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Abstract

A mathematical model for the quasi-steady diffusion-limited evaporation of a thin
axisymmetric sessile droplet of liquid with a pinned contact line is formulated and
solved. The model generalises the theoretical model proposed by Deegan et al. [Phys.
Rev. E, 62 (2000) 756–765] to include the effect of evaporative cooling on the satura-
tion concentration of vapour at the free surface of the droplet, and the dependence of
the coefficient of diffusion of vapour in the atmosphere on the atmospheric pressure.
The predictions of the model are in good qualitative, and in some cases also quanti-
tative, agreement with recent experimental results. In particular, they capture the
experimentally observed dependence of the total evaporation rate on the thermal
conductivities of the liquid and the substrate, and on the atmospheric pressure.
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Pressure.

1 Introduction

The evaporation of liquid droplets is of fundamental importance in a huge
variety of practical situations ranging from technological applications such as

∗ Corresponding author. Tel.: + 44 (0) 141 548 3820; fax: + 44 (0) 141 548 3345.
Email addresses: s.k.wilson@strath.ac.uk (S. K. Wilson),

b.r.duffy@strath.ac.uk (B. R. Duffy), k.sefiane@ed.ac.uk (K. Sefiane).

Preprint submitted to Colloids and Surfaces A 28 October 2009



ink-jet printing, spray cooling and various coating processes, to a variety of
biological and geophysical contexts. As a result droplet evaporation has been
the subject of considerable theoretical and experimental research in recent
years. Significant recent papers include those by Deegan [1], Deegan et al.
[2], Hu and Larson [3–5], Popov [6], Poulard, Guéna and Cazabat [7], Sultan,
Boudaoud and Ben Amar [8], Shahidzadeh-Bonn et al. [9], and Girard et al.
[10].

Physical experiments conducted recently by David, Sefiane and Tadrist [11]
using a variety of liquids and substrates show that the thermal conductivities
of the liquid and the substrate, and the atmospheric pressure can have a sig-
nificant effect on the total evaporation rate. Neither of these effects is captured
by the widely used pioneering theoretical model proposed by Deegan et al. [2]
(hereafter referred to simply as “the Deegan model” for brevity).

In this paper a mathematical model for the quasi-steady diffusion-limited evap-
oration of a thin axisymmetric sessile droplet of liquid with a pinned contact
line is formulated and solved. This model generalises the Deegan model to
include the effect of evaporative cooling on the saturation concentration of
vapour at the free surface of the droplet, and the dependence of the coeffi-
cient of diffusion of vapour in the atmosphere on the atmospheric pressure.
For simplicity, the present initial model is, however, restricted to the special
case of thin droplets with small contact angles. The results presented here
show that the predictions of the model are in good qualitative, and in some
cases also quantitative, agreement with the experimental results. In particular,
they capture the experimentally observed dependence of the total evaporation
rate on the thermal conductivities of the liquid and the substrate, and on the
atmospheric pressure.

The present paper describes some aspects of the work presented at the Inter-
national Workshop on Bubble and Drop Interfaces held on 25th−28th March
2007 in Granada, Spain. A preliminary account of part of this work was given
by Dunn et al. [12].

2 The Mathematical Model

Figure 1 near here.

Consider the quasi-steady diffusion-limited evaporation of a thin axisymmetric
sessile droplet of liquid with constant density ρ, surface tension σ, and thermal
conductivity k on a thin horizontal substrate of constant thickness hs with
constant thermal conductivity ks. Referred to cylindrical polar coordinates
(r, φ, z) with origin on the substrate at the centre of the droplet and with
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the z axis vertically upwards, the shape of the free surface of the droplet is
denoted by z = h(r, t), the upper surface of the substrate by z = 0, and the
lower surface of the substrate by z = −hs, as shown in Fig. 1.

