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A mathematical model for swallowing of

concentrated fluids in oesophagus

S. K. Pandey and Dharmendra Tripathi*
Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi, India

Abstract. This model investigates particularly the impact of an integral and a non-integral number of waves on the swallowing

of food stuff such as jelly, tomato puree, soup, concentrated fruits juices and honey transported peristaltically through the

oesophagus. The fluid is considered as a Casson fluid. Emphasis is on the study of the dependence of local pressure distribution

on space and time. Mechanical efficiency, reflux limit and trapping are also discussed. The effect of Casson fluid vis-à-vis

Newtonian fluid is investigated analytically and numerically too. The result is physically interpreted as that the oesophagus

makes more efforts to swallow fluids with higher concentration. It is observed that the pressure is uniformly distributed when

an integral number of waves is there in the oesophagus; but it is non-uniform when a non-integral number of waves is present

therein. It is further observed that as the plug flow region widens, the pressure difference increases, which indicates that the

time-averaged flow rate will reduce for a Casson fluid. It is also concluded that Casson fluids are more prone to reflux.

Keywords: Peristalsis, oesophagus, casson fluid, mechanical efficiency, reflux, trapping

Nomenclature

τ̃ shear stress

τ̃0 yield stress

H̃ radial displacement of the wall from the

centre line

Hpl radius of the plug flow region

x̃ axial coordinate

r̃ radial coordinate

ũ axial velocity

ṽ radial velocity

t̃ time

Q volume flow rate

α ratio of the radius of the tube and the

wavelength

µ Casson viscosity
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γ̇ rate of shear strain
φ̃ amplitude

l length of the tube

c wave velocity

ρ fluid density
p̃ pressure

λ wavelength

a radius of the tube

ψ stream function

Re Reynolds number

1. Introduction

Swallowing in the oesophagus is peristaltic in

nature. Peristalsis requires no piston to pump the fluid

contained in the duct. This simplifies pumping and

ultimately saves the propellant from any sort of con-

tamination that may hamper its purity. The mechanism

involves involuntary periodic contraction of the wall

followed by relaxation in the oesophagus. This leads
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to the rise of pressure gradient that eventually pushes

the content forward. An interesting fact is that the cat-

tle grazing in the fields have their necks down; yet

they swallow without any difficulty. This illustrates

that there is almost no role played by the gravity in

swallowing through the oesophagus. The flow of urine

in ureters, the vasomotion of blood, etc. are a few more

physiological instances where peristalsis is dominant.

We intend to investigate swallowing of semi-fluids

such as jelly, tomato puree, honey, soup, and concen-

trated fruits juices etc. through oesophagus. The model

assumed is the flow of a Casson fluid in a finite long

circular cylindrical tube. The justification is given in

the forthcoming paragraphs.

The human oesophagus is a flexible muscular tube

extending from pharynx to stomach. Its length varies

from 9 cm (for children) to 30 cm (for an adult) and the

diameter lies between 1 cm and 2 cm. Thus, the length

and diameter ratio varies from 9 : 1 to 15 : 1. This gives

a clear indication that the oesophageal length is finite

in comparison to its diameter. However, most of the

studies dealing with peristaltic transport consider infi-

nite length tubes. Consequently, those results cannot be

directly applied to the flows through the oesophagus.

Taking into consideration the aforementioned facts, we

attempt to model oesophagus as a circular cylindrical

tube of finite length.

Recently, researchers investigated peristaltic trans-

port of fluids modelled differently such as Casson fluid

model [1–3], Maxwell fluid model [4, 5], Burgers’

fluids [6], power-law fluids [7–9], particle-fluid mix-

ture [10], micro-polar fluid [11–13], Herschel- Bulkley

fluid [14, 15]. Misra and Pandey [1] modelled two-

layered peristaltic flow of Casson fluid in an infinite

channel and a tube and applied the model for blood

flow. Mernone and Mazumadar [2] compared Newto-

nian and non-Newtonian Casson flows in an infinite

channel by employing perturbation technique. Rani

and Sarojamma [3] considered Casson flow in an

asymmetric infinitely long channel and discussed the

phenomena trapping and reflux. The rest cited above

have dealt with some other non-Newtonian fluids con-

sidering infinite length geometry of the vessel.

