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In this paper we derive a model describing the dynamics of HIV-1 infection in tissue culture where the infection spreads
directly from infected cells to healthy cells trough cell-to-cell contact. We assume that the infection rate between healthy
and infected cells is a saturating function of cell concentration. Our analysis shows that if the basic reproduction number
does not exceed unity then infected cells are cleared and the disease dies out. Otherwise, the infection is persistent with the
existence of an infected equilibrium. Numerical simulations indicate that, depending on the fraction of cells surviving the
incubation period, the solutions approach either an infected steady state or a periodic orbit.
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1. Introduction

Since the early 1980s there has been a tremendous ef-
fort made in mathematical modeling of the Human Im-
munodeficiency Virus type 1 (HIV-1), which causes AIDS
(Acquired Immune Deficiency Syndrome). The major tar-
get of HIV-1 infection is a class of lymphocytes or white
blood cells known as CD4+ T-cells, which are the most
abundant white blood cells of the immune system. It
is thought that HIV-1, although attacking many differ-
ent cells, wreaks the most havoc on the CD4+ T-cells by
causing their destruction and decline, and decreasing the
body’s ability to fight the infection. The process of in-
fection is as follows: First, HIV-1 enters its target T-cell,
inside this cell it makes, with the help of the reverse tran-
scriptase enzyme RT, a DNA copy of its viral RNA. The
viral DNA is inserted into the DNA of the host cell (T-
cell), which will itself produce viral particles that can bud
off the cell to infect other healthy cells.

Many mathematical models have been derived in or-
der to describe the dynamics of HIV-1 infection in the
bloodstream where cell-free-viral spread is the predomi-
nant route of viral spread (De Leenheer and Smith, 2003;
Kirschner, 1996; Nowak and Bangham, 1996; Perelson,
1989; Perelson et al., 1993; Perelson and Nelson, 1999;

Nowak and May, 2000). Upon infection with HIV-1, there
is a short “intracellular eclipse phase”, during which the
cell is infected but has not yet begun producing the virus.
This intracellular eclipse phase is modeled by introducing
an explicit class of latently infected cells. The models are
then defined by considering four compartments: cells that
are uninfected or healthy cells, cells that are latently in-
fected, cells that are actively infected, and the free virus.
The dynamics of these populations are described by a sys-
tem of four ordinary differential equations. To take into
account the “immune responsiveness” of the system, the
class of CD8+ T-cells is introduced in the proliferation of
CD4+ T-cells (Kirschner and Webb, 1996). These cells
cannot become infected with the virus, but do destroy in-
fected cells. It was shown that these models can mimic the
symptom of AIDS observed clinically such as the long la-
tency period, low levels of the free virus in the body, and
the depletion of CD4+ T-cells.

Herz et al. (1996) proposed to model the latency pe-
riod by introducing a delay into the class of infected cells
by assuming that cells become infected τ times units after
initial infection and obtained a new model of three delay
differential equations. Tam (1999) investigated the delay
effect in a model which describes the interaction between
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a replicating virus and host cells. Culshaw and Ruan
(2000) showed that such an intracellular delay can cause
the cell and virus populations to fluctuate in the early stage
of infection (called infective oscillations in the literature),
and in a long term they will converge to the infected steady
state values. Mittler et al. (1998) proposed to model the
eclipse phase by a distributed delay assuming that the vari-
ation among cells with respect to this intracellular delay
can be approximated by a gamma distribution which can
mimic a variety of biologically plausible delays. Another
type of discrete or distributed delay models has been con-
sidered recently in the literature to include antiviral ther-
apy and the effects of drugs (Nelson et al., 2000; Nelson
and Perelson, 2002; Wang and Li, 2006).

It was reported that HIV-1 infection is achieved in
tissue culture as the lymph nodes and the brain where cell-
to-cell spread would be a much more important mode of
infection than cell-free viral spread (Culshaw et al., 2003;
Philips, 1994; Dimitrov et al., 1993). To that end, Spouge
et al. (1996) derived a model of HIV-1 cell-to-cell in-
fection kinetics in tissue culture in terms of mathematical
models and showed that its asymptotic behavior is simi-
lar to that of a model representing cell-free viral spread.
The model by Spouge et al. (1996) does not include the
latent period after cells have been infected. Culshaw et al.
(2003) generalized the model by Spouge et al. (1996) by
introducing a distributed delay to model the intracellular
eclipse phase. They proved that the intracellular eclipse
phase does change the dynamics of the model. More pre-
cisely, their results show that, when a fraction of infected
cells survives the incubation period and surpasses a criti-
cal values, then a Hopf bifurcation occurs inducing peri-
odic fluctuations in cell concentrations.

In the models by Spouge et al. (1996) and Culshaw et
al. (2003), it is assumed that HIV-1 infection spreads di-
rectly from infected cells to healthy cells by neglecting the
free virus and assuming that the infection rate is bilinear,
i.e., dependent only on the product of the concentrations
of the two cell populations. This last notion, the so-called
“mass action principle”, is valid when the system is well
mixed, i.e., there are no significant spatial concentration
heterogeneities, and there are significant quantities of each
reactant. However, interactions between two populations
are not always so simple, and the form of such an expres-
sion can change, for example, to take into account at least
three parameters such as the contact rate between infected
and healthy cells, the fraction of healthy cells which are
activated and hence susceptible to infection, and the frac-
tion of interaction between activated cells and the virus
which result in productive infected cells. In a non-well-
mixed tissue culture these parameters are not constant and
vary, among others, the total size of the populations. It is
well known that models for T-cell proliferation are most
reasonable when they are based upon a saturation function
such that individual T-cells have a well-defined maximal

rate of proliferation (De Boer and Perelson, 1995; Call-
away and Perelson, 1998).

