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In this paper, we formulate a mathematical model of nonautonomous ordinary di
erential equations describing the dynamics of
malaria transmission with age structure for the vector population.	e biting rate of mosquitoes is considered as a positive periodic
function which depends on climatic factors. 	e basic reproduction ratio of the model is obtained and we show that it is the
threshold parameter between the extinction and the persistence of the disease. 	us, by applying the theorem of comparison and
the theory of uniform persistence, we prove that if the basic reproduction ratio is less than 1, then the disease-free equilibrium is
globally asymptotically stable and if it is greater than 1, then there exists at least one positive periodic solution. Finally, numerical
simulations are carried out to illustrate our analytical results.

1. Introduction

Malaria is an infectious disease caused by plasmodium
parasite which is transmitted to humans through the bites of
infectious female mosquitoes. According to the estimations
of World Health Organization (WHO) in 2015, 3.2 billion
persons were at risk of infection and 2.4 million new cases
were detected with 438,000 cases of deaths. However sub-
Saharan Africa remains the most vulnerable region with high
rate of deaths due to malaria.

To reduce the impact of malaria in the world, many
scienti�c e
orts were done including mathematical models
construction. 	e �rst model of malaria transmission was
developed by Ross [1]. According to Ross, if the mosquito
population can be reduced to below a certain threshold,
then malaria can be eradicated. Later, Macdonald did some
modi�cations to the model and included superinfection. He
showed that reducing the number of mosquitoes has little
e
ect on the epidemiology of malaria in areas of intense
transmission [2]. Nowadays, several mathematical models
have been developed in order to reduce the malaria death
rate in the world [3, 4]. In spite of the e
orts made, it is
still di�cult to predict future malaria intensity, particularly
in view of climate change.

It must be noticed that transmission and distribution
of vector-borne diseases are greatly in�uenced by envi-
ronmental and climatic factors. Seasonality and circadian
rhythm of mosquito population, as well as other ecological
and behavioural features, are strongly in�uenced by climatic
factors such as temperature, rainfall, humidity, wind, and
duration of daylight [5]. Moreover, in most mathematical
models, the mosquito life cycle is generally ignored because
eggs, larvae, and pupae are not involved in the transmission
cycle. 	at is a useful simpli�cation of the system but unfor-
tunately the results of these models do not predict malaria
intensity in most endemic regions. 	us, it is necessary to
consider the life cycle of mosquitoes and the seasonality
e
ect, which are very important aspects of the dynamics of
malaria transmission.

Recently, Moulay et al. [6] have formulated a mathe-
matical model describing the mosquito population dynamics
which takes into account autoregulation phenomena of eggs
and larvae stages. 	ey have de�ned a threshold and proved
that the growth of the mosquito population is governed
by that threshold. Considering the climatic factors and the
mosquitoes life cycle, we formulate a mathematical model
describing the dynamics of malaria transmission. We analyze
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the impact of the model describing the mosquito population
dynamics on the model of malaria transmission. Besides, by
using the comparison theorem and the theory of uniform
persistence, we, respectively, study the global stability of the
nontrivial disease-free equilibrium [7–10] and the existence
of positive periodic solutions.

	is paper is organized as follows. In Section 2, we
formulate the mathematical model of our problem. Section 3
provides the mathematical analysis of the model. Compu-
tational simulations are performed in Section 4 in order
to illustrate our mathematical results. In the last section,
Section 5, we conclude and give some remarks and future
works.

2. Model Formulation

Motivated by the compartmental models in [6, 11], we derive
an age-structured malaria model with seasonality to account
for the cross infection between mosquitoes and humans.
	e human population is divided into four epidemiological
categories representing the state variables: the susceptible class�ℎ, exposed class �ℎ, infectious class �ℎ, and recovered class �ℎ
(immune and asymptomatic, but slightly infectious humans).
In the life cycle of anopheles, there are mainly two major
stages: mature stage and aquatic stage. 	erefore, we divide
the mosquitoes population into these stages: immature and
mature.	e immature stage is divided in two compartments:
eggs class �, larvae and pupae class �. In the mature stage,
we have three compartments: the susceptible class ��, exposed
class��, and infectious class ��. At any time, the total number
of humans and mature mosquitoes is given, respectively, by�ℎ (�) = �ℎ (�) + �ℎ (�) + �ℎ (�) + �ℎ (�) , (1)	 (�) = �� (�) + �� (�) + �� (�) . (2)

It is assumed throughout this paper that

(H1) all vector population measures refer to densities of
female mosquitoes,

(H2) the mosquitoes bite only humans,

(H3) there is no vertical transmission of malaria,

(H4) all the new recruits are susceptibles.