Only a few investigations pertaining to peristalsis

have considered finite length tubes. Li and Brasseur

[16] investigated peristaltic transport of Newtonian

fluid in a finite length tube and Misra and Pandey

[17] extended the work for a power-law fluid. Li and

Brasseur [16] further raised an issue of prime con-

cern that the oesophageal wall undergoes contraction

followed by relaxation; but in most of the studies the

wall is considered to oscillate about the mean posi-

tion, i.e., the stationary boundary. They incorporated

this correction so that the model can be applied to

oesophageal swallowing. It was further improved by

a more suitable model by Misra and Pandey [17].

The masticated food-bolus can have diverse physi-

cal properties. The contents of the oesophagus are of

various kinds from liquid to solid from physical point

of view and from Newtonian to non-Newtonian from

mechanical point of view. Recently, Pandey and Tri-

pathi [18, 19] have reported their investigations on the

flow properties of Maxwell and MHD fluids. Here,

we aim to study the transportation of semi-fluids such

as jelly, tomato puree, honey, soup, and concentrated

fruits juices etc that are highly concentrated and resem-

ble Casson fluid in nature (cf. [20, 21]).

Another important aspect of peristalsis in a finite

length tube is that one can study non-integral number

of waves in the train propagating along the wall of the

tube. Li and Brasseur [16] put forward some important

results in this regard for Newtonian fluids that we shall

discuss wherever required. We try to investigate here

those properties with regard to Casson fluids.

Shapiro et al. [22] discovered some inherent phe-

nomena such as reflux and trapping and also deduced

the mechanical efficiency of pumping. Without these

an investigation appears incomplete. We intend to dis-

cuss reflux and mechanical efficiency in this paper.

2. Mathematical formulation

We consider oesophagus as a circular cylindrical

tube of finite length. Since the masticated food is

assumed to be Casson fluid, its constitutive equations

may be given by

√
τ̃ =

√
µγ̇ +

√
τ̃0 for τ̃ ≥ τ̃0, (1)

γ̇ = 0 for τ̃ ≤ τ̃0, (2)

where τ̃, µ, γ̇ , τ̃0 represent respectively shear stress,

Casson viscosity, the rate of shear strain and yield

stress.

The oesophagus undergoes a periodic contraction

followed by successive relaxation (cf. Fig. 1). There-

fore, the peristaltic radial wall motion of the tube is

suitably modelled by the equation

H̃(x̃, t̃) = a − φ̃ cos2 π

λ
(x̃ − ct̃), (3)
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Fig. 1. The diagram, based on Eq. (10), represents the propagation of

a progressive transverse wave along the walls of the tube containing

fluid, which undergoes contraction and relaxation but no expansion

beyond the boundary.

where H̃ , x̃, t̃ a, φ̃, λ and c respectively denote radial

displacement of the wall from the centre line, axial

coordinate, time parameter, radius of the tube, ampli-

tude of the wave supposed to propagate along the wall

to create a motion as desired, wavelength, wave veloc-

ity, as suggested by Misra and Pandey [17].

2.1. Analysis

The governing equations for the axi-symmetric flow

of an incompressible fluid are given by

ρ
Dũ

Dt̃
= −

∂p̃

∂x̃
+ ∇̃·τ̃ (4)

ρ
Dṽ

Dt̃
= −

∂p̃

∂r̃
+ ∇̃·τ̃ (5)

where D
Dt̃

∼= ∂
∂t̃

+ ũ ∂
∂x̃

+ ν̃ ∂
∂r̃

, ∇̃ ≡ ∂
∂x̃

+ 1
r̃

∂
∂r̃

, and the

continuity equation is

∂ũ

∂x̃
+

1

r̃

∂(r̃ṽ)

∂r̃
= 0, (6)

where ρ, ũ, p̃, ṽ and r̃ are fluid density, axial velocity,

pressure, radial velocity and radial coordinate.