In this paper we propose a new model of cell-to-cell
spread of HIV-1 infection in tissue culture which takes
into account the saturation effect of the proliferation of
healthy cells. We assume that the infection rate between
infected and healthy cells in the model by Culshaw et al.
(2003) is a saturating function of cell concentration, i.e.,

dx(t)
dt

= rx(t)
(

1 − x(t) + y(t)
K

)
− α

x(t)y(t)
1 + qx(t)

,

dy(t)
dt

= β

∫ t

−∞

f(t− s)x(s)y(s)
1 + qx(s)

ds− δy(t), (1)

where x(t), and y(t) denote the concentrations of healthy
and infected cells at time t, respectively, r is the effective
reproductive rate of healthy cells (the term is the total re-
productive rate for healthy cells r1 minus the death rate
for healthy cells γ), K is the effective carrying capacity
of the system, δ is the death rate of infected cells, α is the
maximum rate of infection, β is such that β/α represents
the fraction of cells surviving the incubation period, and
1/q denotes the half saturation constant of the prolifera-
tion process. The values of these parameters are given in
Table 1.

Table 1. Assumed parameter values.
Parameters Values Ref.
r healthy cell reproductive
rate

0.68/day [3]

K carrying capacity of the
system

2 × 106/mL [3]

δ death rate of infected
cells

0.3/day [3]

k empirical initial growth
of virus

1/day [26]

x0 initial concentration
of healthy cells

5 × 105/mL [26]

y0 initial concentration
of infected cells

5 × 102/mL [26]

1
q half saturation constant 0.45 × 107/mL sec. 5

α maximum rate of
infection

2.84 × 10−6/day sec. 5

The term in the denominator of the infection rate
serves to “saturate” the infection rate when x gets large.
For example, if qx � 1, then αxy/(1 + qx) ≈ (α/q)y.
In this case the infection rate depends almost exclusively
on the number of infected cells and the amount of in-
fected cells present limits the infection rate. A similar
saturation term has been used to describe cell growth in
models of T cell proliferation and HIV-1 immune con-
trol (Callaway and Perelson, 1998; De Boer and Perel-
son, 1995; Kirschner and Webb, 1996). We point out that
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as q → 0, the system (1) is reduced to that described
by Culshaw et al. (2003). The model of Culshaw et al.
(2003) with the simple mass-action infection term is then
an extreme case of the HIV-1 model (1) in this paper. The
initial values of the system are

x(s) = φ(s), y(s) = ψ(s), s ∈ (−∞, 0],

with φ, ψ ∈ X , where X = C ((−∞, 0]; R+) is the
Banach space of non-negative, continuous and bounded
functions on (−∞, 0]. The distributed delay in the second
equation of the system (1) models the incubation period
by assuming that cells which are productively infectious
at time t were infected τ time units ago, where τ is the
average delay defined by (MacDonald, 1978)

τ =
∫ ∞

0

sf(s) ds.

In the rest of this paper we take as a delay kernel f(s)
the gamma distribution function of order 0 called a weak
kernel,

f(s) = μe−μs, s ≥ 0,

for which the average delay is τ = 1/μ. Such kernels
were used in mathematical models of HIV-1 infections by
Mittler et al. (1998).

Setting

z(t) =
∫ t

−∞
μe−μ(t−s) x(s)y(s)

1 + qx(s)
ds,

we obtain the following system of three ordinary differen-
tial equations:

dx(t)
dt

= rx(t)
(

1 − x(t) + y(t)
K

)
− α

x(t)y(t)
1 + qx(t)

,

dy(t)
dt

= μz′(t) − δy(t),
dz′(t)

dt
= β

x(t)y(t)
1 + qx(t)

− μz′(t),

(2)
with the initial values

x0 = φ(0) ≥ 0, y0 = ψ(0) ≥ 0,

z0 = χ(0) =
∫ 0

−∞
μeμs φ(s)ψ(s)

1 + qφ(s)
ds ≥ 0,

(3)

where

χ(s) =
∫ s

−∞
μeμs φ(s)ψ(s)

1 + qφ(s)
ds,

s ≤ 0 and φ, ψ ∈ X .
To find equilibria of system (2) we set

rx

(
1 − x+ y

K

)
− α

xy

1 + qx
= 0,

βz − δy = 0,

μ
xy

1 + qx
− μz = 0.

(4)

It is easy to see that the algebraic system (4) has three
equilibrias: the trivial equilibrium E0 = (0, 0, 0), the
healthy equilibrium E1 = (K, 0, 0), and, when

βK

δ(1 + qK)
> 1,

there is a third positive equilibrium E∗ = (x∗, y∗, z∗),
called the infected equilibrium, given by

x∗ =
δ

β − qδ
,

y∗ =
rβ (Kβ − qKδ − δ)

(β − qδ)(βr +Kαβ − qKαδ)
,

z∗ =
rδ (Kβ − qKδ − δ)

(β − qδ)(βr +Kαβ − qKαδ)
.

In the following section we derive the basic repro-
duction number R0 of the model (2). In Section 3 we
prove that, when R0 < 1, the healthy equilibrium E1 is
locally asymptotically stable, while E0 is a saddle point.
When R0 > 1, we prove that the infected equilibrium E∗

exists and is locally asymptotically stable under some hy-
potheses on the parameters. In Section 4 we are interested
in the global dynamics of the model (2). We prove that,
when R0 ≤ 1, the healthy equilibrium E1 is in fact glob-
ally asymptotically stable, and if R0 > 1, we prove that
the infection is persistent. By using the average delay as a
bifurcation parameter, we prove in this case that the sys-
tem (2) exhibits two Hopf bifurcations μ1 and μ2, such
that the infected equilibrium E∗ is locally asymptotically
stable for μ ∈ (0, μ1)∪ (μ2,∞), and periodic oscillations
occur when μ ∈ (μ1, μ2). In Section 5, we report some
numerical simulations to illustrate the stability and bifur-
cation results. As in the work of Culshaw et al. (2003),
our model exhibits infective periodic oscillations in realis-
tic parameter regimes, but in our case there are two Hopf
bifurcations and the infected steady state is locally asymp-
totically stable either if the average delay is small enough
or sufficiently large.

