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Abstract

In this paper, a simple mathematical model developed in H.A. Levine, B.D. Sleeman, M. Nilsen-

Hamilton [J. Math. Biol., in press] to describe the initiation of capillary formation in tumor angiogenesis is

extended to include the roles of pericytes and macrophages in regulating angiogenesis. The model also

allows for the presence of anti-angiogenic (angiostatic) factors. The model is based on the observation that

angiostatin can prevent the degradation of ®bronectin in the basal lamina by inhibiting the catalytic action

of active proteolytic enzyme. That is, it is proposed that the inhibitor `deactivates' the protease but that it

does not reduce the over all concentration of the protease. It consequently explores the possibility of

preventing neovascular capillaries from migrating through the extra-cellular matrix toward the tumor by

inhibiting protease action. The model is based on the theory of reinforced random walks coupled with

Michaelis±Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both

tumor and macrophage derived angiogenic factors into proteolytic enzyme which in turn degrade the basal

lamina. A simple catalytic reaction is proposed for the degradation of the basal lamina by the active

proteases. A mechanism, in which the angiostatin acts as a protease inhibitor is discussed which has been

substantiated experimentally. A second mechanism for the production of protease inhibitor from an-

giostatin by endothelial cells is proposed to be of Michaelis±Menten type. Mathematically, this mechanism

includes the former as a subcase. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Angiogenesis is the main feature of neovascularization, the formation of new blood vessels. It is

de®ned as the outgrowth of new vessels from a pre-existing vascular network and is fundamental

to the formation of blood vessels during placental growth and in wound healing, for example. In

regard to tumor growth, angiogenesis is initiated by the release of certain angiogenic and/or

chemotaxic factors from the tumor, an idea ®rst proposed by Folkman. See his article in [8] for an

elegant overview.

The relevant biology for the onset of angiogenesis is described as follows: endothelial cells (EC),

which make up the lining of capillaries and other vessels [24] form a mono-layer of ¯attened and

extended cells inside capillaries. The abluminal surface of the capillaries is covered by a colla-

geneous network intermingled with laminin. This is called the basal lamina (BL). This layer is

continuous and serves as a sca�old or exocytoskeleton upon which the EC can rest. The BL is

mainly formed by the EC while layers of EC and BL are sheathed by ®broblasts and possibly

smooth muscle cells. In the neighborhood of the BL, there are other cell types such as pericyte

cells (PC), platelet, macrophage cells (MC) and mast cells. Of these, macrophages can be stim-

ulated to release angiogenic factors which, in their turn, induce the aggregating EC to release

proteolytic enzymes. Pericytes, as argued in [6], are derived from primitive mesenchymal cells and

are involved in the regulation of the proliferation of EC. When they are in contact with EC, EC

cell division is proposed to be inhibited. Indeed, no pericytes are present in regions in which a

vigorous proliferative activity of EC can be observed.

In response to one or more angiogenic or chemotactic chemical stimuli (collectively called

tumor angiogenic factors, TAFs 1) the EC in nearby capillaries appear to thicken and produce

proteolytic enzymes (proteases), which in turn degrade the basal lamina. In further response to the

angiogenic factor, the normally smooth cell surface begins to develop foot-like structures

(pseudopodia) that penetrate the weakened basal lamina into the extra cellular-matrix (ECM)

[3,24]. The endothelial cells subsequently begin to accumulate in regions where the concentration

of tumor angiogenic factor reaches a threshold concentration [24]. The vessel dilates as the EC

aggregate and the proteases degrade the basal lamina and the ECM, thus enabling the capillary

sprouts to migrate and grow toward the chemotactic source in a tumor cell colony [12,31]. In [18],

a simple mathematical model was presented based on the theory of reinforced random walks

[17,23] coupled with a Michaelis±Menten type mechanism which views the EC receptors as the

catalyst for transforming angiogenic factor into proteolytic enzyme. This model was proposed as

a mechanism to describe the changes within the existing vessel prior to capillary formation.

The numerical experiments with this model in [18] show that under the conditions of slow cell

movement and high chemotactic sensitivity, an initially uniform distribution of endothelial cells

will form a bimodal distribution. In [18], we also gave a theoretical explanation for the formation

of such a bimodal distribution based upon our work in [17].

Biologically, bimodal distributions of epithelial cells occur in nature, for example during the fetal

development of teats [1]. During the formation of mammary ducts, a sheet of epithelial cells on the

1 We reserve the term VEGF, vascular endothelial cell growth factor, for the enzyme that the endothelial cells convert

to protease.
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surface of a fetus aggregate at the surface in a ring.The cells presumably emit a proteasewhichbreaks

down the supporting surface. The cells form a small mound which then penetrates into the fetal

interiorwhen the supporting surface breaks down.This leads to the formation of themammaryduct.

In this paper, we propose an extension of the model developed in [18] that takes into account

the fact that macrophages produce angiogenic factors in response to tumor-produced chemotaxic

agent [8] and the role that PC play in the formation of new capillaries.

We are only attempting to model the onset of angiogenesis here. That is, we are only attempting

to model the observations described in Figs. 1 and 2 [25]. We are currently extending this model to

the ECM with the goal of modeling the observations Rakusan summarizes in Figs. 3 and 4. This

model consists of one-dimensional cell transport and kinetic equations along the capillary coupled

with two-dimensional cell transport and kinetic equations in the ECM between the tumor and the

neighboring capillary. It is quite complicated even when one does not consider the motion of

macrophage and PC along with the motion of the ECM. Our goal here is to carefully explore the

issues involved in the onset of angiogenesis before presenting the full two- or three-dimensional

model to the scienti®c community.

PC, which form a periendothelial cellular network within the basal lamina, are intimately in-

volved in the regulation of the proliferation of endothelial cells. Although PC are absent in regions

Fig. 1. Stage O of angiogenesis: stable vessel. Major components of normal stable capillary which can be involved in

angiogenesis (from [25]).

Fig. 2. Stage 1 of angiogenesis: changes within the existing vessel (from [25]).
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of high endothelial cell proliferation activity, they are believed to have a `managerial' role. As

discussed in [30], angiogenesis is initiated most commonly from capillaries rich in pericytes. In-

deed they present the thesis that during angiogenesis, newly formed capillaries are formed by both

endothelial cells and pericytes.

Referring to Fig. 5(a) (taken from [8]) in [18], the mechanism for the onset of angiogenesis was

the path 1 ! 2 ! 3. Here, we incorporate the path 1 ! 5 ! 6 ! 3 of Fig. 5(a). In a mathe-

matical sense, the former path can be thought of as a subpath of the latter path. However, the

angiogenic factors produced by the tumor are not necessarily the same as those produced by the

MCs in response to the tumor necrotic factors (TNFs). In this way, we address the additional

contribution to angiogenesis through tumor derived growth factors that are chemotactic for

macrophages as well as addressing the mediating role of pericytes.

Fig. 3. Stage 2 of angiogenesis: formation of a new channel (from [25]).

Fig. 4. Stage 3 of angiogenesis: maturation of the new vessel (from [25]).
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The model we present here shows that the onset of angiogenesis also leads to a bimodal density

distribution in three of the major cell types, endothelial cells, PCs and MCs, that are involved in

capillary development and that are considered here.

As Folkman suggests, these paths can be viewed as points of attacks on angiogenesis in tumor

growth. In this paper, we also propose two mechanisms for the action of angiostatic agents to

inhibit tumor growth by inhibiting the onset of angiogenesis. (We distinguish between naturally

occurring angiostatins and those that are pharmacologically applied. The former are byproducts

Fig. 5. (a) Diagram of di�erent targets for antiangiogenic therapy (from [8]). (b) Expression of PA and its inhibitors in

endothelial cells, and initiation of angiogenesis in model system. In this model, EGF/TGF-a, TGF-b, and TNF-a are

potent factors in HOME cells, while a FGF/bFGF, VEGF, and TGF-b are potent in BAE and HUVE cells (from [15]).
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of the cleavage of plasminogin by this protease. Its role will be considered in a later paper. In this

paper, we will use the term `angiostatic agent' as a pseudonym for anti-angiogenic factors such as

angiogenic steroids, which are introduced into the body as a therapeutic drug.) The rough idea is

that in response to angiostatic agents, endothelial cells produce protease inhibitors which deac-

tivate the protease formed by the endothelial cells in response to TAF. The protease is not

destroyed but rather is prevented from functioning as a catalyst for the degradation of the basel

lamina.

The biology of tumor angiogenesis is very complex and as such it is important to proceed in a

logical fashion. That is, it is important to develop the model in stages and to build upon the

biological and biochemical observations of cellular response to growth factors.

Mathematical modeling of angiogenesis has been discussed by a number of authors and we

refer the reader to [2,22,26,29] for recent overviews. Most of the aspects of angiogenesis work has

mainly concerned the growth of capillary branches and anastamosis within the ECM and do not

address, in general, the initiation of capillary sprout formation. This onset (and inhibition) of

sprout formation is the main focus of our study here. However, we remark that the early devel-

opment of pre-initiated capillary sprouts has been modeled in [22]. In that model, the authors

concentrated on the role of haptotaxis to regulate cell movement due to the release of ®bronectin,

which increases the cell to matrix adhesiveness and serves as a provisional matrix for subsequent

growth and migration. That model is based on reaction±di�usion mechanisms and capillary

sprout development is accounted for through Turing-di�usion driven instability.

The modeling approach developed in this paper, is, to the best of our knowledge, completely

new. The basic equations of enzyme kinetics coupled with the equations of reinforced random

walks govern the cell movements. The reinforcement factors (chemotactic, haptotactic) are as-

sumed to be driven by EC-produced protease in response to growth factor, which is produced by

MCs in response to some tumor-produced chemotactic agent induced by hypoxia, for example.