The various parameters are non-dimensionalised as

follows:

x =
x̃

λ
, r =

r̃

a
, t =

ct̃

λ
, u =

ũ

c
, v =

ṽ

cα
,

α = a
λ
, H = H̃

a
, τ = τ̃a

µc
,

τ0 =
τ̃0a

µc
, l =

l̃

λ
, φ =

φ̃

a
, p =

p̃a2

µcλ
,

ψ = ψ̃

πa2c
, Q = Q̃

πa2c
, Re = ρcaα

µ
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

where α is a parameter that gives the ratio of the radius

of the tube and the wavelength, while l, ψ, Q and Re

are respectively length of the tube, stream function,

volume flow rate and Reynolds number.

Under the long wavelength approximation and con-

sequently, under the low Reynolds number approxima-

tion, Eqs. (1–6) reduce respectively to the following

dimensionless form:

√
τ =

√
τ0 +

√
∂u

∂r
for τ ≥ τ0, (8)

∂u

∂r
= 0 for τ ≤ τ0, (9)

H(x, t) = 1 − φ cos2 π(x − t), (10)

∂p

∂x
=

1

r

∂(rτ)

∂r
, (11)

∂p

∂r
= 0, (12)

∂u

∂x
+

1

r

∂(rv)

∂r
= 0. (13)

The following boundary conditions, given in the

dimensionless form (dimensional counterparts being

similar), are imposed on the governing equations:

no slip condition on inner surface of the

oesophagus, i.e., u(x, r, t) |r=H = 0, (14)

radial velocity at the wall of the oesophagus,

i.e., ν(x, r, t)|r=H =
∂H

∂t
, (15)

absence of any radial velocity in the plug

flow region, i.e., ν(x, r, t)
∣∣
r=Hpl

= 0, (16)

regularity condition, i.e.,
∂u

∂r
(x, r, t)|r=Hpl

= 0,

(17)

where Hpl is the radius of the plug flow region, and it

is defined by

Hpl = 2τ0

/
∂p

∂x
. (18)

2.2. Solution

Integrating Eq. (11) once with respect to r, we get

τ =
A

r
+

r

2

∂p

∂x
, (19)

where A is an arbitrary function of x and t.
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Using Eq. (19) into Eq. (8) and applying the bound-

ary condition (17), we obtain

∂u

∂r
=

1

2

∂p

∂r

{
r + Hpl − 2

√
rHpl

}
. (20)

Further, integration of Eq. (20) once again from r

to H followed by application of the no-slip condition

(14) yields

u =
1

4

∂p

∂x

{
(r − H)(r + H + 2Hpl)

−
8

3

√
Hpl

(
r

3
2 − H

3
2

)}
. (21)

The plug flow velocity is deduced from Eq. (21) by

the substitution r = Hpl as

upl =
1

4

∂p

∂x

{
(Hpl − H)(H + 3Hpl)

−
8

3

√
Hpl

(
H

3
2
pl − H

3
2

)}
. (22)

Solving the continuity equation (13), by applying

Eq. (21) together with the boundary condition (16),

the radial velocity is given by

v =
1

2

[
1

2r

∂p

∂x

∂H

∂x
(r2 − H2

pl)
(
H + Hpl − 2

√
HHpl

)

−
∂2p

∂x2

{
r

8
(r2 − 2H2) +

rHpl

6
(2r − 3H)

−
8

21
r
√

Hpl

(
r

3
2 −

7

4
H

3
2

)
+

H2
pl

r

×
(

H2 + 2HHpl −
13

168
H2

pl −
8

3
H
√

HHpl

)}]
.

(23)

By employing the boundary condition (15), the

radial velocity at the wall yields

H
∂H

∂t
=

1

4

∂p

∂x

∂H

∂x
(H2 − H2

pl)
(
H + Hpl − 2

√
HHpl

)

+
1

2

∂2p

∂x2

{
H3

(
H

8
+

Hpl

6
−

2

7

√
HHpl

)

−H2
pl

(
H2

4
+

HHpl

2
−

2H

3

√
HHpl −

13

168
H2

pl

)}
.