2. Basic reproduction number R0

To see whether the virus establishes an infection, a crucial
quantity is the basic reproduction numberR0, which is de-
fined as the number of newly infected cells that arise from
any infected cell, over its entire infectious period 1/δ,
when most cells are uninfected (Nowak and May, 2000).
In epidemiological models, R0 is defined as the threshold
parameter, such that the disease dies out irrespective of the
initial number cases when R0 ≤ 1, and is persistent with
the existence of an infected equilibrium when R0 > 1.
In this paper, following Diekmann et al. (1990), we de-
rive the basic reproduction number R0 for the model (2)
by using the method of the next generation matrix, which
was modified later by Van den Driessche and Watmough
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(2002), as well as Esteva-Peralta and Velasco-Hernandez
(2002).

In order to computeR0, we regard (2) as an epidemi-
ological model with three compartments: x, y and z. We
first write the system (2) the following form:

dX
dt

= F (X) − V (X),

V (X) = V −(X) − V +(X),

X = (x, y, z)T ,

where F, V +, V − : R
3 → R

3 are defined by

F (X) =
(

0, 0, μ
xy

1 + qx

)
,

V +(X) =
(
r1x

{
1 − x+ y

K

}
, βz, 0

)

V −(X) =
(
α

xy

1 + qx
+ γx

(
1 − x+ y

K

)
, δy, μz

)
.

F (X) is the rate of the appearance of new infected cells in
each compartment, V + is the rate of the transfer of cells
into each compartment by all other means, and V − is the
rate of the transfer of cells out of the compartments. De-
note by ∂F/∂x, ∂V /∂x the Jacobian matrices of F and
V at E1 = (K, 0, 0), respectively. We have

∂F

∂x
=

⎛
⎝0 0 0

0 0 0
0 μK

1+qK 0

⎞
⎠ ,

∂V

∂x
=

⎛
⎝r1 + γ r1 + αK

1+qK 0
0 δ −β
0 0 μ

⎞
⎠ .

According to (Diekmann et al., 1990) we call
∂F
∂x

(
∂V
∂x

)−1
the next generation matrix of the model (2)

and its spectral radius is the corresponding basic repro-
duction numberR0. We have

∂F

∂x

(
∂V

∂x

)−1

=

⎛
⎝0 0 0

0 0 0
0 μK

δ(1+qK)
βK

δ(1+qK)

⎞
⎠ ,

and its characteristic polynomial is given by

Q(λ) = λ2

(
λ− βK

δ(1 + qK)

)
.

The corresponding eigenvalues are

λ1,2 = 0, λ3 =
βK

δ(1 + qK)
.

The spectral radius of the next generation matrix
∂F
∂x

(
∂V
∂x

)−1
is then βK/δ(1 + qK). According to Diek-

mann et al. (1990), we define the basic reproduction num-
ber R0 for model (2) by

R0 =
1
δ

[
βK

1 + qK

]
.

The term in brackets describes the newly infected cells
that arise from any infected cell when almost all cells are
uninfected. We will prove in Section 4 that the dynam-
ics of the system (2) are largely determined by the basic
reproduction number R0.

3. Local stability of equilibria

In this section we analyze the local stability of the equilib-
ria of the system (2). Denote by J(E) the Jacobian matrix
of the system (2) at E = (x, y, z). We have

J(E) =

⎛
⎝r − 2r x

K − r y
K − αy

(1+qx)2

0
μy

(1+qx)2

−r x
K − α x

1+qx 0
−δ β

μ x
1+qx −μ

⎞
⎠ .

Theorem 1. E0 is a saddle point and E1 is locally
asymptotically stable provided that R0 < 1.

Proof. Denote by P (λ) the characteristic polynomial of
the system (2) at (x, y, z). We have, after some calcula-
tions, that

P (λ) = λ3 + (δ + μ−A)λ2 +
(
δμ−Aδ −Aμ

− β
μx

1 + qx

)
λ+

Aβμx

1 + qx

+B
βμy

(1 + qx)2
−Aμδ, (5)

where

A = r − r

K
y − 2

r

K
x− αy

(1 + qx)2
,

B =
r

K
x+

αx

1 + qx
.

Case 1. Trivial equilibrium E0 = (0, 0, 0):
Set x = y = z = 0. The characteristic polynomial (5)
takes the form

P (λ) = λ3 + (δ + μ− r)λ2 + (δμ− rδ − rμ)λ
− rμδ

= (r − λ)(λ + μ)(λ + δ),

and therefore P has two negative real roots λ1 = −δ,
λ2 = −μ and one positive real root λ3 = r > 0. The
trivial equilibrium is a saddle point.

Case 2. Healthy equilibrium E1 = (K, 0, 0):
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In this case the characteristic polynomial has the form

P (λ) = λ3 +
(
r + μ+ δ)λ2 + (rδ + rμ

+ μ

(
δ − βK

1 + qK

))
λ

+ rμ

(
δ − βK

1 + qK

)

= λ3 + (r + μ+ δ)λ2

+
(
rδ + rμ+

μ

δ
(1 −R0)

)
λ

+ r
μ

δ
(1 −R0) .

Since R0 < 1, all the coefficients of P (λ) are posi-
tive, and the inequality

(r+μ+δ)
[
rδ + rμ+

μ

δ
(1 −R0)

]
> r

μ

δ
(1 −R0)

holds. So by the Routh–Hurwitz theorem all the roots of
P (λ) have negative real parts. The healthy equilibrium
E1 is locally asymptotically stable. �

We now turn to proving the local stability of the in-
fected equilibrium E∗. We showed in Section 2 that, if
R0 > 1, then the infected equilibrium exists. In the fol-
lowing theorem we give some hypotheses on the parame-
ters under which E∗ is locally asymptotically stable.