We believe the modeling procedure is robust and su�ciently ¯exible to incorporate further

growth and inhibiting factors known, or likely to be of importance in developing a deeper un-

derstanding of angiogenesis.

One early criticism of our model was that we did not have available to us reliable sensitivity

coe�cients as well as certain cell movement constants and reaction rate constants. However, we

now have a good set of approximate values for the cell movement constants and the reaction rate

constants. The values we use in our computations here are typical of the values we have found in

the literature upon non-dimensionalization of our equations [16]. The sensitivity constants must

be obtained empirically.

Mathematically, the sensitivity coe�cients determine the relative amount of cell aggregation or

de-aggregation. These have yet to be determined experimentally.

The plan of the paper is as follows: in Section 2, we model the kinetics of the chemotactic and

angiogenic factors produced by the tumor and MCs. First, we employ Michaelis±Menten kinetics

to model the conversion of the tumor chemotactic factor by macrophages into angiogenic factor.

(Path 1 ! 5 in Fig. 5(a).) Then, we employ this type of kinetics a second time to model the

conversion of the macrophage generated angiogenic factor into protease by endothelial cells.

(Path 5 ! 6 in Fig. 5(a).) Protease is then viewed as a catalyst in a reaction for the degradation of

®bronectin, ®rst in the basal lamina, and subsequently in the ECM itself. The endothelial cells

which line the capillary then migrate through the wall of the capillary along the trail of angiogenic
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molecules toward the tumor. (As remarked above, the growth factor transport across the ECM

and the capillary growth in the opposite direction will appear in [16].)

One novel aspect of our work is the inclusion of two mechanisms for the action of angiostatic

agent as an inhibitor of the protease catalysis. This is an important objective of the modeling.

Such mechanisms show how angiostatic agents are capable of acting to prevent ®bronectin from

being degraded. In doing so, it supports the use of anti-angiogenic drugs as a possible clinical

therapy to combat tumor growth and metastasis.

In Section 3, the movement of EC, PCs andMC (MCs) is modeled using the notion of reinforced

random walks. In [18], we used this idea to model the movement of EC in the capillary. The rough

idea is that endothelial cell movement is envisioned to be toward regions in which there are large

concentrations of protease and low concentrations of ®bronectin. That is, these cells move up the

concentration gradients of protease and down the concentration gradients of ®bronectin. Likewise

the movement of PCs based on the observations that PCs move up a ®bronectin gradient while

macrophages will move up the concentration gradient of the tumor emitted chemotactic factor.

Simple models of probability transition functions are then taken to model these movements.

In Section 4, we discuss the resulting system from the point of view of the theory we developed

in [17]. In Section 5, we present some computations which illustrate the signi®cance of the model.

Finally, in Section 7, we discuss our ®ndings and indicate the future directions of this research.

2. Biochemical kinetics

In order to better understand how tumor-generated angiogenic factors act on endothelial cells,

we consider a simpli®ed version of Fig. 5(b) (taken from [15]). That is, we consider that each

endothelial cell has a certain number of receptors to which the angiogenic factor (ligand) binds.

The bound molecules (intermediates) in turn stimulate the cell to produce proteolytic enzyme and

form new receptors.

In the case of MCs, we use the fact that they produce an angiogenic factor in response to a

chemotactic agent produced by the tumor. This chemotactic agent then binds with endothelial

cells in much the same way as described in the preceding paragraph.

2.1. The role of tumor-generated angiogenic factor in protease production

Let VT be the angiogenic factor produced by the tumor and VM that produced by macrophages

which are stimulated by a chemotaxic agent K.

We model the process for tumor-produced angiogenic factor as follows:

VT � RE ¢

k1

kÿ1

REVT� �;

REVT� � !
k2

CT � RE;

where RE denotes some receptor site on the endothelial cell surface membrane, �REVT� is the in-

termediate and CT is a proteolytic enzyme produced as a consequence of this reaction. (Actually

the angiogenic factor binds to the receptor at the surface of the cell. The complex is then carried to

the interior of the cell, where it stimulates the production of proteases and RE, which then moves
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to the cell surface. The point of view here is that the receptors at the surface of the cell function

play the same role that enzymes play in the classical enzymatic catalysis.)

2.2. The role of tumor-generated chemotaxic factors in enzyme kinetics

Here we envisage, in accordance with [8], that the tumor releases a chemotactic agent, K, which

attracts the macrophages. The macrophages `convert' the chemotactic agent into an angiogenic

factor VM according to the following mechanism:

K � RMa¢

k3

kÿ3

RMaK� �;

RMaK� �!
k4
VM � RMa;

�2:2:1�

where RMa is a receptor site on the MC wall and �RMaK� is the intermediate complex that is taken

into the macrophage and stimulates the production of angiogenic factor.

This factor, in turn, stimulates the production of a proteolytic enzyme CM by the endothelial

cells by much the same mechanism as in the earlier case:

VM � R0
E¢

k0
1

k0
ÿ1

R0
EVM

� �

;

R0
EVM

� �

!
k0
2
CM � R0

E:

�2:2:2�

Regardless of whether the proteolytic enzyme is produced by TAF (CT) or secondarily by mac-

rophage-generated angiogenic factor (CM), we assume that it acts to degrade ®bronectin �F � via
the Michealis±Menten catalytic reaction:

CA � F!
k7

FCA� �;

FCA� �!
k8
F 0 � CA:

�2:2:3�

In this reaction, CA refers only to those molecules of proteolytic enzyme (CM or CT) that are

actually involved in the degradation of ®bronectin. 2 The reaction Eq. (2.2.3) re¯ects the fact that

the enzyme degrades the ®bronectin, converting it into products F 0; by means of catalysis.

Remark 1. It is to be emphasized that while the chemotactic agents K; VT and VM di�use through

the ECM from the MCs and the tumor, respectively, they are converted almost immediately into

receptor complexes upon arrival at the capillary wall via the above reactions. In particular,

chemotactic factor and growth factor are converted almost immediately into their respective

activated receptor complex upon arrival at the capillary wall via the above reactions so that very

little if any of it is left to di�use along the capillary lumen. 3 Therefore, we might expect that the

di�usion of these proteins along the length of the capillary lumen is negligible in comparison to

2 An alternate mechanism for the degradation of ®bronectin by plasmin, generated from plasminogen via protease,

will be discussed in a forthcoming paper.
3 This assumes that the rate of supply of the chemotactic factor at the wall is insu�cient to saturate all of the available

macrophage receptors and that the quantities of growth factor so generated by the MC are likewise insu�cient to

saturate all or nearly all the available EC receptors.
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their conversion into receptor complex. (A mathematical justi®cation for this is given in Appendix

A. We also include a computation that illustrates this.) Likewise, angiostatin is presumed to be

converted into inhibitor which in turn e�ectively binds with active enzyme more rapidly than it

can di�use along the capillary wall.

The di�usion of these proteins cannot be neglected in the ECM in the full model we are de-

veloping in [16], since di�usion is the transport mechanism for these proteins to and from the

tumor. However, at the capillary wall, di�usion of these proteins is far less important than their

interaction with the endothelial cells.

2.3. Models for the action of angiostatins

There are perhaps several ways in which angiostatic agents might inhibit angiogenesis [10,14].

Here, we discuss two possibilities, at least one of which has been veri®ed in the experimental

literature. We begin with this mechanism.

We consider the angiostatin as a direct inhibitor of protease. When we do this,

A� CA¢CI: �2:3:1�

Here, CI denotes the proteolytic enzyme molecules which are inhibited by the inhibitor A from

functioning as a catalyst for ®bronectin degradation. In terms of concentrations, �C� � �CA� � �CI�.
Assuming that (2.3.1) is in equilibrium, we have that �CI� � me�A��CA�, where me is the equilibrium
constant for this step. In general, the reaction in (2.3.1) will be essentially complete if me � 1.

Justi®cation for this mechanism is to be found in [27], where plasminogen activation is shown to

be inhibited by angiostatin. The tissue plasminogen activator (tPA) is produced in response to a

growth factor such as VEGF. Then, tPA binds to plasminogen with the resultant product being

plasmin (Pm). In the model proposed in [27], the angiostatin binds directly to the intermediate

[tPA±Pg] complex to inhibit the production of active protease. (The angiostatin here is a fragment

of plasminogen with a molecular weight of about 38 kDa.) The literature value in [27] given for mÿ1
e

is of the order of 1 lM. Thus, in this example we cannot assume that (2.3.1) is essentially complete.

Another possibility is to involve the endothelial cells once more. In this more complex mech-

anism, the angiostatin stimulates EC to produce an inhibitor I according to the mechanism

A� REA ¢

k0
5

k0
ÿ5

AREA� �;

AREA� � !
k0
6
I � REA; �2:3:2�

CA � I¢CI;

where REA is a receptor protein on the endothelial cell wall and �AREA� is the intermediate complex.

Moreover, I is a protease inhibitor produced by the endothelial cells in response to the angiostatic

agent by an overall mechanism, which we will assume to be of Michealis±Menten type also. Here,

CI denotes the proteolytic enzyme molecules which are inhibited by the inhibitor I from func-

tioning as a catalyst for ®bronectin degradation. In terms of concentrations, �C� � �CA� � �CI�.
Assuming that the last step in (2.3.2) is in equilibrium, we have that �CI� � me�I��CA�, where me is the
equilibrium constant for this step. In general, it will be quite large, that is, the last step in (2.3.2) is

essentially complete.
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In either case, the critical equation for the concentration of active enzyme is

�CA� �
�C�

1� me�J �
;

where J � A if the angiostatin is the inhibitor or J � I if the angiostatin generates inhibitor via

(2.3.2). 4

Remark 2. The models we propose here for the action of an angiostatic agent are only two of

several possible models. There are others which we intend to investigate in a series of papers of

which this is the second. It is probably better to treat each model separately rather than to

combine them all into one grand `uni®ed theory' because of the complex nature of the underlying

biology and biochemistry.

