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Clara Granell,2, 4 Joan T. Matamalas,5 David Soriano,2, 4 and Benjamin Steinegger1

1Departament d’Enginyeria Informàtica i Matemàtiques,
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An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first

reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in

166 countries/regions, including cases of human-to-human transmission around the world. The proportions of

this epidemics is probably one of the largest challenges faced by our interconnected modern societies. According

to the current epidemiological reports, the large basic reproduction number, R0 ∼ 2.3, number of secondary

cases produced by an infected individual in a population of susceptible individuals, as well as an asymptomatic

period (up to 14 days) in which infectious individuals are undetectable without further analysis, pave the way for

a major crisis of the national health capacity systems. Recent scientific reports have pointed out that the detected

cases of COVID19 at young ages is strikingly short and that lethality is concentrated at large ages. Here we

adapt a Microscopic Markov Chain Approach (MMCA) metapopulation mobility model to capture the spread of

COVID-19. We propose a model that stratifies the population by ages, and account for the different incidences

of the disease at each strata. The model is used to predict the incidence of the epidemics in a spatial population

through time, permitting investigation of control measures. The model is applied to the current epidemic in

Spain, using the estimates of the epidemiological parameters and the mobility and demographic census data of

the national institute of statistics (INE). The results indicate that the peak of incidence will happen in the first

half of April 2020 in absence of mobility restrictions. These results can be refined with improved estimates of

epidemiological parameters, and can be adapted to precise mobility restrictions at the level of municipalities.

The current estimates largely compromises the Spanish health capacity system, in particular that for intensive

care units, from the end of March. However, the model allows for the scrutiny of containment measures that can

be used for health authorities to forecast with accuracy their impact in prevalence of COVID–19. Here we show

by testing different epidemic containment scenarios that we urge to enforce total lockdown to avoid a massive

collapse of the Spanish national health system.

I. INTRODUCTION

As of 20 March 2020 the outbreak of the novel coronavirus, SARS-CoV-2, has infected more than 270.000 persons worldwide

with COVID-19, killing more than 11.300. Epidemiological analysis of the outbreak have been used to estimate epidemiolog-

ically relevant parameters [1–10], and available mathematical models have been used to track and anticipate the spread of the

epidemics [11–17]. Nevertheless, the particularities of the current epidemics calls for a rethinking of conventional models to-

wards tailored ones. Here, we propose mathematical model particularly designed to capture the main ingredients characterising

the propagation of SARS-CoV-2 and the clinical characteristics reported for the cases of COVID-19. To this aim, we rely on

previous metapopulation models by the authors [18–21] including the spatial demographical distribution and recurrent mobility

patterns, and develop a more refined epidemic model that incorporates the stratification of population by age in order to consider

the different epidemiological and clinical features associated to each group age that have been reported so far. The mathematical

formulation of these models rely on the Microscopic Markov Chain Approach formulation for epidemic spreading in complex

networks [22–27].

The epidemic model we propose takes into account several specific characteristics of the dynamics of COVID-19, such as the

important effect of asymptomatic (or with mild symptoms) infectious individuals, which may explain the large incidence of the

epidemics. We also consider the fraction of individuals which require hospitalization to ICU, since their saturation constitutes

one of the major political and health problems of COVID-19 outbreak. The result is a model with seven epidemiological com-

partments for each of the patches composing the metapopulation. Additionally, we split the former epidemiological partition

into three age groups: young, adults, and elderly people. This partition allows us to capture in a stylised way the main epidemio-

logical, clinical and behavioural differences between the groups. On one hand, SARS-CoV-2 importation and exportation events
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FIG. 1. Compartemental epidemic model proposed in this study. The acronyms are susceptible (Sg), exposed (Eg), asymptomatic infectious

(Ag), infected (Ig), hospitalized to ICU (Hg), dead (Dg), and recovered (Rg), where g denotes for all cases the age stratum.

between patches are mostly due to the mobility of active population. On the other hand, the medical evolution of COVID-19

displays strong differences across age groups [13, 28, 29]. In this regard, infections in the young group lead to mild symptoms

[30] that, without test, are often confused with those of a common cold, whereas for old individuals the infection evolves towards

more severe symptoms and usually requires hospitalization.