The Jacobian matrix J(E∗) of (2) at point E∗ =
(x∗, y∗, z∗) is

J(E∗) =

⎛
⎜⎜⎝

−a −b 0
0 −δ β
μy∗

(1 + qx∗)2
μ
δ

β
−μ

⎞
⎟⎟⎠ ,

where

a = −r + y∗
r

K
+ 2

r

K
x∗ +

αy∗

(1 + qx∗)2
,

b = r
x∗

K
+ α

δ

β
.

To proceed further, we make the following assumption on
the parameters of the system (2):

r − 2r
x∗

K
− r

y∗

K
− αy∗

(1 + qx∗)2
< 0. (6)

Write

Δ =
[
a− b

a

βy∗

(1 + qx∗)2

]2

− 4δ
b

a

βy∗

(1 + qx∗)2
,

D = 2δ + a− b

a

βy∗

(1 + qx∗)2
.

Theorem 2. Assume that R0 > 1, and (6) holds.
(i) If either Δ < 0 or Δ = 0 and D > 0, then E∗ is

locally asymptotically stable for all μ > 0.
(ii) If Δ = 0 and D < 0, there is a μ0 > 0, such that E∗

is locally asymptotically stable for μ > 0 and μ 
= μ0 and
unstable for μ = μ0.
(iii) If Δ > 0, we have the following two cases:

1. D > 0, then E∗ is locally asymptotically stable for
all μ > 0.

2. D < 0, then there are 0 < μ1 < μ2, such that E∗ is
locally asymptotically stable for μ < μ1 or μ > μ2,
and is unstable for μ ∈ (μ1, μ2). Further, the system
(2) exhibits Hopf bifurcations at μ = μ1 and μ = μ2.

Proof. Let P (λ) be the characteristic polynomial of the
Jacobian matrix J(E∗). We have

P (λ) = λ3 + (a+ μ+ δ)λ2 + (aμ+ aδ)λ

+ b
μβy∗

(1 + qx∗)2
.

(7)

From(6) it follows that a > 0 and all the coefficients
of P (λ) are positive. Applying the Routh–Hurwitz theo-
rem to (7), we find thatE∗ is locally asymptotically stable
if and only if

A(μ) = (a+ δ + μ)(aδ + aμ)

− b
μβy∗

(1 + qx∗)2
> 0. (8)

Taking μ > 0 as a bifurcation parameter, we rewrite (8)
into the following form:

A(μ) = μ2 +
[
2δ + a− b

a

βy∗

(1 + qx∗)2

]
μ+ δ2 + aδ

= μ2 +Dμ+ δ2 + aδ,

for which the discriminant is Δ. We then have the follow-
ing cases:

• If Δ < 0, or Δ = 0 and D > 0, then A(μ) has no
real roots or one negative real root, and in this case
A(μ) > 0 while E∗ is locally asymptotically stable
for all μ > 0.

• If Δ = 0 and D < 0, A(μ) has one positive real root
μ0 and A(μ) > 0 for all μ > 0 and μ 
= μ0. E

∗ is
then locally asymptotically stable for all μ > 0, and
μ 
= μ0 and unstable for μ = μ0.

• Assume now that Δ > 0. Then, if D > 0, A(μ) has
two negative real roots, so A(μ) > 0. In this case
the infected equilibriumE∗ is locally asymptotically
stable for all μ > 0.

• When D < 0, A(μ) has two positive real roots 0 <
μ1 < μ2 such that A(μ) > 0, for μ ∈ (0, μ1) ∪
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(μ2,+∞) and A(μ) < 0, for μ ∈ (μ1, μ2). E∗ is
then locally asymptotically stable for μ ∈ (0, μ1) ∪
(μ2,+∞) and unstable for μ ∈ (μ1, μ2). Further,

dA(μ1)
dμ

= 2μ1 +D =
√

Δ > 0,

dA(μ2)
dμ

= 2μ2 +D = −
√

Δ < 0.
(9)

Let λ(μ) = η(μ)+ iω(μ) be the eigenvalue of P (λ),
where η(μ) and ω(μ) depend on μ. We first show that
for μ = μ1,2, P (λ) has one negative real root and two
conjugate purely imaginary roots. Since

(a+ δ + μ1,2)(aδ + aμ1,2) = b
μ1,2βy

∗

(1 + qx∗)2
,

we have

P (λ) = (λ+ a+ δ + μ1,2)(λ2 + aδ + aμ1,2).

Hence P (λ) has one negative real root λ1 = −(a +
δ + μ1,2) < 0 and two conjugate purely imaginary roots
λ2,3 = ±i√aδ + aμ1,2. Substituting λ(μ) = η(μ) +
iω(μ) into (7), we find that

η3 − 3ηω2 + 3iη2ω − iω3 + (a+ δ + μ)(η2 − ω2)
+ 2i(a+ δ + μ)ηω + η(aδ + aμ) + iω(aδ + aμ)

+ b
μβy∗

(1 + qx∗)2
= 0.

Separating the real and imaginary parts, we obtain

η3 − 3ηω2 + (a+ δ + μ)(η2 − ω2) + η(aδ + aμ)

+ b
μβy∗

(1 + qx∗)2
= 0. (10)

Differentiating the expression in (10) with respect to
μ and using the fact that η(μ1,2) = 0 and ω2(μ1,2) =
aδ + aμ1,2, we get

− 3(aδ + aμ1,2)
dη
dμ

∣∣∣∣∣
μ=μ1,2

− d
dμ

(
aδ + aμ)(a+ δ + μ

)∣∣∣∣∣
μ=μ1,2

+
d
dμ

(
b

μβy∗

(1 + qx∗)2
)∣∣∣∣∣

μ=μ1,2

= 0.