We mention here just a few of the possibilities we plan to explore in the future:

1. Angiogenesis inhibitors that inhibit EC from invading the ECM.

2. Angiogenesis inhibitors that inhibit proliferation of endothelial cells.

3. Angiogenesis inhibitors that block growth factor receptors.

(This is a partial list taken from [20].) The long-term goal is to determine mathematically which

model or combination of models might most e�ectively describe angiogenesis.

2.4. The kinetic equations

Whether the macrophages produce the same angiogenic factor that the tumor produces is an

open question. Also open to debate is whether the enzyme CM is the same as CT. In the interest of

mathematical simplicity, we shall make these assumptions. Then, we take k0i � ki for i � ÿ1; 1; 2,
l0
i � li for i � 1; 2, RE � R0

E and VT � VM. (The receptor for the angiostatic agent, REA is not as-

sumed to be the same as for the angiogenic factor. Otherwise the nine di�erential equations we solve

numerically below, blossom into eleven equations.) The tumor supplied angiogenic factor is then

viewed as an initial condition at the BL. Thus we consider the simpli®ed system of cellular reactions

K � RMa¢

k3

kÿ3

RMaK� �;

RMaK� �!
k4
V � RMa;

V � RE¢

k1

kÿ1

REV� �;

REV� �!
k2
C � RE; �2:4:1�

A� REA¢

k5

kÿ5

AREA� �;

AREA� �!
k6
I � REA;

CA � I¢CI

4 While we do not have rate constants involved in (2.3.2), we do have rate constants for the VEGF-protease system

(2.2.2). We shall assume that the rate constants for the former are roughly of the same order of magnitude as those of

the latter in our illustrative computations below.
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in addition to the ®bronectin ± enzyme decay mechanism (2.2.3). We understand that in the

mechanism in which angiostatin is the inhibitor, the mechanism becomes

K � RMa¢

k3

kÿ3

RMaK� �;

RMaK� �!
k4
V � RMa;

V � RE¢

k1

kÿ1

REV� �; �2:4:2�

REV� �!
k2
C � RE;

CA � A¢CI:

We imagine a basal lamina located on some interval �0; L� of the x-axis. Then, the densities and

concentrations of cell tissues and the chemical species are functions of position and time (in units

of micromolarity or micromoles per unit liter) and their time rates of change are denoted by o=ot.
We adopt the following notation for these functions:

u � concentration of chemotactic agent K;

v � concentration of angiogenic factor VT �taken to be that of VM here�;

c � concentration of proteolytic enzyme CT; �taken to be that of CM here�;

r � density of angiogenic response receptors; RE; on the EC cells;

ra � density of angiostatic agent receptors; REA; on the EC cells;

rm � density of receptors; RMa; on the MCs;

` � concentration of intermediate receptor complex �REVT� � �REV�;

`a � concentration of intermediate receptor complex �AREA�; �2:4:3�

`m � concentration of intermediate receptor complex �RMaK�;

f � density of capillary wall; represented by here by fibronectin;

a � concentration of angiostatic agent �anti-angiogenic� factor;

g � endothelial cell density;

r � PC density;

ia � protease inhibitor density;

ca � active proteolytic enzyme density;

ci � inhibited proteolytic enzyme density:

We also have, in the case that angiostatin is the inhibitor,

c � ca � ci;

ci � meaca

so that

ca �
c

1� mea
;
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while if angiostatin is an inhibitor substrate,

c � ca � ci;

ci � meiaca
�2:4:4�

so that

ca �
c

1� meia
:

If we apply the law of mass action to (2.4.1), then we obtain

ou

ot
� ÿk3rmu� kÿ3`m;

orm

ot
� ÿk3rmu� �kÿ3 � k4�`m;

o`m
ot

� k3rmuÿ �kÿ3 � k4�`m;

ov

ot
� k4`m ÿ k1rv� kÿ1`;

or

ot
� ÿk1rv� �kÿ1 � k2�`;

o`

ot
� k1rvÿ �kÿ1 � k2�`; �2:4:5�

oc

ot
� k2`;

oa

ot
� kÿ5`a ÿ k5ara;

ora

ot
� ÿk5ara � �kÿ5 � k6�`a;

o`a
ot

� k5ara ÿ �kÿ5 � k6�`a;

oia

ot
� k6`a:

In the case of the mechanism (2.4.2), we agree to delete the last three equations of this system. The

rate equation for a�x; t� will be included in a somewhat di�erent form but not with the kinetic

constants k�5.

Applying standard Michealis±Menten enzyme kinetics to (2.2.3), we have

of

ot
� ÿ

k4caf

1� m4f
; �2:4:6�

where k4 � k8 and m4 � k8=k7.
5

5 The units of the k2i are in reciprocal hours and of the k2iÿ1 are reciprocal hours per lM (1 lM � 1 micromole per

liter).
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The rate equations for ®bronectin and for protease are not complete as they stand. For ex-

ample, it is known that protease decays at a rate proportional to its concentration. This means

that the seventh of Eqs. (2.4.5) should have the form

oc

ot
� k2`ÿ lc; �2:4:7�

where l is a decay constant. For the remainder of this paper, we shall take l � 0 as a `worst case'

scenario. This simpli®es the analytical discussion to follow somewhat and does not signi®cantly

a�ect the numerical computations which follow that discussion. (We should perhaps add here that

the decay constant l is available for some proteases in vitro at elevated temperatures or other

unusual environmental conditions. The values for the types of in vivo proteases that we have in

mind do not seem to be available.) 6

In so far as the rate equation for ®bronectin is concerned, it is known that the endothelial cells

can also produce ®bronectin. Therefore, the rate law for the ®bronectin assumes the form

of

ot
� b�fM ÿ f �f gÿ

k4caf

1� m4f
; �2:4:8�

where fM is some maximal value for the ®bronectin. That is, once f reaches fM, the endothelial

cells cease their production of ®bronectin.

Initially, there are no receptor±ligand complexes. Therefore, `m�x; 0� � `�x; 0� � `a�x; 0� � 0.

We see from the second, third, fourth, ®fth, ninth and tenth of (2.4.5) after a quadrature that

rm�x; t� � `m�x; t� � rm�x; 0�;

r�x; t� � `�x; t� � r�x; 0�; �2:4:9�

ra�x; t� � `a�x; t� � ra�x; 0�:

If, as in the usual Michealis±Menten hypothesis ([19]), we set otrm=k1 � otr=k3 � otra=k5 � 0; there
results

rm�x; t� �
rm�x; 0�

1� m2u�x; t�
;

`m�x; t� �
m2rm�x; 0�u�x; t�

1� m2u�x; t�
;

r�x; t� �
r�x; 0�

1� m1v�x; t�
;

`�x; t� �
m1r�x; 0�v�x; t�

1� m1v�x; t�
; �2:4:10�

6 It should be remarked that in the work we have under way, where we consider the actual penetration of the capillary

sprout into the ECM, this term will play a critical role. The reason for this is that in the ECM the EC cell proliferation

rate and EC death rate are not in balance. This means that the EC cell movement equation must include a source term

of the form NG0�C�Ct=�1� G�C�� � j1N�N0 ÿ N� ÿ j2N , where N�x; y; t� (resp. �N�x; y; z; t�� is the two- (resp. three-)

dimensional EC cell density and G�c� is a biphasic EC mitosis rate term, which decays to zero as c ! �1. The inclusion

of the term lc in the enzyme rate law prevents c ! �1. Further discussion of this here would take us beyond the scope

of the present paper.)
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ra�x; t� �
ra�x; 0�

1� m3a�x; t�
;

`a�x; t� �
m3ra�x; 0�a�x; t�

1� m3a�x; t�;

where we have set mi � k2iÿ1=�kÿ�2iÿ1� � k2i� for i � 1; 2; 3.
Mathematically speaking, these equations cannot be correct as they stand. Consider for ex-

ample, the ®rst of (2.4.10). This cannot hold at t � 0 unless the initial concentration of chemo-

tactic factor is zero. Of course, as pointed out in Murray [19, ch. 5], this di�culty arises because

the assumptions that 1=�k1rm�x; 0�� � 1=�k3r�x; 0�� � 1=�k5ra�x; 0�� � 0 are not consistent with the

number of initial conditions for the system (2.4.5). In other words, we are dealing with a singular

perturbation problem here. Eqs. (2.4.10) are only valid in deriving the so-called `outer solution'.

The outer solution is considered to be valid only for times t � � � maxf1=�k3rm�x; 0��;
1=�k1r�x; 0��; 1=�k5ra�x; 0��g and must be matched with the so-called `inner solution'. Murray does

this in [19]. Murray refers to the outer solution as the `pseudo steady state'. He also uses a singular

perturbation argument to give a set of circumstances under which (2.4.10) may be justi®ed. If � is
very small, then we need only concern ourselves with the outer solution. 7

Using (2.4.10) in the equations for otu; otv; otc; ota and otia in (2.4.5), we ®nd that for t � �

ou

ot
� ÿ

m2k4urm�x; 0�

1� m2u
;

ov

ot
�

m2k4urm�x; 0�

1� m2u
ÿ
m1k2vr�x; 0�

1� m1v
;

oc

ot
�

m1k2vr�x; 0�

1� m1v
; �2:4:11�

oa

ot
� ÿ

m3k6ara�x; 0�

1� m3a
;

oia

ot
�

m3k6ara�x; 0�

1� m3a
:

We would like to replace rm�x; 0� by rm�x; t�, r�x; 0� by r�x; t� and ra�x; 0� by ra�x; t� and ultimately

by m�x; t� and g�x; t�. The argument we make to justify this is based on the pseudo steady-state

approximation discussed in [19, p. 119].