(24)

The pressure gradient is then derived from Eq. (24)

and is given by

∂p

∂x
=

G(t) +
x∫

0

H
∂H

∂t
ds

H3

48
(3H + 4Hpl) −

H2
pl

336
(42H2

− 13H2
pl + 84HHpl)

−
H
√

HHpl

21
(3H2 − 7H2

pl)

, (25)

where G(t) is the arbitrary function of t.

The pressure at an arbitrary point along the length of

the oesophagus is determined by integrating Eq. (25)

from the inlet to the arbitrary axial point, which gives

p(x, t) − p(0, t) =
x∫

0

G(t) +
∫ s

0

H
∂H

∂t
ds1

H3

48
(3H + 4Hpl) −

H2
pl

336

(42H2 − 13H2
pl + 84HHpl)

−
H
√

HHpl

21
(3H2 − 7H2

pl)

ds,

(26)

so that the pressure difference between the two ends

of the oesophagus is

p(l, t) − p(0, t) =
l∫

0

G(t) +
∫ x

0

H
∂H

∂t
ds

H3

48
(3H + 4Hpl) −

H2
pl

336

(42H2 − 13H2
pl + 84HHpl)

−
H
√

HHpl

21
(3H2 − 7H2

pl)

dx,

(27)

from which G(t) can be obtained as
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G(t) =

p(l, t) − p(0, t) −
∫ l

0

∫ x

0

H
∂H

∂t
ds

H3

48
(3H + 4Hpl) −

H2
pl

336
(42H2 − 13H2

pl + 84HHpl) −
H
√

HHpl

21
(3H2 − 7H2

pl)

dx

∫ l

0

1

H3

48
(3H + 4Hpl) −

H2
pl

336
(42H2 − 13H2

pl + 84HHpl) −
H
√

HHpl

21
(3H2 − 7H2

pl)

dx

.

(28)

The volume flow rate for the wave-train is defined

as Q(x, t) = 2
H∫

Hpl

urdr, which, in conjunction with

Eq. (21), yields

Q(x, t) = −
∂p

∂x

{
H3

24
(3H + 4Hpl)

−
H2

pl

168
(42H2 − 13H2

pl + 84HHpl)

−
2H

√
HHpl

21
(3H2 − 7H2

pl)

}
. (29)

For Hpl = 0, Eqs. (25–29) reduce to the correspond-

ing equations derived by Li and Brasseur [16] for

Newtonian fluids.

Averaging the volume flow rate for one time period,

the time-averaged volume flow rate is found to be

Q̄(x) =
1∫

0

−
∂p

∂x

{
H3

24
(3H + 4Hpl)

−
H2

pl

168
(42H2 − 13H2

pl + 84HHpl)

−
2H

√
HHpl

21
(3H2 − 7H2

pl)

}
dt, (30)

which, using the transformation between laboratory

frame and wave frame, given later in Eq. (40), is

expressed in terms of the flow rate in the wave and

the laboratory frames respectively as

Q̄ = q + 1 − φ +
3φ2

8
= Q − H2 + 1 − φ +

3φ2

8
,

(31)

so that the pressure gradient can be expressed from

Eq. (29) as

∂p

∂x
= −

Q̄ + H2 − 1 + φ −
3φ2

8

H3

24
(3H + 4Hpl) −

H2
pl

168
(42H2 − 13H2

pl

+ 84HHpl) −
2H

√
HHpl

21
(3H2 − 7H2

pl)

.

(32)

Integrating ∂p/∂x from 0 tox, the pressure difference

between the inlet and an arbitrary point on the axis may

be given by

p(x) − p(0) = −
x∫

0

Q̄ + H2 − 1 + φ −
3φ2

8

H3

24
(3H + 4Hpl) −

H2
pl

168

(42H2 − 13H2
pl + 84HHpl)

−
2H

√
HHpl

21
(3H2 − 7H2

pl)

ds.

(33)

Applying Eq. (20), the local wall shear stress

τw =
(

∂u
∂r

)
r=H

, may be given as τw = 1
2

(
H + Hpl

− 2
√

HHpl

)
∂p
∂x

, which, in view of Eq. (25), further

reduces to
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τw =
1

2

(
H + Hpl − 2

√
HHpl

)
⎧
⎨
⎩G(t) +

x∫

0

H
∂H

∂t
ds

⎫
⎬
⎭

H3

48
(3H + 4Hpl) −

H2
pl

336

(42H2 − 13H2
pl + 84HHpl)

−
H
√

HHpl

21
(3H2 − 7H2

pl)

.