Hence we obtain, with the help of (8) and (9),

−3(aδ + aμ1,2)
dη
dμ

∣∣∣∣∣
μ=μ1,2

=
dA(μ)

dμ

∣∣∣∣∣
μ=μ1,2

= ±
√

Δ 
= 0,

thus a family of periodic solutions bifurcates from E∗

when μ passes trough one of the critical values μ1 or μ2

(Hassard et al., 1981). �

4. Global dynamics of the model

In this section we analyze the global asymptotic behavior
of the system (2). We begin with the following lemma on
the dissipativity of (2).

Lemma 1. The positive orthant is positively invariant by
the system (2) and there exists a constantM > 0 indepen-
dent of the solutions such that

lim sup
t→+∞

x(t) ≤ K, lim sup
t→+∞

y(t) ≤M,

lim sup
t→+∞

z(t) ≤M.

Proof. The invariance of the positive orthant is trivial. We
have to prove the ultimate boundedness of the solutions.
We have, from the first equation of the system (2),

dx(t)
dt

≤ rx(t)
(

1 − x(t)
K

)
,

which gives, with the help of the comparison principle,

lim sup
t→+∞

x(t) ≤ K. (11)

Define the function

W (t) = x(t) +
α

μ
z(t).

We have

dW
dt

≤ rx− αz

≤ (r + μ)x− μx− αz

≤ (r + μ)x− μW (t).

(12)

Let ε > 0 be fixed. By (11), there is T ε > 0 such
that x(t) ≤ K+ε for t > T ε. Combining this last relation
with (12), for t > T ε we have

dW
dt

(t) ≤ (r + μ)(K + ε) − μW (t),

which leads to

lim sup
t→+∞

W (t) ≤ K(r + μ)
μ

.

Finally, from the second equation in (2) and the fact that z
is uniformly bounded it follows that there is an

M >
K(r + μ)

μ

such that
lim sup
t→+∞

y(t) ≤M.

This completes the proof of the lemma. �
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In Section 3 we proved that, if R0 < 1, the healthy
equilibriumE1 is locally asymptotically stable. In the fol-
lowing theorem we prove that E1 is globally asymptoti-
cally stable when R0 ≤ 1.

Theorem 3. Assume that R0 ≤ 1. Then the healthy
equilibrium E1 is globally stable.

Proof. We analyze separately two cases: R0 < 1 and
R0 = 1.

Case 1. R0 < 1
Define the set G = {(φ, ψ, χ) ∈ X : 0 ≤ φ ≤ K,ψ, χ ≥
0}. By Lemma 1,G attracts all solutions of the system (2).
Let (φ, ψ, χ) ∈ G, and denote by (x(t), y(t), z(t)) the
corresponding solution of (2). We claim that x(t) ≤ K for
all t > 0. Otherwise, there is t1 > 0 such that x(t1) = K
and dx(t1)/dt > 0. We have

dx
dt

(t1) ≤ rx(t1)
(

1 − x(t1) + y(t1)
K

)

≤ −ry(t1)
≤ 0,

which contradicts the fact that dx(t1)/dt > 0. Thus
G is positively invariant with respect to (2). For any
(φ, ψ, χ) ∈ G, we define the functional V (φ, ψ, χ) =
μy+ βz, where (x(t), y(t), z(t)) is the corresponding so-
lution to (2). From the system (2) we have that

dV
dt

=
(
β

μx

1 + qx
− δμ

)
y. (13)

Since G is positively invariant and R0 < 1, we have
x(t) ≤ K for all t > 0. Hence (13) leads to

dV
dt

≤ μ

{
βK

1 + qK
− δ

}
y

=
μ

δ
(R0 − 1)y < 0, t > 0. (14)

V is then a Lyapunov functional on G. Define now the set

E =
{
(φ, ψ, χ) ∈ G :

dV
dt

(φ, ψ, χ) = 0
}
,

and let M be the largest set in E which is invariant with
respect to (2). Clearly, M is not empty since E1 =
(K, 0, 0) ∈ M . Let (φ, ψ, χ) ∈ M and (x(t), y(t), z(t))
be the solution of (2) with the initial data (φ, ψ, χ). From
the invariance of M , we have (xt, yt, zt) ∈ M for all
t ∈ R. Thus dV /dt = 0, and, from (13), y(t) = 0 for
all t ∈ R. We obtain from the first and the third equations
in (2) that x(t) → K and z(t) → 0 as t → +∞. The
invariance of M implies that x(t) = K and z(t) = 0 for
all t ∈ R. Therefore, M = {(K, 0, 0)} = E1. Since it
was shown in Theorem 1 thatE1 is locally asymptotically
stable when R0 < 1, from the LaSalle invariance princi-
ple it follows that E1 is globally asymptotically stable.

Case 2. R0 = 1
By the first equation of (2), x(t) is always decreasing
when above K . We can prove that if there exists some
t0 > 0 such that x(t0) < K , then x(t) < K for all
t > t0. Otherwise, there must exist some t1 > t0 such
that x(t1) = K and dx(t1)/dt ≥ 0. This is impossible.
Hence, there are two possible cases:

(i) x(t) > K , for all t > 0 and x(t) → K as t→ +∞.

(ii) There exists t0 > 0 such that x(t0) < K .

In Case (ii) we have that x(t) < K for all t > t0.
The global stability of E1 can proved by using the same
Lyapunov functional V as in the first part of the proof.

In Case (i) we rewrite the first equation in (2) as fol-
lows:

r
xy

K
≤ rx

(
1 − x

K

)
− dx

dt
.

Now, since x(t) > K , from the preceding equation we
obtain

ry(t) ≤ −dx
dt
, t > 0.

Integrating the last relation over (0, t), we find that

r

∫ t

0

y(s) ds ≤ x(0) − x(t) ≤ x(0), t > 0,

which implies, with the boundedness of y(t), that y(t) →
0, and thus z(t) → 0 as t → +∞. E1 is then globally
stable. �

Theorem 3 completely determines the global dynam-
ics of the system when R0 ≤ 1 and can be interpreted as
follows: IfR0 ≤ 1, then the infection will not spread since
every infected cell will on the average produce less than
one new infected cell. The chain reaction is sub-critical.
In the following theorem, we will prove that, if R0 > 1,
then a chain reaction takes place and leads to a chronic
infection.