The contact lines of evaporating droplets are typically pinned by surface rough-
ness (or other) effects during the first stage of their evaporation, but can de-pin
prior to complete evaporation. All of the experimental results for temperature
and evaporation rate reported by David et al. [11] are for droplets in this first
(pinned) stage, and so in the present model we assume that the droplet radius
R remains constant. We also assume that the droplet is sufficiently small that
surface tension effects dominate gravitational effects, and that the droplet is
sufficiently thin (in particular, that the contact angle θ = θ(t) is sufficiently
small) that it has the simple quasi-static parabolic shape

h =
θ(R2 − r2)

2R
(1)

with volume V = V (t) given by

V =
πR3θ

4
. (2)

While the former assumption is well justified for the experiments of David et
al. [11], the latter assumption is more questionable (see the discussion about
this assumption in Section 4). The total evaporation rate is given by

−dV

dt
=

2π

ρ

R
∫

0

J(r, t) r dr, (3)

where J = J(r, t) (> 0) is the local evaporative mass flux from the droplet.

The atmosphere surrounding the droplet and the substrate is assumed to be at
constant atmospheric temperature Ta and pressure pa. Since both the droplet
and the substrate are thin, their temperatures, denoted by T = T (r, z, t) and
T s = T s(r, z, t), satisfy

∂2T

∂z2
= 0,

∂2T s

∂z2
= 0. (4)

The mass flux from the droplet satisfies the local energy balance

LJ = −k
∂T

∂z
(5)
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on z = h for r < R, where L is the latent heat of vaporisation. Hence,
assuming that both the temperature and the heat flux are continuous between
the droplet and the wetted part of the substrate, and that the lower surface
of the substrate is at the atmospheric temperature Ta, we have

T = Ta − LJ

(

z

k
+

hs

ks

)

, T s = Ta −
LJ

ks
(z + hs), (6)

showing clearly the evaporative cooling of both the droplet and the substrate.

Assuming that transport of vapour in the atmosphere is dominated by diffu-
sion (see, for example, Popov [6]), the concentration of vapour in the atmo-
sphere above the droplet and the substrate, denoted by c = c(r, z, t), satisfies
Laplace’s equation,

∇2c = 0. (7)

Since the droplet is thin, Eq. (7) holds in the half-space z > 0, and the
boundary conditions for c on the free surface of the droplet may be imposed
on z = 0 rather than on z = h.

At the free surface of the droplet we assume that the atmosphere is saturated
with vapour so that c = csat(T ), where the saturation concentration csat =
csat(T ) is assumed to be a linearly increasing function of temperature given
by

csat(T ) = csat(Ta) +
dcsat

dT

∣

∣

∣

∣

∣

T=Ta

(T − Ta) (8)

on z = 0 (rather than on z = h) for r < R. On the dry part of the substrate
there is no mass flux, i.e.

∂c

∂z
= 0 (9)

on z = 0 for r > R, and far from the droplet the concentration of vapour
approaches its ambient value, i.e.

c → Hcsat(Ta) (10)

as (r2 + z2)1/2 → ∞, where H is the relative saturation of the atmosphere far
from the droplet (which may be zero or non-zero). Once c is known the mass
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flux from the droplet is given by

J = −D
∂c

∂z
(11)

on z = 0 (rather than on z = h) for r < R, where D is the coefficient of
diffusion of vapour in the atmosphere. A standard result from the theory of
gases (see, for example, Reid, Prausnitz and Poling [13]) is that D is inversely
proportional to pressure, i.e.

D =
Dref pref

pa
, (12)

where Dref is the reference value of the coefficient of diffusion at the reference
atmospheric pressure pref = 998mbar. Note that the atmospheric pressure pa

enters the model only via this expression for D.

In the special case when the variation of the saturation concentration with
temperature is negligible (i.e. when csat(T ) ≃ csat(Ta)) a straightforward gen-
eralisation of the standard Deegan model with D given by Eq. (12) is recov-
ered. In this case the problem for c given by Eqs (7)−(10) is independent of
the temperature, and the solution for c (not repeated here for brevity) is well
known and yields

J =
2D(1 − H)csat(Ta)

π
√

R2 − r2
(13)

for r < R, and hence

−dV

dt
=

4RD(1 − H)csat(Ta)

ρ
, (14)

and so, in particular, the evaporation rate is proportional to the radius of the
droplet and inversely proportional to the atmospheric pressure (via D), but is
independent of the thermal conductivities of the liquid and the substrate.