(34)

For Hpl = 0, Eq. (34) reduces to the corresponding

equation derived by Li and Brasseur [16] for Newto-

nian fluids.

Moreover, the yield stress can be deduced from

Eqs. (25) & (18) as

τ0 =
1

2

Hpl

⎧
⎨
⎩G(t) +

x∫

0

H
∂H

∂t
ds

⎫
⎬
⎭

H3

48
(3H + 4Hpl) −

H2
pl

336
(42H2 − 13H2

pl

+ 84HHpl) −
H
√

HHpl

21
(3H2 − 7H2

pl)

.

(35)

3. Mechanical efficiency

Shapiro et al. [22] state that the mechanical effi-

ciency of peristaltic pumping is the ratio of the rate,

at which the useful energy (averaged over a period per

wavelength) is stored in the fluid, to the mechanical

work (averaged over a period per wavelength) deliv-

ered to the wall from outside agencies. The mechanical

efficiency, in dimensionless form, of peristaltic pump

during the transportation of Casson fluid, for the wall

motion (13), is hence derived as

E =
Q̄�p1

2φ[I11 + φI12 − (1 + φ)�p1]
, (36)

where �p1, i.e., p(1) − p(0), is the pressure difference

across one wavelength and is given by

�p1 = −
1∫

0

Q̄ + H2 − 1 + φ −
3φ2

8

H3

24
(3H + 4Hpl) −

H2
pl

168

(42H2 − 13H2
pl + 84HHpl)

−
2H

√
HHpl

21
(3H2 − 7H2

pl)

dx, (37)

I11 =
1∫

0

∂p

∂x
cos(2πx)dx, I12 =

1∫

0

∂p

∂x
cos4(πx)dx,

and the maximum average flow rate (i.e. average flow

rate for �p1 = 0) is obtained as

Q̄0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − φ +
3φ2

8
−

1∫

0

H2

H3

24 (3H + 4Hpl) −
H2

pl

168
(42H2 − 13H2

pl + 84HHpl) −
2H

√
HHpl

21
(3H2 − 7H2

pl)

dx

1∫

0

1

H3

24
(3H + 4Hpl) −

H2
pl

168
(42H2 − 13H2

pl + 84HHpl) −
2H

√
HHpl

21
(3H2 − 7H2

pl)

dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

4. Reflux limit

Reflux is a phenomenon inherent to peristalsis

(Shapiro et al. [22]). It refers to the retrograde motion

near the wall. Analysis related to the estimation of

reflux limit is as follows:

Dimensional form of stream function in the wave

frame is defined as

dψ̃ = 2πR̃(ŨdR̃ − Ṽ dX̃), (39)

where ψ̃, Ũ, X̃, Ṽ and R̃ are the stream function, the

axial velocity, the axial coordinate, the radial velocity

and the radial coordinate respectively. Applying the

following transformation between the wave frame and

the laboratory frame, given by

X = x − t, R = r, U = u − 1,

V = v, q = Q − r2, � = ψ − r2

}
, (40)

where the parameters on the left side are in the wave

frame and those on the right side are in the laboratory

frame. Using Eq. (39) and the transformations (40), the

stream function, in the dimensionless form, is derived

as
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ψ = −
1

2

⎡
⎢⎢⎢⎣

(
Q̄ + H2 − 1 + φ −

3φ2

8

){
r4

4
−

r2H2

2
+ 2Hpl

(
r3

3
−

r2H

2

)
−

16

21

√
Hpl

(
r

7
2 −

7

4
r2H

3
2

)}

H3

24
(3H + 4Hpl) −

H2
pl

168
(42H2 − 13H2

pl + 84HHpl) −
2H

√
HHpl

21
(3H2 − 7H2

pl)

+ r2

⎤
⎥⎥⎥⎦.

