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We present a simple mathematical model for the synthesis of extracellular
proteins by a class of bacteria which secrete significant quantities of this exopro-
tein in late-exponential and stationary phases. This model is the simplest generali-
zation of Michaelis-Menten kinetics (the Monod model) and agrees well with
laboratory experiments in batch culture. The model may serve as a simple
prototype for the analysis of certain virulent bacterial infections in vivo, particu-
larly that of Pseudomonas aeruginosa in burn wounds.

1. Introduction

BACTERIA SYNTHESIZE thousands of different types of molecules, most of which
are compartmentalized within the confines of the cell envelope. Certain
molecules, however, perform more useful functions outside the cell. These
are often proteins with degradative or defensive activities which allow bacteria to
scavenge for nutrients or compete more effectively with other bacteria in hostile
environments. Man has taken advantage of these extracellular proteins in numer-
ous industrial and medical processes including the synthesis of organic com-
pounds, production of cheese, destruction of thrombi and emboli in the circulat-
ory system, and for the production of vaccines active against many bacterial
infections.

We are interested here in a particular class of microorganisms which show a
pronounced production of exoprotein during late-exponential and early stationary
phases of growth. Exoprotein formation limited to these late stages of microbial
growth (in batch culture) is a distinctive feature of this class—most microorgan-
isms produce extracellular products simultaneously with cell growth (for reviews
see Priest (1977) and Glenn (1976)). Examples of microorganisms in this class are
Staphylococcus aureus (Abbas-Ali & Coleman, 1977), Bacillus subtilis (Coleman,
1967; Sippola & Mantala, 1981), B. amyloliquefaciens (Coleman & Brown,
1975), and Pseudomonas aeruginosa (Chung & Collier, 1977).
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We have chosen P. aeruginosa as the prototype organism for our studies
because of the large volume of published data on growth and exoprotein forma-
tion by this organism both in vitro and in vivo during experimental infections. P.
aeruginosa is a gram-negative rod frequently implicated in life-threatening infec-
tions of immunologically compromised patients or those with severe burns (Flick
& Cluff, 1976; Pruitt, 1974). During infection of a burn wound, small numbers of
P. aeruginosa cells colonize and begin to multiply within the burn eschar. The
high growth rate, abundance of nutrients, and absence of an intact host defence
system allow the bacteria to grow almost unencumbered; normal host defence
mechanisms flawlessly protect healthy individuals from infection with this
organism.

At later times during infection the entire burn eschar becomes occupied by
multiplying microorganisms, though at this time few organisms are able to spread
to surrounding tissues (Steiritz & Holder, 1975). Available nutrients are also
beginning to become scarce and the organisms' growth rate begins to decline. At
the same time, tissue-damaging exoproteins are produced which allow the colony
to spread further. Some of these exoproteins are termed 'toxins' because they
produce lethal effects in experimental animals when administered in low
doses (Gill, 1982). The lethal outcome of many bacterial infections often relies on
the ability of microorganisms to produce exotoxins in a susceptible host, where
the capacity of that host to neutralize or slow production of these exotoxins is
limited.

Pseudomonas burn wound sepsis is an especially disturbing problem since
mortality rates have remained high despite the advent of improved antibiotic
drugs and regimens (Baltch, Hammer, Smith, & Sutphen, 1979). Other modes of
treatment are currently being tested; these include the development of vaccines
(Jones, 1981) and the use of therapies which potentiate or supplement the
immune system (Dale, Reynolds, Pennington, Elin, Pitts, & Graw, 1974). What-
ever mode of treatment is ultimately found to be most successful, an
understanding of the microbe-host interaction will be necessary. To this end we
have constructed an exploratory mathematical model which describes the rela-
tionship between bacterial cell growth and exoprotein formation. This work may
ultimately provide the basis for mathematical models of microbe-host interactions
as they occur in disease.