The model incorporates the possibility of designing and evaluating the impact of contention policies to stop the propagation

of SARS-CoV-2. In particular, we focus on those policies relying on global or targeted quarantine measures. They allow the

selection of the optimum degree of mobility to avoid the health system crisis. Taking advantage of this possibility, we explore

several epidemic scenarios characterized by different contention measures promoted on March 20, and evaluate their impact on

the decrease of the epidemic prevalence and the saturation of the Spanish health system.

In a nutshell, the proposed model takes into account in an stylized way three main ingredients taking place in SARS-CoV-2

transmission: (i) the silent transmission of the pathogen through the young portion of the population, (ii) the large potential for

the spatial dissemination of the pathogen provided by the mobility of mature individuals, and (iii) the severe symptoms caused

of COVID-19 in elderly that yields to a dramatic increase of medical and hospital demands. Thus, the model can be viewed as

three coevolving spreading processes with different spatio-temporal scales.

II. EPIDEMIC SPREADING MODEL

We propose a tailored model for the epidemic spread of COVID-19. We use a previous framework for the study of epidemics

in structured metapopulations, with heterogeneous agents, subjected to recurrent mobility patterns [18–20, 31].To understand the

geographical diffusion of the disease, as a result of human-human interactions in small geographical patches, one has to combine

the contagion process with the long-range disease propagation due to human mobility across different spatial scales. For the case

of epidemic modeling, the metapopulation scenario is as follows. A population is distributed in a set of patches, being the size

(number of individuals) of each patch in principle different. The individuals within each patch are well-mixed, i.e., pathogens

can be transmitted from an infected host to any of the healthy agents placed in the same patch with the same probability. The

second aspect of our metapopulation model concerns the mobility of agents. Each host is allowed to change its current location

and occupy another patch, thus fostering the spread of pathogens at the system level. Mobility of agents between different

patches is usually represented in terms of a network where nodes are locations while a link between two patches represents the

possibility of moving between them.

We introduce a set of modifications to the standard metapopulation model to account for the different states relevant for the

description of COVID-19, and also to substitute the well-mixing with a more realistic set of contacts. Another key point is the

introduction of a differentiation of the course of the epidemics that depends on the demographic ages of the population. This

differentiation is very relevant in light of the observation of a scarcely set of infected individuals at ages (< 25), and also because

of the severe situations reported for people at older ages (> 65). Our model is composed of the following epidemiological

compartments: susceptible (S), exposed (E), asymptomatic infectious (A), infected (I), hospitalized to ICU (H), dead (D), and

recovered (R). Additionally, we divide the individuals inNG age strata, and suppose the geographical area is divided inN regions

or patches. Although we present the model in general form, its application to COVID-19 only makes use of the three age groups

mentioned above (NG = 3): young people (Y), with age up to 25; adults (M), with age between 26 and 65; and elderly people

(O), with age larger than 65. See Figure 1 for an sketch of the compartmental epidemic model proposed.

We characterize the evolution of the fraction of agents in state m ∈ {S,E,A, I,H,D,R} and for each age stratum g ∈
{1, . . . , NG}, associated with each patch i ∈ {1, . . . , N}, denoted in the following as ρm,g

i (t). The temporal evolution of these
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quantities is given by:

ρS,gi (t+ 1) = ρS,gi (t)(1−Πg
i (t)) , (1)

ρE,g
i (t+ 1) = ρS,gi (t)Πg

i (t) + (1− ηg)ρE,g
i (t) , (2)

ρA,g
i (t+ 1) = ηgρE,g

i (t) + (1− αg)ρA,g
i (t) , (3)

ρI,gi (t+ 1) = αgρA,g
i (t) + (1− µg)ρI,gi (t) , (4)