We observe from the ®rst and fourth of these that u; a must decay exponentially fast since they

are decreasing functions of time. 8 It then follows from the second of these equations that v must

ultimately vanish. 9 For if v had a sequence of positive maxima as t ! �1 and these maximum

values were bounded away from zero, then the second term on the right of the equation for vt

7 For example, using data from [13] for VEGF receptor KDR tyrosine kinase, m1k2 � Kcat=Km and the approximation

justi®ed below that r�x; 0� � 1 lM, we have that 1=�r�x; 0�k1� � 50 s. Similar estimates should hold for 1=�k3rm�x; 0��
and 1=�k5ra�x; 0��.
8 Implicit in this statement is the assumption that for each x, r�x; 0� and ra�x; 0� are strictly positive. Thus, for example,

the equation for ut can be written as ut6 ÿ d�x�u, where d�x� � m2k4r�x; 0=�1� u�x; 0� > 0. Therefore, u�x; t�6
exp�ÿtd�x��.
9 That is, limt!�1 v�x; t� � 0.
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would be bounded away from zero from above while the ®rst term on the right for vt would tend

to zero. This means that vt would be negative in a neighborhood of a maximum which is of course

nonsense.

Once we have assured ourselves that v decays, it is easy to see from the second equation that v

also decays exponentially fast. If the decay of v is slower than an exponential, then the ®rst term

will ultimately be negligible in comparison with the second term. But then the resulting equation is

of the same form as the ®rst equation (with v in place of u) and hence v too must decay expo-

nentially fast. (The fact that we have exponential decay of these quantities suggests that we may

neglect their di�usion. See Appendix A.)

Thus, `m�x; t�; `�x; t� and `a�x; t� decay to zero exponentially. In view of the conservation laws

(2.4.9) this means that for large times, the positive quantities rm�x; 0� ÿ rm�x; t�; r�x; 0� ÿ r�x; t�;
and ra�x; 0� ÿ ra�x; t� are all very small. (Indeed, in view of (2.4.10) these quantities decrease to

zero like u2; v2 and a2.) Thus, it is reasonable to replace rm�x; 0� by rm�x; t�, r�x; 0� by r�x; t� and
ra�x; 0� by ra�x; t�. This leads us to

ou

ot
� ÿ

m2k4urm�x; t�

1� m2u
;

ov

ot
�

m2k4urm�x; t�

1� m2u
ÿ
m1k2vr�x; t�

1� m1v
;

oc

ot
�

m1k2vr�x; t�

1� m1v
; �2:4:12�

oa

ot
� ÿ

m3k6ara�x; t�

1� m3a
;

oia

ot
�

m3k6ara�x; t�

1� m3a
:

Finally, we would like to replace r�x; t� and ra�x; t� by (some multiple of) g�x; t� and rm�x; t� by

m�x; t� in the above equations. We need to do this because, while we have good estimates of the

number of receptors per cell, it is the number of cells per unit length which we can, in principle,

directly observe in sections of tissue under the microscope. We can write r�x; t� � d�x; t�g�x; t�,
where d, the number of receptors per cell, is taken to be nearly constant, although it may vary

somewhat with g. In turn, this linear cell density must be converted to a volumetric density ex-

pressed in micromoles per liter. 10

To ®nd the volumetric density, we imagine the cells to be small rectangular parallelepipeds. Since

capillaries have a diameter of about 6±8 lm and red blood cells have a diameter of 4±5 lm, we can

estimate the thickness of an endothelial cell to be about 1 lm with a width of about 7p=2 � 10 lm.

(The thickness of the basal lamina itself is much smaller than that of an EC and is neglected.) It is

known that there are about 10±100 EC per millimeter so that their length can be taken to be be-

tween 10 and 100 lm. This means that the volumetric density of endothelial cells is roughly of the

10 The issue of units is quite important. In order to relate the constants to literature values where the terminology,

Kcat;Km is used, the concentrations of the chemical species in (2.4.12) must be expressed in volumetric units, say in

micromoles per liter.
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order of 1012 cells per liter. (The dimensions of an endothelial cell are taken from [21].) The number

of receptors per cell is of the order of 105 [4,34]. Therefore, for the purposes of this model the

receptor density is viewed as a concentration dg0 � 1017 per liter or 10ÿ6 M or one lM.

(In the same manner, the receptor per cell ratios, dm�x; t� � rm�x; t�=m�x; t� and da�x; t� �
ra�x; t�=g�x; t� are assumed to be nearly constant and the micromolarity of available receptors of

each type, rm�x; 0� and ra�x; 0�, are of order 1 micromolar unit.)

We set ki � dimik2i, where d1 � d; d2 � dm; d3 � da and d4 � 1. 11

Before using this observation, we make a ®nal comment.

Remark 3. The rate laws for the chemical mechanisms above must include terms that take into

account tumor emitted angiogenic factor and chemotactic factor as proposed by Folkman [8].

That is, we envisage each of these factors as being supplied from the tumor to the wall at some (as

yet unknown) rate ur�x; t� and vr�x; t�, respectively. However, simple models for these rate func-

tions can be written down. This we do later.

On the other hand, for therapeutic purposes, any angiostatic factor must be supplied at a rate,

ar�x; t�; su�cient to `neutralize' the proteolytic enzyme until the tumor has been rendered inactive.

A reasonable model for ar might be a constant function since this factor could be supplied in-

travenously at a constant rate.

Therefore, the rate laws must include as source terms ur�x; t�, vr�x; t� and ar�x; t�, which drive

this mechanism.

Thus, we ultimately obtain, noting the above remark, upon inclusion of (2.4.8), the following

seven equations:

ou

ot
� ÿ

k2um

1� m2u
� ur�x; t�;

ov

ot
�

k2um

1� m2u
ÿ

k1vg

1� m1v
� vr�x; t�;

oc

ot
�

k1vg

1� m1v
;

of

ot
� b�fM ÿ f �f gÿ

k4caf

1� m4f
; �2:4:13�

oa

ot
� ÿ

k3ag

1� m3a
� ar�x; t�;

oia

ot
�

k3ag

1� m3a
;

ca �
c

1� meia
:

Again, we remind the reader that in the second mechanism, we have proposed, in which an-

giostatin itself acts as an inhibitor, the system (2.4.13) simpli®es somewhat:

11 In the literature, K i
cat � k2i and K i

m � �k2i � kÿ�2iÿ1��=k2iÿ1 for i � 1; . . . ; 3. Thus, kidi � K i
cat=K

i
m and mi � 1=K i

m.
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ou

ot
� ÿ

k2um

1� m2u
� ur�x; t�;

ov

ot
�

k2um

1� m2u
ÿ

k1vg

1� m1v
� vr�x; t�;

oc

ot
�

k1vg

1� m1v
; �2:4:14�

of

ot
� b�fM ÿ f �f gÿ

k4caf

1� m4f
;

oa

ot
� ar�x; t�;

ca �
c

1� mea
:

3. Random walks

Before beginning our discussion of reinforced random walks, we emphasize the issue of time

scales once more. Endothelial, pericyte and MCs move at rates that are much smaller than the

rates at which the kinetic equations above come to pseudo steady state. That is, time scales for the

former movements are of the order L2=D, whereas the time scales for the latter are

� � 1=�m1k2dg0� � Km=�Kcatdg0�. Typically, L
2=D � 100 days 12 while � � 50 s (using the obser-

vation that dg0 � 1 lM and data from [13]).

Therefore, in the discussion to follow, we shall assume that the biochemistry of the motion, i.e.,

the kinetic equations (2.4.5) are already in pseudo steady state, i.e., that Eqs. (2.4.13) are in force

at time t � 0; the dynamics having been initiated at some time ÿs < 0 but that the endothelial,

pericyte and macrophage cells have not yet begun to move. From now on, time is positive.

In order to describe the dynamics of the endothelial, macrophage and PCs, we employ the ideas

of reinforced random walks of [7] as described in [17,18,23]. The primary equation governing the

motion of endothelial cells is

og

ot
� D1

o

ox
g
o

ox
ln

g

s1

� �� �

; �3:1�

where s1 is the so-called probability transition function, which in turn depends on one or more of

the quantities listed in (2.4.3). 13

12 EC movement values here are of the order 10ÿ11 cm2 sÿ1 [28].
13 Eq. (3.1) can be written in the more standard form

gt � D1gxx ÿ D1 g
ocs1cx � of s1fx

s1�c; f �

� �

x

� D1gxx ÿ D1�g�ln s1�x�x; �3:2�

which may be a form more familiar to some readers. However, if one thinks of (3.1) as a di�usion process for a reinforced random

walk, then the long time tendency for such a process will be to drive g in such a way as to bring the ratio g=s1 to unity. In other words,

the `walker density equation' asserts that the walker will move in such a way as to have a large probability density where the probability

transition rate is large and a small probability density where it is small.
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In this case, we regard the motion of endothelial cells to be in¯uenced by the active part of the

proteolytic enzyme it produces (CA) and by the proteins such as ®bronectin in the BL, i.e., we

write

s1 � s1�ca; f �: �3:3�

A simple transition probability which re¯ects the in¯uence of enzyme and ®bronectin on the

motion of endothelial cells is s1�ca; f � � cc1a f
ÿc2 for positive constants ci. The probabilistic in-

terpretation of this choice is that endothelial cells prefer to move into regions where ca is large or

where f is degraded, facts which have basis in biological experiment.