There is a wealth of literature on the subject of constructing mathematical
models to describe bacterial cell growth. Much of this stems from the emergence
in the last fifteen years of the industrial significance of bioengineering processes,
for example in the production of penicillin. Recent reviews are those of Blanch
(1981) and Roels & Kossen (1978). The great majority of models are based on
the original work of Monod (1942), who proposed that the specific growth rate
X"1 dX/dt of a bacterial population of a biomass X (typical units are those of
mass density, e.g. mg/ml.) might be given in terms of the surrounding substrate
concentration S by the Monod equation:

X dt Ks+S
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Here S may be thought of as a nutrient for the cells, which enables them to
multiply. The efficiency of conversion of S to X is measured by the yield constant,
Y, given by:

In reality, a medium might contain many 'nutrient' substances. In this case, that
which is consumed first (the limiting substrate) takes the role of S above. Some
bacteria can thrive even in the absence of a primary nutrient, so that they switch
from one Monod-type process to another when the first nutrient is consumed. For
example, Saccharomyces cerevisiae exhibits such diauxic growth in a medium
containing glucose and ethanol (the ethanol actually being excreted during glucose
consumption) (Bijkerk & Hall, 1977).

The relation (1.1) is the Michaelis-Menten relation for a simple catalytic
enzyme reaction, and as such draws an analogy between such a reaction and the
process of bacterial cell replication. Actually, there is a biochemical as well as a
mathematical analogy, since the mechanism of cell reproduction does involve a
large number of enzyme reactions, and so one can think mathematically of (1.1)
as being a crude representation (or truncation) of the actual system under
consideration. Furthermore, the Monod equation has a certain quantitative valid-
ity, and is able to reproduce observations reasonably well in both batch and
continuous cultures (Herbert, Elsworth, & Telling, 1956). It has been used as the
basic building block of most subsequent models (e.g. Barford & Hall, 1978;
Blanch, 1981; Koga, Burg, & Humphrey, 1967; Verhoff, Sundaresan, & Tenney,
1972).

Equations (1.1) and (1.2) are easily integrated to give:

X+YS=YS0, (1.3)

and / X \feH (L4)

where So is a constant of integration (roughly: the initial substrate concentration),
and the time origin of (1.4) is arbitrary; 8 in (1.4) is given by

S=KJS0, (1.5)

and is a relative measure of the saturation nutrient density Ks compared to the
initial nutrient density. Particularly if 5 is quite small, two 'phases' are evident
from (1.4): firstly, an exponential (often called log growth) phase, in which
X<YS0, and

lnX^t, (1.6)

i.e. the population grows exponentially in the presence of an adequate supply of
nutrients; secondly, a stationary phase when X~YS0, and

YS0 - X = constant x exp (-jxt/8), (1.7)

and X -» YS0 as t -> <».
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Both these phases are typical of microbial growth, but there exist in addition
two further phases which cannot be modelled by the simple Monod equation.
These are the decline phase (at the end of the stationary phase) when cells may
'die off' by lysing, and a 'Jag' phase before the exponential phase, when growth
is less rapid; this may be thought of as being due to the bacteria adjusting to
their nutrient environment.

In order to accommodate these and other commonly observed phenomena, a
variety of more sophisticated models has been presented (Barford & Hall 1981).
Perhaps most notable (at least from the mathematical point of view) are the
structured models, in which some variation in cell quality is admitted. This can
take a number of forms, of which the concept of a structured biomass is the most
prevalent; the cell is considered to consist of two or more constituents, each of
which has a distinct function (Grenney, Bella, & Curl, 1973; Pamment, Hall, &
Barford, 1978; Verhoff et al., 1972; Williams, 1967). Typically there is a
component A which is able to take up substrate and convert it into a form which
can be used to promote all growth in a second component B. Bijkerk & Hall
(1977) interpret these as the (lumped) respiratory and glycolytic pathways, and
although such an analogy is hardly less crude than that of the Monod model, it is a
useful conceptual framework. Other cell qualities that have been considered are
age distribution (Shu, 1961), and its effect on metabolic function (Brown & Vass,
1973), although roughly speaking, one can imagine all of these as having the
effect of building some sort of delayed response into the system. Such structured
models are able to model the lag phase, as well as other phenomena (e.g. diauxic
growth).