Before giving the second main result of this section,
we recall some results about the theory of infinite dimen-
sional systems (Thieme, 1993). Let X be a metric space
with metric d. Assume that X is the union of two disjoint
subsets X1 and X2. A continuous semiflow on X1 is a
continuous mapping Φ : [0,∞[×X1 → X1 such that

Φt ◦ Φs = Φt+s, t, s ≥ 0, Φ0(x) = x, ∀x ∈ X1,

where Φt denotes the mapping from X1 to X1 given by

Φt(x) = Φ(t, x).

We say that a subset K of X is a weak repeller of X1 if
there an is ε > 0 such that

lim sup
t→∞

d (Φt(x),K) > ε, ∀x ∈ X1.
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K is called a uniform strong repeller for X1 if there is an
ε > 0 such that

lim inf
t→∞ d (Φt(x),K) > ε, ∀x ∈ X1.

Lemma 2. (Thieme, 1993) Let X1 be open in X and
the semiflow Φ be dissipative, i.e, there is a bounded set
B ⊂ X such that d (Φt(x), B) −→ 0 for all x ∈ X1.
Further, assume that A∂ ,

A∂ =
⋃

y∈Y

ω(y),

Y = {x ∈ X2 : Φt(x) ∈ X2, ∀t > 0} ,
has an acyclic isolated coveringM =

⋃m
k=1Mk such that

each Mk is a weak repeller for X1. Then X2 is a uniform
strong repeller for X1.

Theorem 4. Assume that R0 > 1. Then the infection is
persistent.

Proof. Recall that solutions of the system (2) are said to
be persistent (or uniformly persistent) if there is an ε >
0 such that, for all solutions (x(t), y(t), z(t)) of (2) for
which x(0), y(0), z(0) > 0, we have

lim inf
t→+∞ x(t) ≥ ε, lim inf

t→+∞ y(t) ≥ ε, lim inf
t→+∞ z(t) ≥ ε.

To this end we use the persistence theory for infinite di-
mensional systems (Thieme, 1993). In order to apply The-
orem 4 of (Thieme, 1993), we define the sets

X =
{
(x, y, z) ∈ R

3 : x, y, z ≥ 0
}
, X1 = int(X),

X2 =
{
(x, y, z) ∈ R

3 : x = 0 or z = 0
}
.

We have X = X1 ∪ X2 and X1 ∩ X2 = ∅. Let
U = {(x, y, z) ∈ X : x ≤ K, y ≤M, z ≤M}. From
Lemma 1, it is easy to see that U is a compact absorbing
set. The semiflow associated with the system (2) is then
dissipative. Denote by ω(x0, y0, z0) the omega limit set of
the solution to the system (2) starting at (x0, y0, z0) ∈ X
(which exists by Lemma 1). We have to determine the
following set:

A∂ =
⋃

(x0,y0,z0)∈Y

ω(x0, y0, z0),

where

Y = {(x0, y0, z0) ∈ X2 : Φt(x0, y0, z0) ∈ X2, ∀t > 0} ,
in which Φt(x0, y0, z0) denotes the solution semiflow of
the system (2) starting at (x0, y0, z0). It follows from
Lemma 1 that X1 is an invariant set with respect to the
semiflow of the system (2).

Let (x0, y0, z0) ∈ ∂X2.There are two distinct cases:
1. x0 = 0. In this case we have, from the first equation of

the system (2),

dx
dt

≤ rx
(
1 − x

K

)
, x(0) = 0,

which implies that x(t) = 0, for all t > 0. The third
equation of the system (2) gives z(t) → 0 as t → +∞,
and hence y(t) → 0 as t → +∞. So the omega limit set
becomes ω(x0, y0, z0) = {E0}.
2. z0 = 0. Then, by (3), either x(0) = 0 or y(0) = 0. In
the first case, we have x0 = 0, which implies, according
to the first part of the proof, that ω(x0, y0, z0) = {E0}. If
y(0) = 0, then by the second and third equations of the
system (2) we obtain y(t),z(t) → 0 as t → +∞, and by
the first one x(t) → K as t→ +∞. Thus ω(x0, y0, z0) =
{E1}. Hence A∂ = {E0} ∪ {E1} and {E0}, {E1} are an
acyclic isolated covering for A∂ .

It remains to prove that {E0}, {E1} are weak re-
pellers for X1, i.e., W s(Ei) ∩X1 = ∅ for i = 0, 1, where

W s(Ei) = {(x0, y0, z0) ∈ X : ω(x0, y0, z0) = Ei}
is the stable manifold ofEi. Assume thatW s(E0)∩X1 
=
∅. Then there is a solution (x(t), y(t), z(t)) to the system
(2) such that (x(t), y(t), z(t)) → (0, 0, 0) as t → +∞.
Hence from the first equation of the system (2), there is a
T0 > 0 such that

d(lnx)
dt

≥ r
{

1 − x

K

}
− α

y

1 + qx
≥ r

2
, t > T0,

which implies that x(t) → +∞ as t → +∞, which is a
contradiction.

In the second case assume, on the contrary, that
there holds W s(E1) ∩ X1 
= ∅. There is then a
solution (x(t), y(t), z(t)) of the system (2) such that
(x(t), y(t), z(t)) → (K, 0, 0) as t→ +∞. SinceR0 > 1,
there are ε > 0 and T1 > 0 such that

x(t) > K − ε, t > T1,
β(K − ε)

1 + q(K − ε)
> δ.

(15)

From the system (2) and the first equation in (15), we
have

dy
dt

= βz − δy,

dz
dt

≥ μ
(K − ε)

1 + q(K − ε)
y − μz.

