cf. Fig. 2a).

Such a distribution was reported by Dodds [12],

Ren et al. [13] and Brasseur and Dodds [15], who

measured intrabolus pressures, computed using radio-

graphic data of bolus shapes as input and compared

with manometric measurements.

It is further observed that the pressure distribution

along the oesophageal length for micro-polar fluid

shows qualitative similarity with Newtonian fluid (cf.

Fig. 2) which is a special case, i.e., N → 0.

It also reveals that as the coupling effect parame-

ter N increases, pressure gradient as well as pressure

along the length of the oesophagus enhances which

may be physically interpreted as that inner-rotation of

the fluid particles increases pressure; and finally when

N → 0, i.e., the fluid turns Newtonian, the pressure is

minimum. This may lead to the conclusion that the

oesophagus has to make additional efforts to swal-

low a micro-polar fluid. A similar observation is made

for all values of t ranging from 0 → 1, i.e., through-

out one time period. Temporal effects are similar to

those observed for Newtonian fluids, power-law fluids,

visco-elastic fluids, visco-plastic fluids and magneto-

hydrodynamic fluids (cf. [16–20]). Figures, together

with captions, provide the details (cf. Fig. 2).

We further carry out investigation into the role of

the other micro-polar parameter M. It is observed that

the pressure along the entire length of the oesophagus

diminishes as M increases. Hence, this parameter has

an opposite influence vis-à-vis coupling number (cf.

Fig. 3). Since no value of M can lead to Newtonian

nature, no comparison can be made with Newtonian

fluids. In fact, the micro-polar fluid has a complex char-

acteristic that is built up by the combined effects of

these two parameters. This may be noticed that once

N = 0, M seizes to affect the flow (cf. Eq. (23)).

Simultaneously, we consider the propagation of a

non-integral number of waves in the train, which is an

inherent feature of finite length vessels. Some signif-

icant differences are observed between this case and

the other where there are an integral number of waves

in the train. As a special case, we take l = 1.8.

It is observed that unlike the case of an integral num-

ber of waves, the pressure distributions are different

for the boluses enclosed within the whole and the frac-

tional waves. Whatever be the temporal value, the pres-

sure for the whole wave attains zero thrice: at the two

ends and once midway depending upon the value of t

for the whole bolus while it reaches zero only twice at

the two ends in the case of fractional bolus. But one

significant difference between the two cases is that the

peaks of pressure for the two different types of boluses

are identical in the integral case while the peaks are
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different in the non-integral case (cf. Fig. 4). Pressure

distribution changes with t. It is further observed that

the closer to symmetry is the distribution of boluses

in the vessel, the lesser is the difference between the

pressure peaks (Fig. 4c). The effects of the coupling

number N and the micro-polar parameter M do not

reveal any difference in the two cases (cf. Figs. 2–5).

Figures 6 and 7 depict the temporal effects of cou-

pling number N and micro-polar parameter M on local

wall shear stress along the length of tube for vari-

ous values of t = 0.0–1.0. It is observed that the local

wall shear stress increases with coupling number N,

whereas it decreases with micro-polar parameter M.

A graph, plotted for pressure and averaged flow rate

that exhibits a linear relation between them, for varying

coupling number N and given M, indicates that pres-

sure increases with coupling number N. For a given

coupling number N, it is similar to that for Newto-

nian fluids (cf. Fig. 8). Observation is that the pressure

decreases with increasing M and for given N (cf. Fig.

9).

Mechanical efficiency is an important characteristic

of a pump. Graphs plotted for the mechanical efficiency

reveal that it increases with the coupling number N (cf.

Fig. 10) for given M and decreases with the micro-

polar parameter M for given N (cf. Fig. 11). Captions

of the figures give details of the other parameters. The

fluid turns Newtonian as N → 0. This is noteworthy that

while examining pumping efficiency, we have fixed

the flow rate so that higher efficiency is an indication

that the pump has to be more efficient to transfer the

same amount of micro-polar fluids. In other words,

efficiency is less, in case a micro-polar fluid is pumped.

Reflux relates to the retrograde motion of the fluid

particles close to the inner surface of the wall of the

vessel in which the flow is considered. It has been

discussed here only for small values of micro-polar

parameter. The graphs based on Eq. (46) for reflux limit

discloses that the reflux region for micro-polar fluid

increases with the coupling number N (cf. Fig. 12).

Physically it can be interpreted as that the flow becomes

more prone to reflux when inner rotation of fluid par-

ticles increases.

Since M is considered very small, no significant

difference is observed (cf. Fig. 13); and even if it

is measured very carefully, it won’t give us accurate

values. For this reason, discussion in this regard is

dropped.

Another important phenomenon called trapping

refers to closed circulating streamlines that exist at very
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Fig. 14. Streamlines in the wave frame when Q = 0.9, φ = 0.6,

M = 0.001, N = 0.25.
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Fig. 15. Streamlines in the wave frame when Q = 0.9, φ = 0.6,

M = 0.01, N = 0.25.

high flow rates and when occlusions are very large

(cf. [21]). The trapped region moves with the wave-

velocity. It has been studied for varying micro-polar

parameter M and coupling number N. We plot stream-

lines based on Eq. (38) for this case. Illustrating Figs

(14–17) reveal that when M is increased by keeping

other parameters unchanged, the size of the trapped

region decreases slightly. Unlike this, the size of the

trapped region increases when N enhances with other



292 S.K. Pandey and D. Tripathi / A mathematical model for peristaltic transport of micro-polar fluids

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 16. Streamlines in the wave frame when Q = 0.9, φ = 0.6,

M = 0.1, N = 0.25.
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Fig. 17. Streamlines in the wave frame when Q = 0.9, φ = 0.6,

M = 1.0, N = 0.25.

parameters remaining unaltered [cf. Figs. 17–19]. Ali

and Hayat [10] reported similar observations for N and

M for asymmetric channels. However, Mekheimer and

Elmaboud [11] and Hayat et al. [6] share a different

opinion regarding the effects of M on trapping. They
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Fig. 18. Streamlines in the wave frame when Q = 0.9, φ = 0.6,

M = 1.0, N = 0.5.
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Fig. 19. Streamlines in the wave frame when Q = 0.9, φ = 0.6,

M = 1.0, N = 0.75.

try to examine this for arbitrary flow rates by not caring

whether the flow rates and occlusions are very high or

not which are essential for trapping. Probably for this

reason, they are inconclusive about the influence of M

on trapping.
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6. Conclusions

Newtonian and micro-polar fluids have qualitatively

similar pressure distributions; but differences in mag-

nitudes are very much significant. Divulgation is that

coupling number increases pressure along the entire

length of the oesophagus, while the other parameter

decreases it. The latter one favours the flow, whereas

the former one hinders it. The combined effect will

be no doubt a complicated one. Had the exact experi-

mental values of both parameters been available in the

literature, we would have evaluated.

A pump with micro-polar fluid is also affected by

the two parameters. Coupling number increases the

efficiency; while the other micro-polar parameter

decreases it. It is further concluded that the pumping

efficiency decreases for micro-polar fluids.

Reflux region is found to increase with the coupling

number. This may be inferred that a micro-polar fluid

is more prone to flow reversal, i.e., reflux.

The peaks of pressure are identical in the integral

case while the peaks have different altitudes in the non-

integral case. The effects of the coupling number and

the micro-polar parameter are identical in both cases

integral and non-integral number of waves in train.

Trapping is favoured by the coupling number but

hindered by the micro-polar parameter.
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