A further development, particularly in bioengineering studies, has been the
extension of the basic Monod model to describe situations where the bacteria
synthesize extracellular enzymes, for example the production of penicillin. Virtu-
ally all these models are semi-empirical, as opposed to mechanistic (Barford &
Hall, 1978), for example in the studies of Constantinides, Spencer, & Gaden
(1970). Others are self-confessed simulations, hardly aimed at anything other than
curve-fitting (Heijnen & Roels, 1979; Koga et al., 1967). At the mechanistic level,
Van Dedem & Moo-Young (1973) describe an inductor-repressor model, and
Kaushik, Gondo, & Venkatasubramanian (1979) describe catabolite repression.
In both these cases, enzyme synthesis happens concurrently with bacterial growth,
and also depends on it. Thus the particular class of extracellular enzymes with
which we are concerned is considered to have a fundamentally different mode of
production. We have not been able to find any reference in the literature to a
mathematical model for this kind of enzyme synthesis.

Coleman, Brown, & Stormonth (1975) proposed a switching mechanism which
could account for the differential rates of exoprotein production during exponen-
tial, late exponential, and stationary phases of microbial growth in batch culture.
Two separate effects, when superimposed, were postulated to result in the rise in
exoprotein formation as cell growth slows. The first is an overabundance of
ribonucleotide building blocks which are no longer required to produce additional
biosynthetic machinery, and which are now available for exoprotein messenger
RNA (mRNA) synthesis. The second effect involves the selective transcription of
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genes encoding exoproteins, a discriminatory function thought to reside on the
large RNA polymerase complex. The end result would be a switch from cellular
to extracellular protein synthesis. To this day the Coleman et al. proposal remains
an attractive and unrivalled model to explain the biochemical basis of this cellular
switch.

2. Mathematical model

The constituents of a simple, unstructured mathematical model for the process
described in Section 1 are the bacterial biomass concentration X, the (limiting)
substrate (nutrient) density S, and the extracellular product concentration P. The
simplest analogous 'reaction' scheme (see Verhoff et al, 1972; Bijkerk & Hall,
1977) to describe this process is

»2X
X+aiS_ij;| (2.1)

~~—» -A T a^r

where we have indicated that the 'reaction' switches from one mode to another as
S decreases. By considering as a first option the simplest unstructured model for
extracellular protein synthesis, we implicitly focus attention on the (exponential)
growth phase, and the subsequent (stationary phase) product formation. We are
thus avoiding a discussion of the lag phase, polyauxic growth, cell structure, etc.

The upper (growth) phase of the schematic 'reaction' (2.1) is commonly
represented by the law of mass action,

as described in §1. The saturating rate constant r = fcxS/UCj+S) is the Monod
term; the precise form of r(S) is open to discussion (e.g. Edwards, 1970). The
Michaelis constant Ks is a 'saturation level' of nutrient which will roughly describe
where the switching occurs.

In order to model the proposed 'switch' (Coleman et al, 1975) between growth
and production, we have essentially two possibilities. One is to construct a feasible
(and convoluted) 'reaction scheme' whose purpose is to represent the switching
process. Since the biochemical understanding of this process is still controversial,
this may not be worthwhile, and in any case is not in keeping with the use of the
simplistic Monod model. A second possibility is to augment the Monod model in a
macroscopically self-consistent manner, which (like the Monod model) is not
precisely denned chemically; it is this approach we adopt here.