ρH,g
i (t+ 1) = µgγgρI,gi (t) + ωg(1− ψg)ρH,g

i (t) + (1− ωg)(1− χg)ρH,g
i (t) , (5)

ρD,g
i (t+ 1) = ωgψgρH,g

i (t) + ρD,g
i (t) , (6)

ρR,g
i (t+ 1) = µg(1− γg)ρI,gi (t) + (1− ωg)χgρH,g

i (t) + ρR,g
i (t) . (7)

These equations correspond to a discrete-time dynamics, in which each time-step represents a day. They are built upon previous

work on Microscopic Markov-Chain Approach (MMCA) modelization of epidemic spreading dynamics [22], but which has also

been applied to other types of processes, e.g., information spreading and traffic congestion [24, 25, 32].

The rationale of the model is the following. Susceptible individuals get infected by contacts with asymptomatic and infected

agents, with a probability Πg
i , becoming exposed. Exposed individuals turn into asymptomatic at a certain rate ηg , which in

turn become infected at a rate αg . Once infected, two paths emerge, which are reached at an escape rate µg . The first option is

requiring hospitalization in an ICU, with a certain probability γg; otherwise, the individuals become recovered. While being at

ICU, individuals have a death probability ωg , which is reached at a rate ψg . Finally, ICUs discharge at a rate χg , leading to the

recovered compartment. See Table I for a summary of the parameters of the model, and their values to simulate the spreading of

COVID-19 in Spain, which will be discussed in Subsec. IV A.

The value of Πg
i (t) encodes the probability that a susceptible agent belonging to age group g and patch i contracts the disease.

Under the model assumptions, this probability is given by:

Πg
i (t) = (1− pg)P g

i (t) + pg
N
∑

j=1

Rg
ijP

g
j (t) , (8)

where pg denotes the degree of mobility of individuals within age group g, and P g
i (t) denotes the probability that those agents

get infected by the pathogen inside patch i. This way, the first term in the r.h.s. of Eq. (8) denotes the probability of contracting

the disease inside the residence patch, whereas the second term contains those contagions taking place in any of the neighboring

areas. Furthermore, we assume that the number of contacts increases with the density of each area according to a monotonously

increasing function f . Finally, we introduce an age-specific contact matrix, C, whose elements Cgh define the fraction of

contacts that individuals of age group g perform with individuals belonging to age group h. With the above definitions, P g
i reads

P g
i (t) = 1−

NG
∏

h=1

N
∏

j=1

(1− βA)
zg〈kg〉f

(

neff
i
si

)

Cgh
nA,h
j�i

(t)

(nh
i
)eff (1− βI)

zg〈kg〉f

(

neff
i
si

)

Cgh
nI,h
j�i

(t)

(nh
i
)eff . (9)

The exponents represent the number of contacts made by an agent of age group g in patch i with infectious individuals —

compartments A and I , respectively — of age group h residing at patch j. Accordingly, the double product expresses the

probability for an individual belonging to age group g not being infected while staying in patch i.
The term zg〈kg〉f(neff

i /si) in Eq. (9) represents the overall number of contacts (infectious or non infectious), which increases

with the density of patch i following function f , and also accounts for the normalization factor zg , which is calculated as:

zg =
Ng

N
∑

i=1

f

(

neffi
si

)

(ng
i )

eff

, (10)

where the effective population at patch i is given by

neffi =

NG
∑

g=1

(ng
i )

eff , (11)

which is distributed in age groups of size

(ng
i )

eff =
∑

j

[

(1− pg)δij + pgRg
ji

]

ngj . (12)
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The function f(x) governing the influence of population density has been selected, following [33], as:

f(x) = 1 + (1− e−ξx) . (13)

The last term of the exponents in Eq. (9) contains the probability that these contacts are contagious, which is proportional

to nm,h
j�i , the expected number of individuals of age group h in the given infectious state m (either A or I) which have moved

from region j to region i:

nm,h
j�i (t) = nhj ρ

m,h
j (t)

[

(1− ph)δij + phRh
ji

]

, m ∈ {A, I} . (14)

The discrete time nature of this model allows for an easy computation of the time evolution of all the relevant variables,

providing information at the regional level. See Sec. IV B for the details of its application to the COVID-19 outbreak in Spain.