Remark 4. Since (3.1) is derived as the continuous limit of a reinforced random walk, [23], the

transition probability s1 provides the link between microscopic and macroscopic events. As a

consequence, the selection of an appropriate choice for s1 represents a challenging problem in cell

biology and biochemistry. Our choice for s1 is therefore phenomenological. That is, it reflects the

known facts that EC cell movement depends not only upon protease and fibronectin gradients but also

upon their concentration.

For example, it is known [5] that EC will tend to aggregate at density levels of ®bronectin which

are around 25% of maximal concentrations of ®bronectin. In other words, EC cell movement

depends not only on gradients in ®bronectin but also upon its density.

Moreover, if there is too little protease present endothelial cells cannot invade a tissue. On the

other hand, if protease is in excess, the enzyme will even attack the proteins in the cell surface and

eventually destroy the cell itself. This too suggests that sensitivity factors depend not only upon

the gradient of active protease but also upon its concentration.

Remark 5. If we adopt a more classical viewpoint in which ECs are presumed to respond solely to

the gradients in ca and f, then we would take

s1�ca; f � � exp�vca � qf �; �3:4�

where v is the chemotactic coe�cient and q is the haptotactic coe�cient.

However, with this choice of s1, the sensitivity coe�cients, ocas1=s1 and of s1=s1, which deter-

mine the `drift' in (3.1) are not dependent on the concentrations of ca and f .

This choice, however, is at variance with the biological evidence as discussed above.

These facts, together with our prior experience with related equations in [17] motivated our

choice for s1. There, we found that it was not so much the gradient in the concentration of the

chemotactic agent that was signi®cant in determining aggregation or deaggregation of particles

which move chemotactically under reinforced random wall but rather the relative gradient i.e., the

gradient of the logarithm of the concentration, which played a signi®cant role in the aggregation

of the particles.

We adopt this viewpoint in the choice of subsequent probability transition factors.

In order to avoid singularities in ln s1 and its derivatives in (3.1), it is useful to take

s1�ca; f � �
ca � a1

ca � a2

� �c1 f � b1

f � b2

� �c2

; �3:5�
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where the ai;bi are empirical constants such that 0 < a1 � 1 < a2 and b1 > 1 � b2 > 0. Clearly

then, (3.5) is not singular for small or large values of ca; f and will approximate cc1a f
ÿc2 reasonably

well over a considerable range of these variables.

This choice allows us to `control' the distribution of endothelial cells in the opening of the

forming sprout. Basically, the observation to be made is that the larger ja2 ÿ a1jc1 � jb2 ÿ b1jc2 is,
the more bimodal this distribution is in the opening channel. (In the extreme case that this sum is

zero, the cells do not move at all in response to gradients in fibronectin or in protease.) On the other

hand, when we are in the simple power law case, we may have single point or even double point

blow up. That single point blow up occurs was rigorously demonstrated in the simpler case of one

sensitivity factor in [17]. (A theoretical rationale for when single point or double point blow up

may be expected to occur is given in the next section.)

The PC density r is taken to satisfy

or

ot
� D2

o

ox
r
o

ox
ln

r

s2

� �� �

: �3:6�

To model the decrease in pericyte population in regions where the ®bronectin is low, we assume

that the pericyte density is large where the ®bronectin density is large and small where the latter is

small. To make this precise in the context and language of the random walk mechanism, we may

think of ®bronectin as a chemotactic attractant for PCs. We take

s2�f � �
f � a3

f � a4

� �c3

; �3:7�

where 0 < a3 � 1 � a4.

Finally, the MC density m�x; t� is assumed to satisfy

om

ot
� D3

o

ox
m

o

ox
ln

m

s3

� �� �

; �3:8�

where we expect that the MCs will be attracted to the pathological agents in the body, in this case,

the chemotaxic agent. Thus, it is reasonable to write

s3�u� �
u� b3

u� b4

� �c4

; �3:9�

where 0 < b3 � 1 � b4.

The system (2.4.11) with (3.1)±(3.9) (or (2.4.12) with (3.1)±(3.9) is closed by imposing the no

¯ux boundary conditions

g
o

ox
ln

g

s1

� �

� r
o

ox
ln

r

s2

� �

� m
o

ox
ln

m

s3

� �

� 0 �3:10�

at x � 0; L.
The initial conditions for the system (2.4.11) with (3.1)±(3.9) are

g�x; 0� � ge; r�x; 0� � re; m�x; 0� � me;

u�x; 0� � 0; v�x; 0� � 0; c�x; 0� � 0; �3:11�

a�x; 0� � 0; ia�x; 0� � 0; f �x; 0� � fM;
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where ge; re; and me are the (constant) cell densities along the capillary axis and fM is the density

of ®bronectin in the capillary wall. (In the case of system (2.4.12) with (3.1)±(3.8), the initial

condition for ia is omitted from (3.11).)

In order to initiate the dynamics, we assume that the tumor supplies angiogenic factor or

chemotactic factor at rates ur; vr as discussed in Remark 3. In order to test the e�cacy of our

`treatment', we may introduce an angiostatic agent at a given rate ar�x; t� as also discussed in

Remark 3.

4. Elements of theoretical analysis

A complete stability analysis of (2.4.13), (3.1)±(3.8) (or the simpli®ed system) together with

(3.10) and (3.11) when there are no forcing terms (ur � vr � ar � 0) would take us far beyond the

scope of the current paper.

For example, if we renormalize g;r;m; f by replacing them by g=ge;r=re;m=me; f =fM, then the

nine-tuple �g;r;m; u; v; c; a; ia; f � will be a stationary solution of the resulting system when it is of

the form �1; 1; 1; 0; 0; 0; 0; 0; 1�. 14 Likewise, another stationary point is �1; 1; 1; 0; 0; 0; 0; 0; 0�. (This
renormalization will induce a corresponding rescaling in the probability transition function

constants, the rate constants, ki and the ®bronectin production constant, b.)

In order to test the stability of each of these solutions, one would have to perturb each com-

ponent and then write down the linearized equations relative to the perturbation. However, since

this system is not of standard parabolic type (in particular, it is strongly coupled), no suitable

stability theory exists for it at present.

There are three genuine partial di�erential equations (in g; r and m), which are parabolic in

these variables and hence these variables possess the in®nite speed of propagation principle. On

the other hand, the remaining equations are ordinary di�erential equations in the remaining

variables and consequently these variables possess zero propagation speed.

As explained in [17,18,23] (for somewhat simpler systems), this means that several possibilities

can occur for the cell density functions when one perturbs the stationary solution. These are: (i)

®nite time blow up, (ii) growth and subsequent collapse to the constant initial value and (iii)

aggregation to a spatially non-constant solution.

Perhaps the best way to understand this system is to consider the special case in which the

sensitivity factors (the s0s) are all power laws and then show how the system has substructures

reminiscent of the system considered in [17,18,23].

To do this, we take a�x; 0� � 0 � ar�x; t� so that c�x; t� � ca�x; t�. That is, we consider the

problem without angiostatin. Then, both models that include angiostatin reduce, mathematically,

to the same set of partial di�erential equations.

(It is not to hard to see from an intuitive examination of the two systems with angiostatin that if

ca ! 0 as t ! �1, then f ! 1 and the cell densities g; r should converge to constants. If ar is

strictly positive, then we might expect that ca ! 0. If a�x; 0� > 0, then we expect that there will be

a tendency for the active enzyme density to converge to zero, at least for a short time.)

14 Notice that when c � 0; ca � 0 also.
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Set s1�c; f � � cc1f ÿc2 ; s2�f � � f c3 and s3�u� � uc4 . Then, the simpli®ed version of our system

which should capture the essential features of our numerical results when no angiostatic agent is

present, takes the form

gt � D1gxx ÿ D1 g c1
cx

c

��

ÿ c2
fx

f

��

x

;

rt � D2rxx ÿ D2 r c3
fx

f

� �� �

x

; �4:1�

mt � D3mxx ÿ D3 m c4
ux

u

� �h i

x

for the cell motion equations, while the relevant chemical transport equations are

ou

ot
� ÿk2um;

ov

ot
� k2umÿ k1vg;

oc

ot
� k1vg;

of

ot
� bf gÿ k4cf ;

�4:2�

where we are assuming that m4f � 1. Throughout this section we take L � 1 for convenience.

Our assertion here is that any instabilities in the full system arise from positive perturbations of

the stationary solution �g;r;m; u; v; c; f � � �1; 1; 1; 0; 0; 0; 0�. The system (4.1) and (4.2) can then

be thought of as the linearization of the full system (without angiostatic agent) about this solution.

(Of course one has to interpret the ratios ux=u; cx=c; fx=f with some care in this context.)

Notice that u�x; t� � v�x; t� � c�x; t� � u�x; 0� � v�x; 0� � c�x; 0�. We want to drive our system

from an initial perturbation of u�x; 0� � 0. We take �u�x; 0�; v�x; 0�; c�x; 0�� � �h0�x�; 0; 0�, where h0
is a small, positive, non-constant, unimodal function, for example, d�1ÿ � cos�2px��m with d small

and positive. Now u is always decreasing in t, while v initially increases in t. As u is consumed, v

eventually decreases in t and is thus bounded (for each x for which g�x; �� and m�x; �� are bounded
and bounded away from zero). Consequently, c is always strictly increasing in t whenever vg > 0

and is always non-decreasing. (The variables �g;r;m; u; v; c; f � are always assumed to be non-

negative.)