Since the switch is considered to depend on the nutrient level, we might
suppose that as the nutrient level decreases, the fraction of total cell activity
devoted to exoenzyme production gradually increases, whereas that contributing
to cell growth correspondingly decreases. The precise mode of change may not be
relevant since any discussion of cell population characteristics represents an
average over many different cells. One particular choice is then to stipulate that a
cell switches abruptly from growth mode to production mode at, for example,
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zero nutrient intake. We use this formal idealization of the switching, together
with a discussion of the averaging process, to obtain a description of exoenzyme
production.

Let us suppose that the specific growth rate is still given by (2.2). We now
interpret what the equation (2.2) means from the point of view of the individual
microorganisms. As with all models like (2.2) which involve differential equations,
the assumption is implicitly made that the aggregate of bacteria can be treated as
a continuum whose size depends continuously (and differentiably) on time. This is
an idealization which incorporates the fact that the individual microorganisms are
very small (or very numerous). In some sense the resulting differential equations
we consider represent local averages of the stated quantities. Thus the equation
(2.2) can be taken to represent the spatially averaged growth behaviour of a large
colony of bacteria. Now from the point of view of an individual microorganism, it
is reasonable to suppose that in the presence of limitless quantities of nutrient,
each organism grows at a rate kx (that is, its doubling time is (1/fcO In 2). One way
of viewing (2.2) is then that when the nutrient level is S, this is only sufficient for
S/(Ks+S) of the bacteria to grow at their full rate: these use all the nutrients up
(they are just saturated) whereas the other KJ(KS+S) get no nutrient at all. Thus
we conceptually think of (2.2) as describing the spatially averaged behaviour of
bacteria which are either starving or saturated. It should be emphasised that this is
purely a conceptual interpretation, but it is equivalent when averaged to a more
realistic interpretation (i.e. that the bacteria simply grow more slowly because of
the limited nutrient supply).

Although not a difficult point to grasp, we have laboured the argument
somewhat, since for the particular case of a 'bimodal' microorganism with two
modes of operation, it has an important consequence, which is as follows. Let us
suppose that such a microorganism is enveloped in a subsaturation level of
nutrient (S=sKs). As before we can consider a small space volume of bacteria to
be composed of those which have sufficient nutrient to multiply at their maximal
rate (this is a fraction S/(KS+S) of the total density); the remainder have zero
nutrient available to them. By virtue of the bimodal assumption, these latter do
not grow, but they produce extracellular enzymes at a constant rate k2 per unit
biomass. Since a fraction KJ(KS+S) have no nutrient available it follows that the
average rate of protease production must be

we emphasise that these conceptual assumptions are only a means to the end of
understanding the equations (2.2) and (2.3): we do not claim that any such precise
'switch' as described above actually occurs, but only that a logical conclusion from
prescribing a Michaelis-Menten specific growth rate (2.3) is that we must also
have a nutrient-dependent product formation rate which varies in the opposite
manner.

Of course, the above empirical reasoning is not very satisfactory, and a more
mechanistic hypothesis might be preferred. In that case, one firstly idealizes the
Monod growth mechanism in terms of an intermediary 'complex', analogous to
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the simple Michaelis-Menten enzyme kinetics. This can be done by visualizing
the bacterium as a cell with a large number of receptors, which bind reversibly to
the (limiting) substrate, and which form (ultimately) biomass when bound, and
also (in the case here) exoprotein when not bound. Suppose that at time t, a
fraction of sites R(t) is bound to substrate. If the mean time of reaction (of
biomass formation) is T, and the mean collision time of substrate with biomass is
6, then the equation for R is

dR R (1-R)
-77 = — ; (2.3a)
df T 0

analogously to the pseudo-steady state hypothesis, we suppose 0, T are so small
that the reaction (2.3a) is essentially in equilibrium: there follows

R=JT- (2-3b)

The derivation of this relation is precisely analogous to that of the Langmuir
adsorption isotherm (Szekely, Evans, & Sohn, 1976). If one now realizes that 0
will vary inversely with S, e.g. 9«1/S, then (2.3b) is R = SI(p + S), for some
constant p. Additionally, one would have dX/dt^R, dP/dt^l-R, which are
precisely the equations (2.2) and (2.3). The advantage of this latter discussion is
that it constitutes a more specific mechanistic picture; the disadvantage may be
that it seems to imply a particular biochemical function for the cell, which is liable
to be inaccurate.