Additionally, the model is amenable for analytical inspection, which has allowed us to find the epidemic threshold, see Ap-

pendix A.

III. PREDICTION OF INCIDENCE UNDER MOBILITY RESTRICTIONS

Here we assess the performance of different containment measures to reduce the impact of COVID-19 using the mathematical

model. To incorporate containment policies in our formalism, we assume that a given fraction of the population κ0 is isolated at

home. In this sense, let us remark that parameter κ0 allows us to change the level of resolution while studying the propagation

of COVID-19. Namely, with κ0 = 0 we recover the well-mixing assumption within the same municipality described in previous

sections —since active population movements promote the interaction between members from different households— whereas

κ0 = 1 isolates the households from each other, thus constraining the transmission dynamics at the level of household rather than

municipality. From the former assumptions, we compute the average number of contacts of agents belonging to each group g as

〈kgc 〉 = (1− κ0)〈k
g〉+ κ0(σ − 1) , (15)

where the second term in the r.h.s. encodes those contacts occurring within the household, whose size (number of individuals)

is assumed to be σ in average.

In this scenario, a relevant indicator to quantify the efficiency of the policy is the probability of one individual living in a

household, inside a given municipality i, without any infected individual. Assuming that containment is implemented at time tc,

this quantity, denoted in the following as CHi(tc), is given by

CHi(tc) =





∑NG

g=1

(

ρS,gi (tc) + ρR,g
i (tc)

)

ngi
∑NG

g=1 n
g
i





σ

, (16)

and Eq. (15) becomes time-dependent:

〈kg〉(t) = (1− κ0Θ(t− tc))〈k
g〉+ κ0Θ(t− tc)(σ − 1) , (17)

where Θ(x) is the Heaviside function, which is 1 if x > 0 and 0 otherwise. Accordingly, the mobility parameters pg change as

pg(t) = (1− κ0Θ(t− tc)) p
g , (18)

which make (ng
i )

eff and zg also dependent on time, see Eqs. (10)–(12).

This containment strategy is introduced in the dynamical Eqs. (1)–(6) by modifying Eqs. (1) and (2) for the time after tc:

ρS,gi (t+ 1) = ρS,gi (t)(1− δt,tcκ0CHi(tc))(1−Πg
i (t)) , (19)

ρE,g
i (t+ 1) = ρS,gi (t)(1− δt,tcκ0CHi(tc))Π

g
i (t) + (1− ηg)ρE,g

i (t) , (20)

ρCH,g
i (t) = ρS,gi (tc)κ0CHi(tc)Θ(t− tc) , (21)

where we have added a new compartment CH to hold the individuals under household isolation after applying containment κ0,

and δa,b is the Kronecker function, which is 1 if a = b and 0 otherwise. Containment also affects the average number of contacts,

thus we must also update Eq. (9):

P g
i (t) = 1−

NG
∏

h=1

N
∏

j=1

(1− βA)
zg(t)〈kg〉(t)f

(

neff
i (t)
si

)

Cgh
nA,h
j�i

(t)

(nh
i
)eff (t) (1− βI)

zg(t)〈kg〉(t)f

(

neff
i (t)
si

)

Cgh
nI,h
j�i

(t)

(nh
i
)eff (t) . (22)
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IV. RESULTS

A. Parameters for the modelization of the spreading of COVID-19

In this subsection, we detail our parameters choice to study the current epidemic outbreak in Spain. Regarding epidemiological

parameters, the incubation period has been reported to be η−1+α−1 = 5.2 days [2] in average which, in our formalism, must be

distributed into the exposed and asymptomatic compartments. In principle, if one does not expect asymptomatic transmissions,

most of this time should be spent inside the exposed compartment, thus being the asymptomatic infectious compartment totally

irrelevant for disease spreading. However, along the line of several recent works [34–36] we have found that the unfolding of

COVID-19 cannot be explained without accounting for infections from individuals not developing any symptoms previously.