(41)

The stream function ψw at the wall is

ψ|r=H = Q̄ − 1 + φ −
3φ2

8
. (42)

The reflux flow rate Qψ(x) is defined as

Qψ(x) = ψ + r2(ψ, x) (43)

We average the above equation for one cycle to

obtain the averaged reflux flow rate

Q̄ψ = ψ +
1∫

0

r2(ψ, x)dx. (44)

In order to evaluate above integration using the per-

turbation method, we expand r2(ψ, x) in a power series

in terms of a small parameters ε about the wall as

r2(ψ, x) = H2 + a1ε + a2ε
2 + · · · (45)

Solving Eqs. (41) & (45) and comparing the coeffi-

cient of ε, ε2. . . on the two sides, we get

a1 = −1, (46)

a2 = −
1

8H

⎡
⎢⎢⎢⎣

(√
H −

√
Hpl

)2
(

Q̄ + H2 − 1 + φ −
3φ2

8

)

H3

24
(3H + 4Hpl) −

H2
pl

168
(42H2 − 13H2

pl + 84HHpl) −
2H

√
HHpl

21
(3H2 − 7H2

pl)

⎤
⎥⎥⎥⎦.

(47)

The reflux condition is
Q̄ψ

Q̄
> 1, as ε → 0, which

gives the reflux limit for the Casson fluid as

Q̄ < 1 − φ +
3φ2

8
−

1∫

0

H
(√

H −
√

Hpl

)2

H3

24
(3H + 4Hpl) −

H2
pl

168
(42H2 − 13H2

pl + 84HHpl) −
2H

√
HHpl

21
(3H2 − 7H2

pl)

dx

1∫

0

1

H

(√
H −

√
Hpl

)2

H3

24
(3H + 4Hpl) −

H2
pl

168
(42H2 − 13H2

pl + 84HHpl) −
2H

√
HHpl

21
(3H2 − 7H2

pl)

dx

.

(48)

5. Numerical results and discussion

Since the mathematical model involves expressions

that cannot be integrated by classical methods, we

opted for numerical solution. We wrote computer pro-

grams in C and used some numerical techniques to

evaluate the integrals.

Once the masticated food, rolled into a bolus, enters

into the oesophagus, the upper sphincter is blocked,

averting any possibility of retrograde motion. The

lower sphincter too remains closed until a food bolus

arrives at and knocks it. Similar patterns of pressure

distribution were found in experimental observations

reported by Dodds [23] and Ren et al. [24].

5.1. Integral number of waves

In order to study the local dynamics, we consider a

train of two waves propagating along the wall of the

oesophagus which contains a Casson fluid to be swal-

lowed. Initially, we investigate the temporal effects as

well as the influence of yield stress on the pressure
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distribution between the two ends of the oesopha-

gus, which are kept identically at zero pressure, i.e.,

p(l, t) = p(0, t) = 0 . This is termed as free pumping.

We aim to study the effect of the plug flow region on

the general pumping performance. It is observed that

the pressure distributions at the instants t = 0.0 − 1.0

with intervals 0.25 (cf. Fig. 2) reveal qualitative sim-

ilarity with the flows of Newtonian and also the

power-law fluids (cf. [17]).

For a fixed plug flow region determined by Hpl , it is

observed that as soon as a bolus steps into the oesoph-

agus at t = 0 (cf. Fig. 2a), the pressure at the inlet rises

near the tail of the bolus and it is sufficient to restrain a

possible retrograde motion. The pressure falls then to

zero at the mid-point of the bolus, which further dimin-

ishes to its lower peak. Then it rises almost vertically to

its upper peak near the head of the bolus, which is equal

to the previous maximum value. This rise of pressure

can be attributed to the requirement that can prevent

a flow in the opposite direction. The pressure distri-

bution, for the leading bolus is identical. It is further

noticed that the final pressure at the head of the leading

bolus is zero as expected. This rise of pressure to zero

indicates a controlled motion of the content which is

ready to be delivered to the stomach through the car-

diac sphincter which permanently sieges any possible

retrograde motion by closing the sphincter.