Equations (2.2) and (2.3) constitute the basis of our mathematical model. They
are supplemented by an equation describing decrease of the limiting nutrient,
obtained from (2.1) and the additional 'reaction'

Proto-S + P^P + S, (2.4)

which describes the action of extracellular protease in degrading 'proto-nutrient'
(limitlessly available) into assimilable material for the cell. This was suggested by
Cicmanec & Holder (1979) as an important feature of Pseudomonas virulence in
burned mice.

With the constitutive assumptions (2.2) and (2.3) relating the switch, the model
(2.1) and (2.4) is therefore represented by the equations:

<">

and

dt~k3P Y\KS+S)X' ( 2 - 7 )

where Y is the yield constant, and klt fc2, and fc3 are rate constants. We have
neglected any self-degradation of proteins as being small.
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These equations are supplemented by initial conditions:

X = X0,S = S0, and P = 0 at t = 0, (2.8)

and represent conditions in a batch culture. If fc2 = 0, they reduce to the Monod
model. If k2? t0, they are non-linear and not obviously tractable, although if
fc3 = 0, they are easily solved by quadrature of (2.6), using (1.3) and (1.4). The
result is

With k3^ 0 in (2.7), a solution is not so straightforward, although it can be readily
seen from (2.5) and (2.6) that the solutions are capable of simulating both
exponential growth (S»KS) and a stationary phase linear production phase
(S«KR), as is experimentally realized (Coleman, 1967).

3. Dimensionless model

In order to proceed further, we construct dimensionless equivalents of the
equations. To do so, we choose scales based on the solution of (2.5)-(2.7) in the
case k3 = 0. This solution—partially given in (2.9)—is:

(l + S) lnX-81n(YS*-X) = fc1(r-t0),
X=Y(S*-S),

and
i, v- v / c\

(3.1)

where the three constants t0, S*, and S are chosen to satisfy the initial conditions,
say (2.8); for example, to = 0, S*=S* is approximately the initial substrate con-
centration So. Additionally,

8 = KJS*. (3.2)

We assume S s l , and write:

t = rlku S = S*s, X=YS*x, and P = [k2YS*lk1]p, (3.3)

the last from (2.6), when X—* YS*, S —» 0. The dimensionless equations can thus
be written in the form:

and

s = a p - [ l + 5/s]"1x. (3-4)

where 8 is denned by (3.2), x^dx/dr, and

(3.5)
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The solution depends on the two dimensionless parameters a and 8, and in
particular the simple solution (3.1) is predicated on the basis of the limit a —»0,
i.e. a is 'small': thus we need to obtain estimates of a and 8 to justify or
invalidate the use of such an approximation.

The parameters ku k2, k3, Y, Ks, and S* are estimated as follows.
(a) k, is the growth rate in the exponential phase, and typical quoted values

of doubling times for Pseudomonas aeruginosa (Cicmanec & Holder, 1979),
Staphylococcus aureus (Coleman & Abbas-Ali, 1977) and Bacillus subtilis
(Coleman, 1967) are in the range 0-5 hour to 3 hour. We thus take

fci-lhour"1. (3.6)

(b) fc2 is the rate of extracellular protein synthesis in starvation conditions. A
number of different experiments for different organisms yield values in the range
0-025-0-25 mg ml"1 hr"1 at bacterial dry weights of about 1 to 6 mg ml"1 (Abbas-
Ali & Coleman, 1977; Coleman 1967, 1981; Coleman, Jakeman & Martin, 1978;
Robinson, Keating, & Sloan, 1980; Williams & Wimpenny, 1977). We take

k2~0-01 mg (protease) mg (bacteria)"1 hr"1. (3.7)