The second inequality in (15) implies

d
dt

(μy(t) + βz(t))

= μy(t)
(

β(K − ε)
1 + q(K − ε)

− δ

)
> 0,

for all t > T1. We deduce that μy(t)+βz(t) > μy(T1)+
βz(T1) > 0 for all t > T1, which contradicts the fact
that y(t), z(t) → 0 as t → +∞. By Lemma 2, X2 is a
uniform strong repeller for X1. This means that solutions
of system (2) are uniformly persistent. �
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In the rest of this section we investigate the dynam-
ics of the model (2) when E∗ is unstable. In the following
Theorem, we use the generalized Poincaré–Bendixon the-
orem to prove that, if the infected equilibrium is unstable,
then periodic oscillations of cell concentrations may oc-
cur.

Let x �→ f(x) ∈ R
n be a smooth vector field for x in

an open subset Ω ⊂ R
n. The differential equation

x′ = f(x), x ∈ Ω,

is said to be competitive in Ω if, for some diagonal matrix
H = diag(ε1, . . . , εn), where each εi is either 1 or −1, the

matrixH
(

∂f
∂x

)
H has non-positive off-diagonal elements

for all x ∈ Ω, where ∂f
∂x denotes the Jacobian matrix of

f . The following result is a consequence of the Poincaré–
Bendixon theorem.

Theorem 5. Assume that R0 > 1 and (6) holds. Then
any non-empty omega limit set L of the system (2) either
converges to E∗ or is a non-trivial periodic orbit. Fur-
ther, if E∗ is unstable, then every solution except those
with initial data on the stable manifold of E∗ or on ∂X0

approaches a non-trivial periodic orbit.

Proof. Define

Ω =
{
(x, y, z) ∈ R

3 : x > 0, y > 0, z > 0
}
.

Clearly, Ω is an open convex set, and by Lemma 1, the sys-
tem (2) is dissipative. Since R0 > 1, by Theorem 5 each
orbit (x(t), y(t), z(t)) starting in Ω enters the compact set

{(x, y, z) ∈ Ω : ε ≤ x ≤ K, ε ≤ y, z ≤M}

for t sufficiently large, and the only equilibrium point in
Ω is the infected equilibrium E∗.

Define the matrix H as follows:

H =

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ .

Then

HJ(E)H =

⎛
⎜⎜⎝
r − 2r x

K − r y
K − αy

(1+qx)2

0

− μy
(1+qx)2

−r x
K − α x

1+qx 0

−δ −β
−μ x

1+qx −μ

⎞
⎟⎟⎠ , (16)

where J(E) is the Jacobian matrix of the system (2) at
E = (x, y, z). Thus, by (16), the matrix HJ(E)H has all
its off-diagonal elements non-positive for all E ∈ Ω. The
system (2) is then competitive in Ω. Further, we have, at
the infected equilibrium E∗,

detJ(E∗)

= det

⎛
⎝ −a −b 0

0 −δ β
μy∗

(1+qx∗)2 μ δ
β −μ

⎞
⎠

= −bβ μy∗

(1 + qx∗)2
< 0.

By the generalized Poincaré–Bendixon theorem
(Zhu and Smith, 1994), we conclude that each orbit start-
ing in Ω converges to the infected equilibrium E∗ or is a
non-trivial periodic orbit.

To prove the last part of the theorem, it suffices to
prove that the Jacobian matrix J(E∗) has two eigenval-
ues with positive real parts and one negative eigenvalue
(Smith, 1995). Assume thatE∗ is unstable. We first prove
that J(E∗) has one negative eigenvalue λ1. By (16), the
matrix −HJ(E∗)H has all its elements non-negative. By
the Perron–Frobenius theorem −HJ(E∗)H has one real
positive eigenvalue and thus the matrix HJ(E∗)H has
one negative eigenvalue. Since HJ(E∗)H and J(E∗)
have the same eigenvalues, we conclude that J(E∗) has
one negative eigenvalue, which we denote by λ1. Denote
by λ2 = u2 + iv2 and λ3 = u3 + iv3 the other two eigen-
values. The characteristic polynomial P (λ) of J(E∗) can
be written in the following form:

P (λ) = (λ− λ1)(λ − λ2)(λ − λ3).

Now, since the coefficients of zero and second powers of
λ in P (λ) are positive (see (7)), it follows that the term
u2u3 + v2

2 + i(u2−u3)v2 is real and positive. Thus, u2 =
u3, which implies with the fact that E∗ is unstable, that
u2 > 0 and u3 > 0. This completes the proof. �

The following corollary is a direct consequence of
Theorem 5.

Corollary 1. Under the second hypothesis of Part (iii) in
Theorem 2 and for μ ∈ (μ1, μ2), each orbit of the system
(2) except those with initial data on the stable manifold of
E∗ or on X2 approaches a non-trivial periodic orbit.

5. Numerical simulations

In this section we report some numerical simulations of
the model (1) to illustrate our results on stability and bi-
furcations. To carry out the numerical simulations, we
have to determine the model parameters. Since the param-
eters which do not depend on the infection process such
as r,K ,δ are known and taken from the literature (see Ta-
ble 1), it remains to determine the unknown parameters,
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which are the maximal infected rate α and the half satu-
ration constant of the proliferation process 1/q. There are
no empirical values of these parameters in the literature.
However, we propose their estimates. Firstly, we use the
fact that the basic reproduction number R0, which repre-
sents the number of newly infected cells produced by one
infected cell at the beginning of the infection, can be com-
puted by using the parameter values given by Culshaw et
al. (2003). If we assume that all cells survive the incuba-
tion period, we find that R0 is around 13. We assume that
this number is approximately the same as in our model.
Further, by Section 2 and the assumption that all cells sur-
vive the incubation period (i.e., α = β), we know that
R0 = αK

δ(1+qK) , and then

αK

δ(1 + qK)
� 13. (17)

Secondly, it is well known that, for HIV-1 cell-to-cell
spread, the initial exponential growth of infected cells k is
a linear function of the initial concentration of infected
cells (Spouge et al., 1996; Dimitrov et al., 1993) and is
around 1 per day. Since the exponential growth of infected
cells at time t = 0 is given by y−1

0 dy(0)/dt, we obtain
from the second equation in (2) that k � αz0/y0−δ. If we
assume now that the initial concentrations of healthy and
infected cells are constants around x0 = 5× 105 cells/mL
and y0 = 5 × 102 cells/mL, respectively, we obtain that

k � αx0

1 + qx0
− δ. (18)

Knowing K , x0, δ and k (see Table 1) we can compute
q and α from Eqns. (17) and (18), and we find that q =
2.2 × 10−7/mL and α = 2.84 × 10−6/day.