In general, the problem for c given by Eqs (7)−(10) depends on the temper-
ature and has to be solved numerically. This was done using a finite-element
method implemented using the MATLAB-based numerical analysis package
COMSOL Multiphysics (formerly FEMLAB). The far-field condition was im-
posed on a notional computational boundary at a distance of 320R from the
origin, and the numerical mesh used incorporated a semi-circular subdomain
of size 0.1R centred at the contact line r = R with a very much finer mesh in
order to resolve the singularity there.
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Parameter Units Acetone Methanol Water

ρ kg m−3 788 790 998

σ Nm−1 2.38 × 10−2 2.23 × 10−2 7.25 × 10−2

k W m−1 K−1 0.161 0.203 0.604

L J kg−1 5.49 × 105 1.20 × 106 2.45 × 106

csat kg m−3 0.637 0.186 1.94 × 10−2

dcsat/dT kg m−3 K−1 2.84 × 10−2 9.47 × 10−3 1.11 × 10−3

Dref (for air) m2 s−1 1.06 × 10−5 1.50 × 10−5 2.46 × 10−5

Dref (for helium) m2 s−1 4.26 × 10−5 5.96 × 10−5 8.26 × 10−5

Table 1
Values of the relevant physical parameters for the three liquids used at temperature
Ta = 295 K.

3 Comparison with Experiments

David et al. [11] conducted physical experiments using small droplets of three
different liquids (specifically, acetone, methanol and water) on thin substrates
of thickness 1 mm made of four different materials (specifically, aluminium,
titanium, macor and PTFE). Droplets were deposited on the substrates and
left to evaporate spontaneously. The substrates were coated with a very thin
(3µm) layer of Al to ensure that they had the same surface energy and rough-
ness properties without significantly altering their thermal properties. In par-
ticular, the initial static contact angles of the droplets when they were first
deposited onto the substrates were approximately θ(0) = 43◦ for acetone and
methanol, and θ(0) = 60◦ for water. The evaporation rates were measured us-
ing a KRUSS DSA 100 contact-angle analyser, and the accuracy of the results
obtained was confirmed by using a micro-balance technique. The values of
the relevant physical parameters for the three liquids used are listed in Table
1. In the present work we restrict our attention to the results for two of the
materials with the most extreme thermal conductivities, namely aluminium
(Al) (ks = 237Wm−1 K−1) and PTFE (ks = 0.25Wm−1 K−1).

Two sets of experiments were conducted.

The first set of experiments was conducted using droplets of all three liquids
with volumes ranging from 0.5 to 8µl in an atmosphere of air with fixed
temperature Ta = 295K, pressure pa = 998mbar, and relative saturation
H = 0.4 for water and H = 0 for acetone and methanol.

The second set of experiments was conducted using only droplets of water
with volume V = 2.5µl in an atmosphere of helium with fixed temperature
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Ta = 295K using an environmental chamber in which the atmospheric pressure
could be varied in the range from 40 to 1000mbar. The chamber is large
enough to assume that the relative saturation far from the droplet remains
zero throughout the evaporation, i.e. that H = 0.

In all of the experiments it was found that the droplet volume V decreased
approximately linearly as a function of t (see, for example, David et al. [11,
Fig. 4]) and hence subsequently we compare values of the average evaporation
rate −dV/dt as a function of droplet radius R and atmospheric pressure pa.

Figure 2 near here.