(c) k3 is the rate of production of nutrient by protease. Typical enzyme
activities, e.g. Wheatley & Moo-Young (1977), suggest a value of about

fc3 ~ 103 mg (nutrient) mg (protease)"1 hr"1. (3.8)

(d) The yield constant, Y, is generally (Herbert et al., 1956) of order one, let us
say

Y~ 0-5 mg (bacteria) mg (substrate)"1 (3.9)

(but see also later discussion).
(e) The Michaelis constant Ks depends on both the organism, and on which

nutrient is rate-limiting. Typical values are given by Brock (1974):~2xlO~5M
(molar) for glucose (E. coli), ~10~6M for oxygen (yeast), ~3xlO~8M for
phosphate (spirillum). The oxygen value corresponds to 4x 10"5 mg ml"1. Herbert
et al. (1956) quote higher values of order 10"3mgml~1 for carbohydrate sub-
strates. For Pseudomonas, Nyberg and Clarke (1978) found nitrogen limitation
occurring at 1 mg ml"1 in a succinate/histidine medium. Button (1978) comments
that other limiting mechanisms may lower the apparent value of limiting substrate
concentration below its actual saturation level: we will have a further discussion of
this in Section 5. With some reservation, we consider a general 'typical' value of

(3.10)

(e.g. glucose limited in E. coli cultures).
(f) The 'initial' nutrient level S* is entirely dependent on the particular

experiment. In many experiments, the medium is enriched with nutrient (e.g.
Coleman & Abbas-Ali, 1977) at a typical level of lOmgmT1 ( - 1 % weight per
volume). Cicmanec and Holder (1979) using burnt-skin extract had an initial
protein concentration of 10"1mgml~1. In such circumstances, aerobic bacteria
growth may in fact be oxygen-limited. Water at atmospheric pressure contains
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~6 x 10~3 mg ml"1 dissolved oxygen, and although equilibration with the atmos-
phere occurs rapidly (e-folding time of 4 minutes for a three centimetre deep
layer) (Dorsey, 1940), this may become ineffective as the bacterial mass increases.
For the moment, and again with reservations, we take

. (3.11)

With these values of the above parameters, we calculate a and 8, and find

a = 5, 8«0 - l ; (3.12)

we emphasise that these may be plausible orders of magnitudes, in any particular
situation, the precise values can vary. Generally, (3.12) seems to indicate that
nutrient production by proteases can be important (Cicmanec & Holder 1979).
Furthermore, insofar as S refers to only one (rate-limiting) medium, the effective
yield constant Y used in (3.5) may well be higher. Particularly, experimental
results already cited tend to have a final bacterial density of ~ 1-10 mg (dry
weight) ml"1, which would imply that Y should satisfy

YS* »10 mg ml-1, (3.13)

which is not consistent with the values quoted above, (3.9) and (3.11). If we
accept S* from (3.11) and Y from (3.13), we should find a ~ 104; if we accept Y
from (3.9) and S* from (3.13), we should find 5~10"4. Thus either

a ~ l , S « l (3.14)

or
a » l , 8 - 1 (3.15)

suggests itself as a plausible state of affairs: in either case, a/8 » 1 .

4. Analysis

We now turn to an analysis of the equations (3.4), together with initial
conditions

s = so = l, x = l-sQ, p = 0 at T = T0. (4.1)

The exact solution (3.1) when a = 0 (k3 = 0) can be written in dimensionless form
as (with T0 chosen appropriately)

x + s = 1,

(l + 8 ) l n x - S l n ( l - x ) = r,

and

p = 8 In (sis), s~O(l) , (4.2)

and we would expect the solutions to behave similarly for small a. A typical
solution is shown in Fig. 1. There is a clear exponential growth phase, in which
exoprotein is essentially absent, and a subsequent stationary phase, when exopro-
tein increases linearly with time. This may be compared with similar figures in the
experimental literature, for example Coleman (1967).
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FIG. 1. Solution of (3.4) with 5 = 0-1, a = 0-001, x o = 10"4. In this and subsequent figures, the scales
for In x, p, and s have been normalized.