In particular, our best fit to reproduce the evolution of the real cases reported so far in Spain yields α−1 = 2.86 days as

asymptomatic infectious period. In turn, the infection period is established as µ−1 = 3.2 days [1, 12], except for the young

strata, for which we have reduced it to 1 day, assigning the remaining 2.2 days as asymptomatic; this is due to the reported

mild symptoms in young individuals, which may become inadvertent [30]. We fix the fatality rate ω = 42% of ICU patients by

studying historical records of dead individuals as a function of those requiring intensive care. In turn, we estimate the period

from ICU admission to death as ψ−1 = 7 days [37] and the stay in ICU for those overcoming the disease as χ−1 = 10 days

[38].

Regarding the population structure in Spain, we have obtained the population distribution, population pyramid, daily pop-

ulation flows and average household size at the municipality level from Instituto Nacional de Estadı́stica [39] whereas the

age-specific contact matrices have been extracted from [40].

B. Prediction of the evolution of COVID-19 in Spain

Equations (1)–(7) enable to monitor the spatio-temporal propagation of COVID-19 across Spain. To check the validity of our

formalism, we aggregate the number of cases predicted for each municipality at the level of autonomous regions (comunidades

autónomas), which is a first-level political and administrative division, and compare them with the number of cases daily reported

by the Spanish Health Ministry. In this sense, we compute the number of cases predicted for each municipality i at each time

step t as:

Casesi(t) =

NG
∑

g=1

(

ρR,g
i (t) + ρH,g

i (t) + ρD,g
i (t)

)

ngi (23)

As our model is designed to predict the emergence of autochthonous cases triggered by local contagions and commuting

patterns, those imported infected individuals corresponding to the first reported cases in Spain are initially plugged into our model

as asymptomatic infectious agents. In addition, small infectious seeds should be also placed in those areas where anomalous

outbreaks have occurred due to singular events such as one funeral in Vitoria leading to more than 60 contagions. Overall, the

total number of infectious seeds is 47 individuals which represents 0.2 % of the number of cases reported by March 20, 2020.

Figure 2 shows that our model is able to accurately predict not only the overall evolution of the total number of cases at

the national scale but also their spatial distribution across the different autonomous regions. Moreover, the most typical trend

observed so far is an exponential growth of the number of cases, thus clearly suggesting that the disease is spreading freely in

most of the territories. Note, however, that there are some exceptions such as La Rioja or Paı́s Vasco in which some strong

policies targeting the most affected areas were previously promoted to slow down COVID-19 propagation.

To assess the impact of containment policies, we now theoretically study the effects of tuning the isolation rate κ0 controlling

the fraction of population staying at home. Figure 3 shows the temporal evolution of the individuals requiring intensive care units

while applying the isolation policy by March 20, 2020. Interestingly, it becomes clear that there are two different regimes. For

small κ0 values, the observed behavior corresponds to the flattening of the epidemic curve while promoting social distancing.

This way, increasing κ0 leads to longer epidemic periods with much less impact within society in terms of hospitalized agents.

In contrast, for large enough κ0 values, the effective isolation of households allows for reducing at the same time the epidemic

size and the duration of the epidemic wave. This is mainly caused by the depletion [41] of susceptible individuals which prevents

the infectious individuals from sustaining the outbreak by infecting healthy peers.

Finally, we address the important health problem arising from the saturation of ICU beds. For this purpose, we study the

evolution of individuals requiring intensive care units by fixing κ0 = 0.80 from March 20, 2020. To quantify the overload

of ICU capacity, in Figure 4 we compare the predictions yielded by our equations with the total number of beds within each

autonomous region which we estimate as the 3% of the total number of hospital beds. There we find that the saturation of

hospitals across Spain is not uniform but strongly depends on both the current extension of the outbreak and the available

resources in each autonomous region.
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Symbol Description COVID-19 estimations for age groups g ∈ {Y,M,O} in Spain