When t = 0.25 (cf. Fig. 2b), one fourth of a new

bolus has undergone swallowing process into the

oesophagus and one fourth of the leading bolus has

entered into the stomach. The pressure at the inlet

starts waning to help the incoming bolus enter and the

pressure declining from the peak to zero at the outlet

favours the movement into the stomach.

For t = 0.5 and t = 0.75, depicted by Fig. 2c,d

respectively, the pressure distributions unfold a con-

tinuous process of fluid movement in the oesophagus.

When t = 1.0, the pressure distribution exhibits total
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Fig. 2. Pressure difference vs. axial distance. Dotted lines represent the position of bolus and solid lines show the pressure distribution, based

on Eq. (26), across length of the tube passing Casson fluid for different radii of plug flow region (Hpl = 0.0, 0.001, 0.005, 0.01), φ = 0.9 and

l = 2.0.
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similarity with that at t = 0. This indicates that the

oesophagus is waiting to accept a new food bolus as the

previous one has already been pushed into the stomach.

The magnitude of the pressure along the oesopha-

gus increases with the thickness of the plug flow region.

Increasing thickness of the plug flow region is an indi-

cation of enhancing non-Newtonian properties of the

fluid. This is a revelation that the oesophagus has to

be functionally more efficient to push the fluid for-

ward. This inference is favoured by another revelation

that we shall discuss later while discussing mechanical

efficiency.

Local wall shear stress distribution along the

oesophageal length shows further similarity with New-

tonian fluid, i.e., Hpl = 0 (cf. [17]). It is observed that

Hpl, the only additional parameter that attributes to

Casson nature of the fluid substantially increases local

wall shear stress (cf. Fig. 3).

Figure 4, based on Eq. (35), reveal another interest-

ing result that gives yield stress distribution along the

oesophagus in the plug flow region. For a fixed Hpl, it

is observed that the yield stress distribution is similar

to local wall shear stress distribution. However, it is

quantitatively quite small.

5.2. Non-integral number of waves

The foregoing analyses carried out for integral num-

ber of waves are also performed for the case of

non-integral number of waves. This case is inherent

to finite length tubes. We take l = 1.8 to investigate

the effects of non-integral number of waves.

In this case the pressure distributions at those

instants (cf. Fig. 5) are observed to be dissimilar qual-

itatively as well as quantitatively from the previous

case. Only the leftward pressure peaks are identical

with those of the previous case for t = 0, 1.0; but the

pressure distribution for the rightward wave which is

partly accommodated in the length of the tube is dif-

ferent for higher values of the pressure peaks. The
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Fig. 3. Local wall shear stress vs. axial distance along the tube. Dotted lines (. . .) represent the position of wave, whereas continuous lines (8)

represent the local wall shear stress distribution, based on Eq. (34), for different radii of plug flow region (Hpl = 0.0, 0.05, 0.075), φ = .9 and

l = 2.0.
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Fig. 4. Yield stress vs. axial distance along the tube at five time instants. Dotted lines (. . . . .) represent the position of wave, whereas continuous

lines (8) represent the yield stress distribution, based on Eq. (35), for different radii of plug flow region (Hpl = 0.001, 0.005, 0.01), φ = .9 and

l = 2.0.

pressure distribution looks complex with more uneven

distribution. For the second bolus, the increased pres-

sure diminishes to zero at the end without acquiring

negative value for t = 0, 1.0 while it rises to only zero

from negative values for t = 0.75. The case t = 0.5 is

an exception. Similar complexity is foreseen for local

wall shear stress. We therefore leave aside any further

discussion in this regard.

5.3. Mechanical efficiency

Figure 6 is a graph, based on Eq. (36), plotted for

mechanical efficiency vs. the ratio of the time-averaged

flow rate to the maximum averaged flow rate. It reveals

that the efficiency of an oesophagus carrying Casson

fluid increases with the thickness of the plug flow

region. This favours a conclusion discussed earlier in

this section that the oesophagus is required to be more

efficient to swallow a Casson fluid.