The easiest way to see this structure in (4.2) is when S is small. Then, for
| T | ~ O ( 1 ) , (4.2) is approximately

and

In x-

P~O(S), (4.3)

but when |T| is small, (~O(8)), then

x~l-e-T / s ,

s~e
T / 8

and

P~T, (4.4)

corresponding to the stationary phase exoprotein production phase. These as-
sumptions can also be derived from the equations directly, by asymptotic solution.

Notice that if 8 is small, the transition from exponential to stationary is very
sharp. Also, if a is small but non-zero, then s cannot approach zero, and no true
stationary phase will occur. Both of these observations have some bearing on the
realizability of the model results, and we discuss them further in Section 5.

If a ~ l , but still 5 « 1, a direct asymptotic solution can still be obtained. For
T < 0 , we have

X l~~* Xj

p~O(S), so p~O(8),

and

s x,

so (4.3) still obtains. This is invalid when s~O(8); then put

T = 8t, x = l-8x, s = 8s, and p = Sp,

(4.5)

(4.6)
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so that

,_
x — —s + V

1

and

?TT- (4-7)

We neglect O(S) in (4.7)3, and the solution is the familiar Michaelis-Menten one:

s + In s = -1 + constant

and

p = t-s + constant. (4.8)

For large t, this behaves like (4.4), but for large T (~O(1/S)), p~O(l ) , s grows
again, and thus x starts to grow again after an intermediary lapse.

It is more direct to pick the obvious distinguished limit,

a=d/8, d~O( l ) , (4.9)

and define

p = 8p. (4.10)

The equations (3.4) are then

x = [s/(s + S)]x,

p = [l/(s + S)]x,

and

s=ap-[sl(s + a)]x. (4.11)

For d ~ 1, 8 « 1, and |T| ~ O(l), we have

p ~ x/s,

and

s~dp-x, (4.12)

whence

lnx-x, (4.13)

and s satisfies

s+[l-d/s]eT = 0. (4.14)

From this we deduce s will not go through zero (for then js2~(3ln\s\). To find
the long-time behaviour of s, put

0=e72, (4.15)
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(4.16)

(4.17)

(4.18)

with a minimum at s = d, Vmin = 4d[ l - ln |d | ] . For E>Vmin, s oscillates around
d. In fact, E will vary slowly with 6, since (4.16) can be written as

so that

0

As 0 (and T) —» °°, s behaves almost conservatively:

ks'2+V(s) = E,

where E is approximately constant, and

= 4(s-oln|s | ) ,

For large 6, E is given approximately by the method of averaging:

(4.19)

(4.20)

where s'2 is the average value of s'2 over a period of the underlying oscillation.
This can be written in the form

dE
0—- =

d0

[£-V(s)]1/2ds

[E-V(s)]-1/2ds

(4.21)

where s+ and s are the upper and lower zeros of E— V(s), respectively.
Evidently, E approaches Vmjn as 0 increases. Thus s approaches d oscillatorily,
and as 0—»c° (since (4.16) is a zero-order Bessel's equation for s = d). In fact

0 40 80 T

FIG. 2. Solution of (4.11) with 8 = 0-5, a = 0001, xn=10"6 .
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0 40 80 i

FIG. 3. Solution of (4.11) with S = 0-5, d = 0-01, x o =l (T 6 .

s - a ~ 6 1/2 cos [20 + <f>] ~ e T/2 cos [eT + <f>]. If d » 8, then x continues to increase
exponentially, being fed by the nutrient, produced by the exoprotein.