βA Infectivity of asymptomatic 0.06

βI Infectivity of infected 0.06

〈kg〉 Average number of contacts (11.8, 13.3, 6.6)

ηg Latent rate
1

2.34

αg Asymptomatic infectious rate

(

1

5.06
,

1

2.86
,

1

2.86

)

µg Escape rate

(

1

1.0
,
1

3.2
,
1

3.2

)

γg Fraction of cases requiring ICU (0.002, 0.05, 0.36)

ωg Fatality rate of ICU patients 0.42

ψg Death rate
1

7.0

χg ICU discharge rate
1

10.0

n
g
i Regional population Data provided by INE

R
g
ij Mobility matrix Data provided by INE

Cgh Contacts-by-age matrix





0.5980 0.3849 0.0171

0.2440 0.7210 0.0350

0.1919 0.5705 0.2376





ξ Density factor 0.01

pg Mobility factor (0.0, 1.0, 0.0)

σ Average household size 2.5

κ0 Confinement factor Adjustable for containment

TABLE I. Parameters of the model and their estimations for COVID-19. See section IV.a for a detailed explanation.

V. DISCUSSION

We have presented a mathematical model based on a Microscopic Markov Chain Approach (MMCA) for the spatio-temporal

spreading of COVID–19. The model captures human behavior features such as: the urban demography, age strata, age-structured

contact patterns, and daily recurrent mobility flows. Importantly, the epidemiological and human characteristics present in this

model provides with the possibility of a rapid and reliable evaluation of different containment policies.

We have applied the results to the validation and projection of the propagation of COVID–19 in Spain. Our results reveal

that, at the current stage of the epidemics, the application of stricter containment measures of social distance are urgent to avoid

the collapse of the health system. Moreover, we are close to an scenario in which the complete lockdown appears as the only

possible measure to avoid the former situation. Other scenarios can be prescribed and analyzed after lockdown, as for example

pulsating open-closing strategies or targeted herd immunity.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.21.20040022doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.21.20040022
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

Appendix A: Calculation of epidemic threshold

The model is amenable for analytical calculations. We calculate the epidemic threshold using the next generation matrix

approach [42]. Accordingly, we need to analyze the stability of the disease free equilibrium. We do so by making a first order

expansion of the above equations for small values ǫ of the non-susceptible states m: ǫ ∼ ρmi ≪ ρSj ∀i, j and ρmi ≪ 1 ∀i,
where m ∈ {E,A, I,H,D,R}. The expansion allows us to transform our discrete time Markov Chain into a continuous time

differential equation. We start by expanding the infection probabilities P g
i :

P g
i =

NG
∑

h=1

N
∑

j=1

zg〈kg〉fiC
gh
nhj

[

(1− ph)δij + phRh
ji

]

(nh
i )

eff

(

bAρA,h
j + bIρI,hj

)

+O(ǫ2) , (A1)

where we have defined

bm = ln
[

(1− βm)
−1

]

, m ∈ {A, I} (A2)

and

fi = f

(

neffi
si

)

. (A3)

We then insert the above expression into Πg
i , leading to:

Πg
i =

NG
∑

h=1

N
∑

j=1

(

(M1)
gh
ij + (M2)

gh
ij + (M3)

gh
ij + (M4)

gh
ij

)(

bAρA,h
j + bIρI,hj

)

+O(ǫ2) , (A4)

where the above tensors Mℓ for ℓ ∈ {1, . . . , 4} are defined as:

(M1)
gh
ij = δij(1− pg)zg〈kg〉fiC

gh
(1− ph)nh

j

(nh
i )

eff
(A5)

(M2)
gh
ij = (1− pg)zg〈kg〉fiC

gh
Rh

jip
hnhj

(nhi )
eff

(A6)

(M3)
gh
ij = pgRg

ijz
g〈kg〉fjC

gh
(1− ph)nh

j

(nh
j )

eff
(A7)

(M4)
gh
ij =

N
∑

k=1

pgRg
ikz

g〈kg〉fkC
gh
Rh

jkp
hnhj

(nh
k)

eff
(A8)

These tensors encode the four different ways in which the epidemic interactions may take place: individuals belonging to the

same patch i = j and not moving (M1); interaction in the patch of i with individuals coming from patch j (M2); interaction in

the patch of j with individuals coming from patch i (M3); and individuals from i and j interacting at any other patch k (M4).