The conservation law tells us that c�x; t�6 u�x; 0� � v�x; 0� � c�x; 0�. Thus, c increases to some

limit function h�x� > 0, where h6 h0.
15

15 If we knew that u; v ! 0 as t ! �1, then we could take h�x� � h0�x�. This will be the case for u if m�x; �� is bounded
away from zero since then u will decay exponentially fast as we see using an argument similar to that following (2.4.11).

A similar argument shows that if u decays exponentially fast and if g�x; �� is bounded away from zero then v also decays

exponentially fast.
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We consider the critical point �1; 1; 1; 0; 0; 0; 0�. The subsystem of (4.1) and (4.2) of interest is

og

ot
� D1gxx ÿ D1 g c1

hx

h

��

ÿ c2
fx

f

��

x

;

of

ot
� bf gÿ k4hf :

�4:3�

This system was discussed in [18], where it was shown that if we make the change of variables

g � ln f , we are led to

Lg � gtt ÿ D1c2�gtgx�x � D1gxxt � G�gx; gt; h; h
0; h00�: �4:4�

Inspection of the function G, reveals that it is linear in rg and vanishes as h; h0=h; h00 ! 0. The

second order, quasi-linear operator L has discriminant

D�x; t� � D�gx�x; t�; gt�x; t�� � D1c2�D1c2g
2
x � 4gt�: �4:5�

The operator L will therefore be elliptic in those regions, where g < k4h�x�=b (gt < 0) and where

D�x; t� < 0, i.e., where g is small and f is small and nearly constant (so that gx � fx=f � 0). On the

other hand, if D�x; t� > 0, then the operator will be hyperbolic. This will occur if g > k4h=b. The
numerical observation of Levine and Sleeman [17], which was also supported by the properties of

an exact solution of

gtt ÿ D1c2�gtgx�x � D1gxxt �4:6�

was that single point blow up of (4.6) occurs on the parabolic boundary of the operator L and

hence should occur on the parabolic boundary of (4.4). Suppose for (4.4) we take g�x; 0� � ÿa2

for some constant a > 0 (corresponding to a small positive constant perturbation of f �x; 0� � 0)

and g�x; 0� � 1. Then, gt�x; 0� � bge ÿ k4h0 � bÿ k4d�1ÿ � cos�2px��m. Assume also that

�1ÿ ��m <
b

dk4
< �1� ��m;

which can always be arranged for ®xed d; � 2 �0:1� if m � 1. Consequently

D�x; 0� � 4D1c2gt�x; 0�

and has exactly two sign changes, being negative near x � 1=2 and positive near x � 0; 1. Thus,
two parabolic curves evolve from the two points for which D�x; 0� � 0. Consequently, we expect

that the solutions of (4.6) (and likewise of (4.4)) to blow up in ®nite time along these curves.

Next suppose that we perturb the stationary point �1; 1; 1; 0; 0; 0; 1�. We take the perturbation

in the form �u�x; 0�; v�x; 0�; c�x; 0�� � �0; 0; h0�x��, where h0�x� � d�1ÿ � cos�2px��m. The actual

form of the rate law for ft assures us that f 6 1. We see from the full di�erential equation that near

t � 0 ft � ÿk4h0�x�f since f � 1 near t � 0. This obviously tells us that protease will initiate

degradation of the capillary wall. More than this, however, it tells us that we may expect the width

of the opening to be closely correlated to the power m in h0. (The larger m is, the narrower should

be the opening of the nascent capillary.) We illustrate this in some of the numerical computations.

We suggest that these two observations form the underlying mechanism for the bimodal

structure observed in the endothelial cell density computations given in the next section.

98 H.A. Levine et al. / Mathematical Biosciences 168 (2000) 77±115



Consider next, the subsystem:

mt � D3mxx ÿ D3 m c4
ux

u

� �h i

x
;

ou

ot
� ÿk2um:

�4:7�

If we take w � ÿ ln u, then we ®nd that

wtt � D3c4�wtwx�x � D3wxxt: �4:8�

This is precisely the equation studied in [17,23] with w�x; 0� � 0 and wt�x; 0� � �1ÿ � cos�2px��. It
was shown numerically in [23] that when m � 1 solutions appeared to blow up in ®nite time. In

[17], exact solutions were found which blew up in ®nite time. 16 The singularity formed precisely

on the parabolic boundary as remarked above.

With m�x; 0� � 1 and u�x; 0� again a small multiple of �1ÿ � cos�2px��m (for small positive � so
that ln u�x; 0� is well de®ned) and no ¯ux boundary conditions, we again have

D�x; 0� � 4c4D3

c4D3m
2�2 sin2�2x�

�1ÿ � cos�2x��2

 

ÿ 1

!

:

Indeed, it is negative at the center and ends of the interval and will be positive at x � p=4 and 3p=4
if m2�2D3c4 > 1. This means that our solution will initially be partially in the elliptic region and

partially in the hyperbolic region. We then expect single point blow up on each of the two curves

emanating from the x-axis for which D�x; t� � 0 which form the boundary of the central elliptic

region. See [18] (Section 6) for an illustrative computation. Likewise, then, we expect the behavior

of MC densities which are observed numerically in the ®gures.

The behavior of the PC density solution can be understood neglecting `cell di�usion' in the

second of (4.1) and considering instead the hyperbolic initial value problem

rt � ÿD2 r c3
fx

f

� �

x

� �

x

for ÿ1 < x < 1;

r�x; 0� � 1;

�4:9�

where f �x; t� is regarded as a known function. In particular, if we take f �x; t� � F �x� where

F �x� � 1ÿ �eÿkx2 , then the behavior of the solution r of (4.9) is the following: ®rst, r will be an

even function of x; secondly, for x0 > 0 the characteristic given by x�x0; t� starting at x0 will in-

crease with time. Finally, along this characteristic, r�x�x0; t�; t�, will be an increasing function of t.

Thus, we can expect r to aggregate near the maxima of f and collapse near the minima of f. This

was also observed for the full problem in the computations below.

5. Numerical experiments

In this section we consider some computations based on the initial-boundary value problem for

the above system. (That is, we solve numerically, the system consisting of (2.4.13), (3.1)±(3.8)

16 The initial data for the exact solution agreed with the above initial data in the limit as � ! 0.
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together with (3.10) and (3.11) using the si as discussed above.) In order to keep the number of

®gures to a manageable level, we consider only three cases. In the ®rst case no angiostatin is

present. In the remaining cases, angiostatin either functions directly as an inhibitor or else as a

substrate which is transformed into an inhibitor via the receptor mechanism we discussed earlier.

In all cases, we assume that the initial concentrations of the chemical species; the chemotactic

agent, K, the angiogenic factor (TAF), the proteolytic enzyme, the inhibitor and the angiostatic

agent are all zero as discussed above.

We also assume that vr�x; t� � 0 in order to test the mechanism for the production of proteolytic

enzyme from chemotactic factor through the entire chemical mechanism without interference

from tumor-generated angiogenic factor.

We assume that the tumor produces a chemotactic agent at a rate ur�x; t� given by

ur�x; t� � u0jm��1ÿ cos�2px���
m
eÿht: �5:1�

The assumption here is that in the avascular state, the tumor emits a chemotactic agent at a rate

which will decay with time. The constant m is to be thought of as a measure of how `concentrated'

or localized the angiogenic factor is. That is, the sequence of functions Fm�x� � jm�1ÿ cos�2px��m

forms a d sequence. 17 The decay rate, h can be thought of as a measure of the survivability of the

tumor in the avascular state. (Here km is a normalizing constant taken to ensure that

Z 1

0

ur�x; t�dx � u0 exp�ÿht�

and consequently

Z 1

0

Z 1

0

ur�x; t�dxdt �
u0

h
:

That is, h is inversely proportional to the total quantity of chemotactic agent supplied by the

tumor.) In the worst case, when h � 0, the total rate of supply of chemotactic factor is u0 at the

capillary and is constant in time.

In the ®rst case, we take ar�x; t� � 0, so that there is no angiostatic agent being present in the

capillary to mitigate the e�ects of the proteolytic enzyme on the ®bronectin.

In the second case, we consider what happens when we introduce the angiostatic agent at a

uniform rate a�x; t� � A0. ar�x; t� to be a positive constant (see Remark 3).

In a real system, h > 0. However, to test the model and the e�ect of angiostatic agent we take

h � 0 as a worst case situation.

We have carried out computations without angiostatin and for the two models for the action of

angostatin. In the case for which angiostatin induces EC production of inhibitor, there are ten

dependent variables (g;r;m; u; v; a; c; ca; ia and f ). Thus, to present all of our computations we

would have to present 20 ®gures (10 without the angiostatic agent, and 10 with the angiostatic

agent). However, the biological variables that can be observed directly in sections of tissue under

the microscope, at least in principle, are just the three cell species and the thickness of the basal

17 We have limm!�1 Fm�x� � d�xÿ �1=2��, the d function concentrated at x � 1=2, in the sense of distributions.
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lamina. Therefore, we only present plots of the variables g;r;m; and f in each of the two cases.

This reduces the total number of ®gures to 12 (four for the case of now angiostatin, four for the

case in which angiostatin produces and inhibitor and four where it acts as an inhibitor).