Figure 2 shows the theoretical predictions for the temperature of droplets of
methanol on Al and PTFE substrates in an atmosphere of air. Since Al is a
good conductor, the temperature of the substrate is approximately constant
at the atmospheric temperature Ta, and essentially all of the cooling takes
place within the droplet. On the other hand, since PTFE is a poor conductor,
there is significant cooling within the substrate in addition to the cooling that
takes place within the droplet. This leads to significantly more cooling, and
hence to a lower evaporation rate, than on a better conductor. The theoretical
predictions for the evaporative cooling shown in Fig. 2 are consistent with the
experimentally measured values of the bulk temperature reported by David et
al. [11, Table 2], but significantly larger than those predicted by the numerical
calculations of Hu and Larson [5, Fig. 1] for broadly similar physical situations.

Figure 3 near here.

Figure 3 shows the theoretical predictions for the concentration of vapour
in an atmosphere of air for methanol droplets on Al and PTFE substrates.
In particular, Figure 3(b) clearly shows that the saturation concentration of
vapour at the free surface of the droplet is not uniform, contrary to what is
assumed in the Deegan model.

Figure 4 near here.

Figure 4 shows the theoretical predictions for the local evaporative mass flux of
both the present model and the Deegan model given by Eq. (13) for methanol
droplets on both Al and PTFE substrates in an atmosphere of air. In partic-
ular, it shows that the mass flux is singular at the contact line r = R in both
models.

Figure 5 near here.

Figure 5 shows the comparison between the experimentally measured values
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of the average evaporation rate for droplets of all three liquids of various radii
on both substrates and the corresponding theoretical predictions of both the
present model and the Deegan model given by Eq. (14). Figure 5 shows that
there is good qualitative agreement between the experimental and theoretical
results. For acetone and methanol there is good quantitative agreement for
the Al substrate, but the theory under-estimates the evaporation rate for the
PTFE substrate. Although not readily apparent from Fig. 5, for water the
theory under-estimates the evaporation rate for both substrates. Nevertheless,
in view of the many assumptions made in deriving the model, the agreement is
remarkably good, especially as there are no “fitting” parameters in the theory,
no “fine tuning” of the values of the physical parameters has taken place, and
the droplets in the experiments are not particularly thin (specifically, their
contact angles are not particularly small). Perhaps the most satisfying aspect
of the agreement shown in Fig. 5 is the manner in which the present model
captures the significant difference in evaporation rate between droplets of the
same liquid on different substrates. Figure 5 also shows that the predictions
of the Deegan model are close to those of the present model for the Al but not
the PTFE substrate. Again this is because Al is a much better conductor than
PTFE and hence the evaporative cooling of a droplet on Al is much less than
that of a droplet on PTFE, so that the saturation concentration of vapour at
the free surface is much closer to the constant value of csat(Ta) assumed in the
Deegan model.

Figure 6 near here.

Figure 6 shows the comparison between the experimentally measured values
of the average evaporation rate for droplets of water on both substrates in an
atmosphere of helium at various pressures and the corresponding theoretical
predictions of both the present model and the generalised Deegan model given
by Eq. (14) with D given by Eq. (12). Figure 6 shows that there is again
good qualitative agreement between the experimental and theoretical results.
In particular, there is excellent quantitative agreement for the Al substrate,
but poorer agreement for the PTFE substrate for which the evaporation rate
is significantly under-estimated, especially at low atmospheric pressures. As
before, the present model captures the significant difference in evaporation
rate between droplets of the same liquid on different substrates.

4 Discussion

In this paper we formulated and solved a mathematical model for the quasi-
steady diffusion-limited evaporation of a thin axisymmetric sessile droplet of
liquid with a pinned contact line which generalises the theoretical model pro-
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posed by Deegan et al. [2] to include the effect of evaporative cooling on the
saturation concentration of vapour at the free surface of the droplet, and the
dependence of the coefficient of diffusion of vapour in the atmosphere on the
atmospheric pressure. The predictions of the model were found to be in good
qualitative, and in some cases also quantitative, agreement with the recent
experimental results of David et al. [11]. In particular, they capture the ex-
perimentally observed dependence of the total evaporation rate on the thermal
conductivities of the liquid and the substrate, and on the atmospheric pres-
sure.