5.4. Pressure difference across one wavelength vs.

time-averaged flow rate

Further, we consider the case where there is a differ-

ence of pressures at the two ends of the pump across

one wavelength. Pressure difference required to refrain

the flow completely is positive and maximum. It is

observed that pressure difference across one wave-

length of the oesophagus declines for a higher averaged

flow rate for a fixed Hpl. As the plug flow region

widens, the pressure difference increases for a fixed

time-averaged flow rate (cf. Fig. 7). The graph further

reveals that the maximum time-averaged flow rate is

dependent on the thickness of the plug flow region.

5.5. Reflux

Figure 8 depicts the impact of the plug flow region

on the reflux limit. It is observed that the reflux region
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Fig. 5. Pressure vs. axial distance. Dotted lines represent the position of bolus and solid lines show the pressure difference distribution, based

on Eq. (26), across the length of the tube passing Casson fluid for different radii of plug flow region (Hpl = 0.0, 0.001, 0.005, 0.01), φ = 0.9

and l = 1.8.

broadens with increasing non-Newtonian nature of the

fluid. Hence, it is concluded that such a fluid is more

prone to reflux. This may be physically interpreted as

the growing possibility of retrograde motion that takes

place near the boundary of the tube.
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Fig. 6. Mechanical efficiency vs. ratio of average flow rate and

maximum averaged flow rate, different lines represent efficiency of

peristaltic pump, based on Eq. (36), for corresponding radii of plug

flow region (Hpl = 0.0, 0.01, 0.05, 0.1) and φ = 0.4.

5.6. Trapping

A streamline at high flow rates enclosing a bolus of

fluid particles is called trapping. Streamlines for Cas-

son fluid with different plug flow regions for Hpl =
0.001, 0.01, 0.1, 0.2, Q̄ = 0.6 and φ = 0.6 are plotted
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ferent lines represent pressure difference, based on Eq. (37), for

corresponding radii of plug flow region (Hpl = 0.0, 0.01, 0.05, 0.1)

& φ = .4.
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Fig. 9. Streamlines in the wave frame when Q̄ = 0.6, φ =
0.6, Hpl = 0.001.

in Figs. 9–12. It is revealed that the size of trapped

bolus reduces with increase in the plug flow region.

6. Physical interpretations and concluding

remarks

The two cases of integral and non-integral number

of waves in the tube have different patterns of pressure

distribution. The former case has an even distribution

of pressure whereas that in the latter case is uneven and

complex with pressure peaks oscillating in the course

of the flow at different instants of time.

Moreover, it is concluded from the examination of

plug flow region that the oesophagus has to function

more efficiently, i.e., it ought to make additional efforts
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Fig. 10. Streamlines in the wave frame when Q̄ = 0.6, φ =
0.6, Hpl = 0.01.
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Fig. 11. Streamlines in the wave frame when Q̄ = 0.6, φ =
0.6, Hpl = 0.1.

to push a Casson fluid down into the stomach. It may

be interpreted that concentrated fluids such as jelly,

tomato puree, soup, honey and fruits juices etc. cannot

be swallowed as easily as Newtonian fluids such as

water.

It is further observed that the local wall shear stress

increases substantially as the plug flow region widens.

This trend is not at all altered by temporal changes. This

supports the inference that it rather requires efforts to

swallow more concentrated fluids.

For the plug flow region of fixed width, it is found

that distribution is similar to the local wall shear stress
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Fig. 12. Streamlines in the wave frame when Q̄ = 0.6, φ =
0.6, Hpl = 0.2.

distribution. However, quantitatively it is quite small.

As the plug flow region widens, the pressure dif-

ference increases, indicating thereby that the averaged

flow rate will be less for a Casson fluid, and eventually

for concentrated fluids.

The efficiency of an oesophagus from pumping point

of view carrying Casson fluid increases with the width

of the plug flow region. It is physically interpreted that

the oesophagus has to make extra efforts to swallow

fluids with higher concentration.

It is observed that the reflux region increases with

the increase in the Casson nature. It is inferred from it

that such a fluid is more prone to reflux. That is, when

someone tries to swallow jelly, tomato puree, soup,

honey and fruits juices etc., he has to be more alert as

reversal is more probable than when he drinks water.

Finally, it may be concluded that with rising con-

centration either the number of boluses or the amount

of the content will reduce in the oesophagus.
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