Suppose that 50% of infected cells survive incuba-
tion, which corresponds to β = 1.42 × 10−6. Then
R0 = 6.25, a = 0.05, Δ = 7.33, D = −2.78. The
second condition of Part (iii) in Theorem 2 is then satis-
fied. The critical parameters are μ1 = 0.038, μ2 = 2.74.
If we take as the average delay μ = 1, which is a realistic
value since the incubation period is around 1 day (Spouge
et al., 1996), then Corollary 1 predicts that the solution
to the system (1) approaches a periodic solution. Figure
1 shows that in this case periodic oscillations of cell con-
centrations occur with a period around 25 days.

Assume now that 32% of infected cells survive in-
cubation, which corresponds to β = 0.9 × 10−6. We
obtain the following values: R0 = 4.16, a = 0.086,
Δ = 0.77 and D = −1.11. The corresponding values are
μ1 = 0.11, μ2 = 0.99, which is biologically realistic for
μ2. If we take μ = 0.9, we obtain Fig. 2, which shows pe-
riodic oscillations in cell concentrations. If we increase μ2

to the value of 1.1, numerical simulations give the plots in
Fig. 3, which shows damped oscillations of cell concen-
trations followed by convergence to the infected steady
state.

Finally, assume that 25% of infected cells survive in-
cubation, corresponding to β = 0.71 × 10−6. We have in
this case R0 = 3.25, a = 0.11 > 0, Δ = −0.23 < 0.
Condition (i) in Theorem 2 is satisfied and the theorem
predicts that the infected equilibriumE∗ is locally asymp-
totically stable. Numerical simulations (see Fig. 4) show
that in this case the concentrations of healthy and infected
cells converge to the infected equilibrium E∗.
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Fig. 1. Half infected cells survive incubation: µ = 1.
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Fig. 2. 32% of infected cells survive incubation: µ = 0.9.

6. Discussion

It is well known that HIV-1 is thought to be active in areas
such as the brain and the lymph nodes, where 98% of lym-
phocytes reside and in which cell-to-cell spread would be
a much more important mode of infection than cell-free
viral spread since viral replication in a system with rapid
cell turnover kinetics depends on cell-to-cell transfer of
virus (Culshaw et al., 2003; Dimitrov et al., 1993; Spouge
et al., 1996).

In this paper we modified the infection rate between
infected and healthy cells in the model proposed by Cul-
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Fig. 3. 32% of infected cells survive incubation: µ = 1.1.
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Fig. 4. 25% of infected cells survive incubation.

shaw et al. (2003) by assuming that the infection rate term
is a saturating function of cell concentration. By using the
method of the next generation matrix, the basic reproduc-
tion number R0 of the model is derived. We also proved
that the model has at most three equilibria: trivial, healthy
and, in case R0 > 1, there is a third equilibrium called the
infected equilibrium. Stability analysis shows that, when
R0 ≤ 1, infected cells dies out and the healthy equilib-
rium is globally stable. When R0 > 1, we proved that
the infection is persistent. When the infected equilibrium
is unstable, infective oscillations may occur but, unlike
the model of Culshaw et al. (2003), the system exhibits
two Hopf bifurcations μ1 and μ2 such that the infected
equilibrium is locally asymptotically stable either when
the average delay is sufficiently large (μ > μ2) or small
(μ < μ1).

Numerical simulations show that, if no more than
7.7% of infected cells survive the incubation period, in-
fected cells die out and the system converges to its healthy
equilibrium. If between 7.7% and 30% of infected cells
survive the incubation, then the system stabilizes at its in-

fected equilibrium, and when more than 30% of infected
cells survive the incubation, then we observe periodic os-
cillations in cell concentrations. Further, an increase in
the fraction of cells surviving the incubation β/α, would
increase the periods and amplitudes of cell concentrations,
and a reduction in such a fraction leads to damped oscil-
lations and eventually steady states.

Qualitatively, our model differs from that of Culshaw
et al. (2003) since under realistic parameter regimes it ex-
hibits two Hopf bifurcations and the infected steady state
is locally asymptotically stable either when the average
delay is sufficiently large or small. For the other values
of the delay, the model exhibits stable periodic solutions.
The existence of stable periodic solutions is due to the
third compartment, which is the compartment of latently
infected cells, since the system with only two compart-
ments (healthy and infected cells) doest not generate a pe-
riodic solution. This result confirm the experimental work
of Grossman et al. (1998), which showed that infected
and latently infected cells may not contribute significantly
to the viral load but may be instrumental in sustaining the
infection (Spouge et al., 1996).

Quantitatively, we observe in our model some over-
estimates in the periods of cell concentrations and the crit-
ical bifurcation value of cells surviving the incubation pe-
riod. If 75% of infected cells survive the incubation, our
model indicates a period of around 30 days of cell con-
centrations and a critical bifurcation value around 30, for
equivalent values of around 25 days and 22.5%, respec-
tively, in the model by Culshaw et al. (2003).

The model proposed in this paper is a first step in
studying cell-to-cell HIV-1 spread in non-well-mixed tis-
sue culture. Another compartmental models can be con-
sidered to take into account more significantly spatial het-
erogeneities in tissue culture. We leave this for a future
work.
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