Remark 6. The issue of how to renormalize the system of equations listed above in an e�cient

way is not a trivial one. Basically there are two ways to proceed:

1. We could rescale each of the variables g; r;m; u; v; a; c; ca; ia and f by dividing each of them by

their corresponding values in a normal capillary, say ge;re;me; ue; ve; ae; ce; cae; iae and fe.
18 One

di�culty with this procedure is that while there are small amounts of growth factors, protease,

growth factors and angiostatins present in normal tissues, literature values for these back-

ground values are hard to come by or are not known. 19

2. An alternate way to proceed is to renormalize the cell densities and ®bronectin as described

above. One can then renormalize u; v; c; a; i by replacing them by ratios u=u0; v=v0; c=c0;
a=a0; i=i0 where the values u0; v0; c0; a0; i0 are found from experiment in the stroma surrounding

a malignant tumor. (This is what was done for a much simpler model in [2] for example.) How-

ever, here again the search for such values in the literature provides little information although

data are available for v0 [2].

In this paper, we have taken a hybrid approach. We have rescaled the cell densities to unity

since the cell transport equations are linear in them. (This we cannot do in the more complex

model in [16], since then mitosis in the ECM must be included in the two-dimensional model.)

However, we have not rescaled the concentrations for the chemotactic agent nor for the growth

factor, the inhibitor or the angiostatic agent. Rather, we assume that their concentrations are

given in lM (micromoles per liter). This allows us to directly insert literature values for the ki; mi
(when expressed in terms of Kcat;Km in units of reciprocal hours and micromoles, respectively)

directly into our programs.

These observations lead us to write, for our initial conditions for the angiostatin±inhibitor

system:

g�x; 0� � 1; r�x; 0� � 1; m�x; 0� � 1;

u�x; 0� � 0; v�x; 0� � 0; c�x; 0� � 0;

a�x; 0� � 0; ia�x; 0� � 0; f �x; 0� � 1;

�5:2�

where we have normalized the cell densities and ®bronectin density to be unity at the outset. Since

the cell movement equations are linear in the cell densities, we can carry out this rescaling without

a�ecting the constants in the g; r;m dynamical equations. As a consequence, this will involve

18 The background values ve; ae; cae; iae are the concentrations of the variables in normal tissues that balance the

tendency for angiogenesis to occur with the tendency for the body to inhibit it [11].
19 A second di�culty with this approach is that we must then incorporate into our model production terms r1g and

r2g in the rate equations for TAF and for angiostatin (because endothelial cells are known to produce both types of

molecules) and decay terms ÿlc and ÿl0i since it is also well known that protease and inhibitors decay. This would

further complicate our model. It would also make our search for decay constants much more problematic since while

there are literature values for some of these compounds, they have been found only from in vitro experiments.
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rede®nition of the constants ki as k1ge; k2me; k3ge in the ordinary di�erential equations for

u; v; c; f ; a; i and as k4; fM in the ®bronectin production equation. This choice also allows us to

insert the literature values of Kcat;Km directly into the model equations without rescaling. In the

literature, these values have units of hÿ1 and lM, respectively.

Remark 7. Taken together, there are 33 constants to be retrieved from the literature. Many of the

values we are using have been found by John Henrichsen using Pub Med, 20 a search engine

designed especially for searches of the medical bioscience literature.

We use the constants given in Table 1.

Length will be expressed in millimeters unless otherwise speci®ed. Time will be expressed in

hours. Concentrations and densities will be in micromolarity, i.e., in micromoles per unit liter to

conform to the biological literature.

The sensitivity parameters, ai;bi; ci were chosen for illustrative purposes only; we took

L � 50 lm � 0:05 mm. They must be determined experimentally and this has yet to be done. The

units for the ai;bi will be in micromoles per liter.

Since, we know that the average capillary diameter is about 10 lm or 0:01 mm in diameter, the

scale we have chosen is such that x is expressed in tenths of millimeters. Experimentation with the

power m in ur indicates that when m � 40, the opening in ®bronectin will be about 0:01 mm. (See

the comments in Section 4.)

The cell movement constants above are of order of magnitude found in [28], when expressed in

units of mm2 hÿ1. For example, 10ÿ10 cm2 sÿ1 � 3:6� 10ÿ7 cm2 hÿ1 � 3:6� 10ÿ5 mm2 hÿ1.

The values taken from [13] for the VEGF receptor KDR tyrosine kinase yield k1 � Kcat=Km �
162� 60=130 � 73 per lM per hour and Km � 130 lM. This gives a corresponding value for

m1 � 0:007 �lM�ÿ1
.

Table 1

Data set for numerical simulations (units are given in the discussion following remark 7)

g�x; t� (Endothelial cell movement) D1 � 3:6� 10ÿ5 a1 � 0:001 a2 � 1:0 c1 � 1:2
g (EC movement continued) b1 � 1:0 b2 � 0:001 c2 � 1:2
r�x; t� (PC movement) D2 � 3:6� 10ÿ5 a3 � 1:5� 10ÿ3 a4 � 1:0 c3 � 2:0
m�x; t� (MC movement) D3 � 3:6� 10ÿ5 b3 � 0:5 b4 � 1:0 c4 � 2:0
u (Chemotactic factor kinetics) k2 � 75:0 m2 � 0:01
v (Angiogenic factor kinetics) k1 � 73:0 m1 � 0:007 vr�x; t� � 0:0
c (Proteolytic enzyme kinetics) k1 � 73:0 m1 � 0:007 l � 0:0
f (Fibronectin rate law) b � 0:22 k4 � 19:0 m4 � 1:205 fm � 0:01
a; ia(Angiostin as inhibitor generator) k3 � 100:0 m3 � 0:002 me � 1:0� 103

ar (Angiostatin as inhibitor generator) ar�x; t� � 0:0 ar�x; t� � 25:0
ar (Angiostatin as inhibitor) ar�x; t� � 250:0 me � 1:00
ur (Chemotactic factor forcing term) u0 � 15 h � 0:0 m � 40

20 http://www.ncbi.nlm.nih.gov/pubmed
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Literature values for the chemotactic factor (k2; m2) have not yet been found. The values we took

are of the same order of magnitude as those for the growth factor.

For `®bronectin', we have taken values for k4; m4 from [9]. We took, Kcat � 16 per hour and

Km � 0:83 lM for the hydrolysis of type I collagen (rat tendon). by human ®broblast collagenase

(HFC).

The constant b is estimated as follows. We know that in T � 18 h, fM moles of ®bronectin will

be generated by g0 endothelial cells. [33,22]. In th absence of protease, we have ft � b1f �fM ÿ f �g0
so that, very nearly, we can write fM=T � b1g0f

2
Mx�1ÿ x�, where x � f =fM. The maximum value

of x�1ÿ x� on �0; 1� is 0:25. This gives a maximum possible value b1 � 4=�TfMg0�. Renormalizing

the equation ft � b1f �fM ÿ f �gÿ cak4f =�1� m4fa� so that g0 � 1 and fM � 1, we have

b � b1g0fM � 4=T � 0:22 hÿ1. We must also replace m4 by m4fM . From [31] we estimate fM as

approximately 10ÿ2 lM.

The protease inhibitor equilibrium constants (dissociation constant) (me) tend to be very large.

For example, the value me � 1000 �lM�ÿ1
is taken from [32] and was for the inhibition of

phosphorylated urokinase-type plasminogen activator (P-uPA) by inhibitor PAI-1.

A search of the Pub Med data base for angiostatin ± receptor kinetic parameters (Kcat; Km)

suggests that there is not yet experimental evidence for the mechanism proposed here in which

angiostatin stimulates the production of protease inhibitor. Therefore, in the absence of other

information, it seems reasonable to take these numbers to be of the same order of magnitude as

Fig. 6. Time course for endothelial cell density, g�x; t�, no angiostatin (t � 0:1 h).
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those for the chemotactic agent and the growth factor since the assumption is that the angiostatin

interacts with cell receptors in the same manner as do the former two agents.

However, it is has been demonstrated that angiostatin derived from plasminogen itself inhibits

the action of tPA. When angiostatin acts directly as an inhibitor of the protease, an equilibrium

constant me � 1 lM was reported in [27].

It is perhaps worth emphasizing that the constants ar; u0 in the above table have the units of

micromolarity per hour. In the actual program we took

ar�x; t� � a0H�t ÿ t0�;

where t0 is a waiting time to begin therapy and where a0 is one of the dosage rates (ar) listed in the

table above. 21

The obvious conclusion, that the sooner one begins the therapy (that is, the smaller t0 is), the

more quickly and e�aciously is the degradation caused by the chemotactic agent undone. In the

simulations we took t0 � 0:0.
In order to compare the mechanisms for angiostatin, we took ar � 25 lM hÿ1 for the an-

giostatin±inhibitor system and ar � 250 lM hÿ1 for the angiostatin as inhibitor system. The

dosage rate is larger in the second case because the equilibrium constant (me) is smaller.

Fig. 7. Time course for PC density, r�x; t�, no angiostatin (t � 0:1 h).

21 Here H�x� is the Heaviside step function, H�x� � 1 if x > 0, and H�x� � 0 otherwise.
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6. Remarks on computations

Computations with systems of equations such as these are very sensitive to step size ratios.

Furthermore, as in all numerical computations, decreasing step size is not a guarantee of con-

vergence to the true solution as round o� error will ultimately defeat this procedure. In the

computations we present below, we proceeded along these lines with various Ddt=�dx�
2
ratios,

which satis®ed the CFL condition until round o� error interfered. The ®gures in the no-

angiostatin cases were generated as far out in time as the numerical scheme would permit for

various ratios.

7. Conclusions and discussion

A careful examination of Figs. 6±18 allows us to draw some conclusions based on the

computations.