In the next generation matrix framework, we only need to consider the epidemic compartments. Making use of the above

definitions, the corresponding differential equations take the form:

ρ̇E,g
i = −ηgρE,g

i +

NG
∑

h=1

N
∑

j=1

Mgh
ij (bAρA,h

j + bIρI,hj ) (A9)

ρ̇A,g
i = ηgρE,g

i − αgρA,g
i (A10)

ρ̇I,gi = αgρA,g
i − µgρI,gi (A11)

Where the tensorM is given byM =
∑4

ℓ=1Mℓ. Defining the vector (ρg)T =
(

ρE,g, ρA,g, ρI,g
)

, the above system of differential

equations can be rewritten as:

ρ̇g =

Ng
∑

h=1

(

F gh − V gh
)

ρh (A12)
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Where we defined V gh = V gδgh ⊗ 1N×N with:

V g =





ηg 0 0
−ηg αg 0
0 −αg µg



 (A13)

And:

F gh =





0N×N bAMgh bIMgh

0N×N 0N×N 0N×N

0N×N 0N×N 0N×N



 (A14)

With the above differential equation, the reproduction number is given by:

R0 = Λmax(FV
−1) (A15)

We can calculate the inverse of the tensor V as (V −1)gh = (V g)−1δgh ⊗ 1N×N . The inverse of the matrix V g is given by:

(V g)−1 =









1
ηg 0 0
1
αg

1
αg 0

1
µg

1
µg

1

µg









(A16)

Accordingly, we have:

(FV −1)gh =







(

bA

αg + bI

µg

)

Mgh
(

bA

αg + bI

µg

)

Mgh bI

µgM
gh

0N×N 0N×N 0N×N

0N×N 0N×N 0N×N






(A17)

As we look for the eigenvectors of the tensor FV −1, we note that their components associated to the compartments A and I —

rows 2 and 3— must be zero, since the associated rows in the above matrix are zero. To be more precise, we have (FV −1u)gi = 0
for i = 2N +1, . . . 3N , which are the elements associated to the compartments A and I . Accordingly, we can restrict the above

matrix only to the vector space associated to the compartment E and the eigenvalues will be equivalent, which gives us:

R0 = Λmax(Z) , (A18)

where Zgh =
(

bA

αh + bI

µh

)

Mgh. Finally, the epidemic threshold is found by solving the implicit equation Λmax(Z) = 1.
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danpanah, Serge Paul Eholie, Mathias Altmann, Bernardo Gutierrez, Moritz U.G. Kraemer, and Vittoria Colizza. Preparedness and

vulnerability of African countries against importations of COVID-19: a modelling study. The Lancet, 2020.

[16] Giulia Pullano, Francesco Pinotti, Eugenio Valdano, Pierre Yves Boëlle, Chiara Poletto, and Vittoria Colizza. Novel coronavirus (2019-
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FIG. 2. Comparison of the results of the model Eqs. (1)–(7) for each autonomous region in Spain. The solid line is the result of the epidemic

model, aggregated by ages, for the number of individuals inside compartments (H+R+D) that corresponds to the expected number of cases

(see Figure 1), and dots correspond to real cases reported. The number appearing next to the region name corresponds to the Mean Absolute

Error (MAE) between the model prediction and the total number of cases.
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FIG. 3. Temporal evolution of the total number of ICU cases predicted for Spain as a function of the fraction of isolated population κ0 from

March 20, 2020.
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FIG. 4. ICU saturation curves for each region in Spain. The black lines shows the temporal evolution of individuals requiring ICU. The

isolation of population is performed from March 20, 2020 with κ0 = 0.80. The red line shows the estimated number of ICU beds for each

autonomous region.
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