For large d, (4.11)3 suggests that rapid equilibration occurs, so that (assuming

(at T~l /d after switch-on). Then (4.11)1>2 imply

s~a, In x ~ T,

(4.22)

(4.23)

which is as before. Figures 2 to 5 show numerically computed solutions of the
equations, which exhibit the kinds of behaviour explained above. For larger 8, we
can expect similar kinds of solution, but these must be obtained numerically (for
s ~ O(D).

0 10 20 30 r

FIG. 4. Solution of (4.11) with 8 = 0-1, a = 0 1 , x o= 10~8.
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0 10 20 30

FIG. 5. Solution of (4.11) with 5 = 0 1 , a =0-4, xo= 10"8.

In summary, we find the following class of behaviour. For d = a8 small, we see
an exponential growth phase followed by a stationary phase, in which latter
exoprotein is produced, and grows linearly with time. For larger a, the exponen-
tial phase is followed by a slower exponential phase, where exoprotein is
produced, and the bacterial growth is maintained by nutrient 'produced' by the
exoprotein. At very high a, this second phase occurs very quickly, and no break
would be evident in the growth curves. This sequence of behaviours is portrayed
schematically in Fig. 6. The onset of significant secondary growth occurs when

that is a 2: 1.

lnx large 2

medium a

small a

FIG. 6. Schematic growth curves for x at small, intermediate, and large values of d.
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5. Discussion

The (exact) solution given in Section 4 for a very small (and 8 reasonably
small) imitates very well the results obtained in the laboratory, particularly by
Coleman (1967). There is an exponential phase, in which bacterial density
increases exponentially, and exoprotein is virtually absent; this is followed by a
(nearly) stationary phase in which exoprotein increases linearly with time. Furth-
ermore, examination of (4.2) shows that exoprotein (p) and bacterial density (x)
are related through both phases by the relation

p = 81n[s/(l-x)]. (5.1)

This compares very well with p (proteinase)-x (cell density) plots in Coleman
(1967), and can be compared to similar plots in other work (Coleman, 1981;
Robinson et al, 1980; Abbas-Ali and Coleman 1977).

This argument suggests that the simple model presented here can serve as a
useful representation of the extracellular production of protein, for that class of
organisms which has the switching behaviour described in the introduction. If this
is so, then the subsequent analysis of Section 4 also implies that a is generally
very small in these experiments, and that 8 is reasonably (but not extremely)
small, 8si. If a is larger, then the analysis indicates that a transition between
two phases will occur, but that the bacteria continue to grow (exponentially) in the
second phase (assuming 8 s 1).

In practice, it is rather difficult to give good values of either a or 8. The
estimates in Section 3 can be expected to be unreliable, and particularly the value
of a in (3.12) seems to be an overestimate. This is plausibly explained by
uncertainties in the production rate fc3, and in interpreting what the yield constant
Y ought to be. It would seem that 8, given by (3.2), would be much more easily
identifiable, since values of Ks are reasonably well documented. However, in
laboratory experiments (e.g. Coleman, 1967), the bacteria are typically grown in a
nutrient-rich broth, so that it is not even obvious just what limits their growth.
Furthermore, Button (1978, 1983) points out that apparent Michaelis constants
measured in steady state conditions may underestimate the appropriate dynamic
constants by orders of magnitude. One obvious candidate for limiting growth of
aerobic bacteria in flask cultures is simply the availability of oxygen. We have not
examined this in detail, but let us point out the work of Johnson (1967), which
finds different apparent Michaelis constants for oxygen limited growth in steady
and time-dependent conditions. Apart from all these concerns, it seems plausible
that a more realistic structured biomass model could lead to a different effective 8
than that given by (3.2).

What we are suggesting is that, although a and S may not be realistically (or
easily) obtainable from raw data, nevertheless, the model is still useful, if the
effective values of these parameters are chosen appropriately (in conformation
with the laboratory data). In that case, this model may provide the basis for a
dynamic model of in vivo infection by Pseudomonas, in which a possible virulence
due to protease activity (Cicmanec & Holder, 1979) is taken into account.
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