In Figs. 6±9, we have plotted the time course of the system without angiostatin present. We note

in Figs. 6±8, the formation of unimodal cell distributions in endothelial cell and macrophage cell

distributions as time evolves which persist until numerical instability sets in. On the other hand,

the pericyte cell distribution becomes bimodal. The choice of u0 a�ects these distributions. In

Fig. 8. Time course for macrophage density, m�x; t�, no angiostatin (t � 0:1 h).

H.A. Levine et al. / Mathematical Biosciences 168 (2000) 77±115 105



Fig. 9. Time course for ®bronectin density, f �x; t�, no angiostatin (t � 0:1 h).

Fig. 10. Final time pro®les of comparative cell and ®bronectin densities in the absence of angiostatic agent.
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Fig. 11. Endothelial cell densities when t � 0:10 h.

Fig. 12. PC densities when t � 0:10 h.
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Fig. 13. Macrophage cell densities when t � 0:10 h.

Fig. 14. Fibronectin densities when t � 0:10 h.
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Fig. 15. Endothelial cell density for both the angiostatin mechanisms.

Fig. 16. PC density for both the angiostain mechanisms.

H.A. Levine et al. / Mathematical Biosciences 168 (2000) 77±115 109



Fig. 17. Macrophage cell density for both the angiostatin mechanisms.

Fig. 18. Fibronectin density for both the angiostatin mechanisms.
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(numerical) experiments (not shown) for large u0, the former two cell types will exhibit bimodal

distributions also.

In Fig. 9, we note the formation of an opening in the basement lamina as time evolves as

measured by decreased ®bronectin density near x � 0:5. Notice that the width of the opening near

the minimum of the ®bronectin is in the range 5±10 lm. (This can be made narrower by increasing

the power m in the chemotactic source term. This narrows the support of ur�x; t� in x.)

In Fig. 10, we have plotted the ®bronectin relative density pro®le along with the cell density

pro®les for EC, pericytes and MCs near the solution breakdown time. Notice that the pericyte

aggregation in the opening in the capillary wall (the interval where f < 1) is low where the EC

concentration is high and conversely. In particular, the maximum of PC density is higher closer to

the wall of the forming capillary than is the maximum of the endothelial cell density. This is

consistent with the observations of [30] that the PCs closely regulate the development of the

forming channel.

In Figs. 11±14, we have plotted the ®nal time pro®les for the cell densities and ®bronectin

without and with angiostatin present in the case for which angiostatin produces an inhibitor. In

Figs. 15±18, we compare the two mechanisms for the action of angiostatin.

In both sets of ®gures, we see that angiostatin inhibits endothelial and PC aggregation as well as

®bronectin degradation. We understand this mathematically as follows.

From the di�erential equations (2.4.11) with (3.1)±(3.9), the angiostatin±inhibitor system, we

see that if angiostatic agent is introduced into the system at a constant rate, then the inhibitor, ia,

is increasing as a function of time. Since me is a large constant, very little active enzyme can be

produced in the presence of angiostatic agent. When angiostatin acts as the inhibitor directly, its

concentration increases linearly with time, if supplied at a constant rate A. On the other hand, the

total number of macrophage and endothelial cells are ®xed in this model, and therefore the total

quantity of enzyme being produced by the endothelial cells is unchanged whether or not angio-

static agent is present.

Mathematically, what is occuring here is that in the ®bronectin production equation, the dis-

sipation term ÿk4caf =�1� m4f � will become small in comparison with the ®rst, or ®bronectin

production rate, term. The e�ect of this is to prevent movement and aggregation of the endothelial

cells so that the EC density, g; likewise returns to equilibrium (as does the PC density, q:�
(Consider what happens in the extreme case when me � �1 so that the the equilibrium between

CA and CI is completely to the CI side. Then ®bronectin cannot decay at all since there is no active

enzyme to act as a catalyst of its decay.)

However, the presence of angiostatin has almost no e�ect on the distribution of macrophage

cells since the inhibitor does not interfere with the chemotactic factor (see Figs. 13 and 17).

Moreover, when angiostatin produces inhibitor, it appears to be more e�ective in redistributing

endothelial and pericyte cells and in returning the ®bronectin to a uniform pro®le than when it

acts as an inhibitor, even when the dosage rate is much larger in the latter case. The explanation

for this lies in the observation that the equilibrium constant, m3, is more than 1000 times larger in

the former case than in the latter so that in the former case the e�ciency with which ca is inhibited

is much greater.

As long as there is chemotactic factor being produced, one must continue to supply angiostatic

agent `therapy'. Thus, the treatment must be continued long enough for the tumor to e�ectively

cease the production of chemotactic factor. Of course, if the half life of the chemotactic agent,
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ln 2=h; is small, then the e�ect of the angiostatic agent treatment will be much more pronounced.

The inhibitor will convert all of the protease that can be generated by a ®nite quantity of

chemotactic agent into the inactive state. We have shown this computationally but, for consid-

erations of length, have not included the ®gures here.

In this paper, we have set out to develop as simple a model as possible to describe the initiation

of capillary formation in tumor angiogenesis which includes the role of three of the important

cellular players in these complex events. In particular we have extended our earlier model [18] to

include the haptotactic saturation of ®bronectin and the important roles played by PCs and MCs

in regulating angiogenesis.

Computations based on this model are qualitatively consistent with experimental ®ndings and

clearly indicate one way in which the angiostatic agent can profoundly inhibit endothelial cell

migration.

In summary, our modelling of the initiation of capillary sprout formation predicts that a uni-

modal stimulus of chemotactic factor (ur) or angiogenic factor (vr) induced directly by a tumor

initiates a hole in the capillary wall (an opening for the nascent capillary) and a bi-modal dis-

tribution of endothelial cells in this nascent capillary sprout. This may be interpreted as a single

opening leading to a sprout-like tube as shown in Fig. 1(c).

By attempting to model the presence of angiostatin, we have suggested two mechanisms by

which the degradation of ®bronectin is inhibited.

Finally, we highlight the fact that our modeling technique is quite general in that the dynamics

of the chemical species (growth factor, protease, angiostatic agent, protease inhibitors, etc.) are

®rmly founded on the principles of chemical kinetics as they are expressed in Michaelis±Menten

enzyme kinetics, while the cell movement equations are developed on the basis of the classical

theory of reinforced random walks.

We are currently developing these ideas to model capillary formation and proliferation in the

ECM. Preliminary computations with the extended model show that it can simulate anastamosis

and vasculogenesis in addition to angiogenesis.

The whole process of angiogenesis is extremely complex. Nevertheless, we believe that our ideas

represent a profound and fundamental step forward in the modeling of this process by providing a

logical and biochemically based modeling procedure. We hope this model will improve the current

state of understanding of this process, especially by giving some insight into how various growth

inhibiting drugs (angiostatins) act to combat the progressively invasive disease of cancer. Like-

wise, by viewing the placenta as a `tumor', we hope to obtain further insight into placental vas-

cularization with this model.

Appendix A. The in¯uence of VEGF di�usion

Another way to argue that we may neglect di�usion in growth factor transport in comparison

to its conversion into protease is as follows: consider the case in which we have no chemotactic

factor or source term. Including di�usion in the rate term for the v equation in (2.4.12), we write

the rate equation for v in the form

vt � Dvvxx ÿ
k1vg

1� m1v
:
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The time scale for the di�usion is L2=Dv which is typically of order several hours [28]. Also, the

decay of the fundamental solution of the di�usion equation is algebraic, like �L2t=Dv�
ÿ1=2

.

However the time scale for the second term is typically of order 1=�k1g0� � Km=�Kcatdg0� �
Km=Kcat, which is only of the order of seconds. 22 That is, if we write v � weÿk1ht, where h < gmin

and gmin > 0, then it is not too hard to see that wt6Dvwxx � k1w�hÿ g=�1� mv0��, where

v�x; t�6 v0 � max v�x; 0�. (If vt�x; 0�6 0; and v � 0 at the ends of the interval, then v decreases, by

the maximum principle.) If h�1� mv0� < gmin, then w will likewise decay exponentially. Thus, the

decay of v via chemistry is much faster than its decay via di�usion!

However, when we have a source term present, then one might argue that steep gradients in-

duced by the source term, ur�x; t�; might severely a�ect the capillary development. We show that

this is only marginally true by considering the v equation in (2.4.12) to be of the form

vt � Dvvxx ÿ
k1vg

1� m1v
�

k2ug

1� m2u
:

We have taken Dv � 50D1, whereas in [28] an estimate is Dv � 103D1. We see from Fig. 19

that the di�usion term has the e�ect of broadening the capillary opening and producing

Fig. 19. No growth factor di�usion, growth factor di�usion at t � 0:10 h.

22 For example, in [13], the vascular EC growth receptor KDR tyrosine kinase has a Km=Kcat dg0 value of about

130� 60=162 � 0:013 h, whereas with L � 2 mm and Dv � 10ÿ7 cm2=s [28], L2=D � 36 h.
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signi®cantly more degradation in ®bronectin due to the wider distribution of VEGF and hence

of protease.

Notice that there is much less endothelial cell and PC aggregation and that the ®bronectin

channel is much less well de®ned. However, there is more chemotactic factor aggregation indi-

cating a less e�cient conversion of chemotactic factor into growth factor. The telling indicator

that growth factor di�usion may be neglected is the size of the channel opening of the nascent

capillary. Capillaries have diameters 7±8 lm with which our computations are consistent when

growth factor di�usion is neglected. When it is included, even with Dv as small as 50D1, the

predicted capillary opening is inconsistent with actual capillary diameters.
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