The present initial model can, of course, be refined in several ways in order
to improve the agreement between theory and experiment. Perhaps the most
unrealistic assumptions in the present model are that both the droplet and
the substrate are thin (and, in particular, that the contact angle θ is small).
In ongoing numerical work we have relaxed these assumptions to study the
general case of a non-thin droplet on a non-thin substrate, and preliminary
results indicate that this generalisation improves the quantitative agreement
between the theoretical predictions and experimental results for acetone and
methanol in air, but still leads to an under-estimation of the evaporation
rate for water in air. A possible explanation for this latter under-estimation
may be, as suggested recently by Shahidzadeh-Bonn et al. [9], that because
water vapour (unlike acetone or methanol vapour) is lighter than air, buoyancy
effects may enhance the transport of vapour away from the droplet in this case.

We are also currently refining the model for situations (such as, for exam-
ple, low atmospheric pressure) in which the evaporative cooling is sufficiently
large that the simple linear relationship for the saturation concentration as
a function of temperature given by Eq. (8) ceases to be sufficiently accurate.
Preliminary results indicate that this improves the agreement between the
theoretical predictions and the experimental results for droplets of water in a
helium atmosphere on a PTFE substrate at low atmospheric pressure.

Another physical effect not included in the present model is surface-tension-
gradient-driven (Marangoni) flow within the droplet (as discussed by, for ex-
ample, Hu and Larson [5]). Comparing the relative sizes of surface-tension-
driven and surface-tension-gradient-driven flow in the governing equation for
h (not given here for brevity) reveals that the appropriate non-dimensional
Marangoni number measuring the relative importance of the Marangoni effect
is

M =
λLD(1 − H)csat(Ta)

θ(0)σ(Ta)k
, (15)

where σ = σ(T ) is the (in general, temperature-dependent) surface tension,
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and

λ = − dσ

dT

∣

∣

∣

∣

∣

T=Ta

(16)

is the (in general, positive) surface-tension gradient at T = Ta. Using the
parameter values given in Table 1 and the values λ = 1.12× 10−4 Nm−1 K−1,
H = 0 and θ(0) = 43◦ for acetone, λ = 7.73 × 10−5 Nm−1 K−1, H = 0
and θ(0) = 43◦ for methanol, and λ = 1.68 × 10−4 Nm−1 K−1, H = 0.4 and
θ(0) = 60◦ for water, reveals that M = 0.14 for acetone, M = 7.6 × 10−2

for methanol and M = 2.6× 10−3 for water, indicating that while Marangoni
effects could play some role for droplets of acetone and methanol they are
likely to negligible for droplets of water.

Acknowledgements

This work is supported by the United Kingdom Engineering and Physical
Sciences Research Council via grants GR/S59444 and GR/S59451.

References

[1] R. D. Deegan, Pattern formation in drying drops, Phys. Rev. E, 61 (2000)
475–485.

[2] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten,
Contact line deposits in an evaporating drop, Phys. Rev. E, 62 (2000) 756–765.

[3] H. Hu, R. G. Larson, Evaporation of a sessile droplet on a substrate, J. Phys.
Chem. B, 106 (2002) 1334–1344.

[4] H. Hu, R. G. Larson, Analysis of the microfluid flow in an evaporating sessile
droplet, Langmuir, 21 (2005) 3963–3971.

[5] H. Hu, R. G. Larson, Analysis of the effects of Marangoni stresses on the
microflow in an evaporating sessile droplet, Langmuir, 21 (2005) 3972–3980.

[6] Y. O. Popov, Evaporative deposition patterns: spatial dimensions of the deposit,
Phys. Rev. E, 71 (2005) 036313-1–036313-17.
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Fig. 2. Theoretical predictions for the temperature of droplets of methanol with
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in an atmosphere of air at temperature Ta = 295 K and pressure pa = 998 mbar.
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