2.1. Interactions between Humans and Mosquitoes. When an
infectious mosquito bites a susceptible human, the parasite
enters the body of the human with a probability 
�ℎ and the
human moves into the exposed class �ℎ. Some time a�er, he
leaves from class �ℎ to class �ℎ with rate �. Infectious humans
migrate into the class �ℎ a�er acquisition of their immunity
with rate �ℎ.	e immunized lose their immunity with rate  if
they do not have continuous exposure to infection. Humans
leave the total population through natural death rate �ℎ and
malaria death rate ��.

Similarly, when a susceptible mosquito bites an infectious
human, it enters the class �� with a probability 
ℎ�. Some
time a�er, it leaves from class �� to infective class �� with
rate ]� where it remains for life. Mature mosquitoes leave the
population through natural mortality ��.

Using the standard incidence as in the model of Ngwa
and Shu [4], we de�ne, respectively, the infection incidence
from mosquitoes to humans, �ℎ(�), and from humans to
mosquitoes, ��(�):

�ℎ (�) = 
�ℎ� (�) �� (�)�ℎ (�) , (3)

�� (�) = 
ℎ�� (�) �ℎ (�)�ℎ (�) + 
ℎ�� (�) �ℎ (�)�ℎ (�) . (4)

Furthermore, using the above assumptions, we obtain the
transfer diagram (Figure 1) of the model.

2.2. �e Mathematical Model. Using the above assumptions
and by making a balance of the movements in each class, we
obtain the following system:

���� (�) = � (1 − � (�)�� )	 (�) − (� + �) � (�) ,���� (�) = � (1 − � (�)�� )� (�) − (�� + ��) � (�) ,��ℎ�� (�) = Λ + �ℎ (�) − (�ℎ + �ℎ (�)) �ℎ (�) ,��ℎ�� (�) = �ℎ (�) �ℎ (�) − (�ℎ + �) �ℎ (�) ,��ℎ�� (�) = ��ℎ (�) − (�ℎ + �� + �ℎ) �ℎ (�) ,��ℎ�� (�) = �ℎ�ℎ (�) − (�ℎ + ) �ℎ (�) ,����� (�) = ��� (�) − (�� + �� (�)) �� (�) ,����� (�) = �� (�) �� (�) − (]� + ��) �� (�) ,����� (�) = ]��� (�) − ���� (�) .

(5)

	e growth of the whole human population and mature
vector is, respectively, described by the following equations:

��ℎ�� (�) = Λ − �ℎ�ℎ (�) − ���ℎ (�) ,�	�� (�) = ��� (�) − ��	 (�) . (6)
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Figure 1: 	e dashed arrows indicate the direction of the infection and the solid arrows represent the transition from one class to another.

Using (2), we get ��(�) = 	(�) − ��(�) − ��(�) and then the
model can be rewritten as follows:���� (�) = �(1 − � (�)�� )	 (�) − (� + �) � (�) ,���� (�) = � (1 − � (�)�� )� (�) − (�� + ��) � (�) ,�	�� (�) = ��� (�) − ��	 (�) ,��ℎ�� (�) = Λ + �ℎ (�) − (�ℎ + �ℎ (�)) �ℎ (�) ,��ℎ�� (�) = �ℎ (�) �ℎ (�) − (�ℎ + �) �ℎ (�) ,��ℎ�� (�) = ��ℎ (�) − (�ℎ + �� + �ℎ) �ℎ (�) ,��ℎ�� (�) = �ℎ�ℎ (�) − (�ℎ + ) �ℎ (�) ,����� (�) = �� (�)A (�) − �� (�) �� (�)− (]� + �� + �� (�)) �� (�) ,����� (�) = ]��� (�) − ���� (�) .

(7)

Mathematically model (7) can be written as follows:

�̇ (�) = � (�, � (�)) , (8)

where�(�) = (�(�), �(�), 	(�), �ℎ(�), �ℎ(�), �ℎ(�), �ℎ(�), ��(�),��(�))�. 	e function � : R+ × R9 → R
9 is �∞(R9) and

de�ned by� (�, � (�))

=
(((((((((((((((((
(

�(1 − � (�)�� )	 (�) − (� + �) � (�)� (1 − � (�)�� )� (�) − (�� + ��) � (�)��� (�) − ��	 (�)Λ + �ℎ (�) − (�ℎ + �ℎ (�)) �ℎ (�)�ℎ (�) �ℎ (�) − (�ℎ + �) �ℎ (�)��ℎ (�) − (�ℎ + �� + �ℎ) �ℎ (�)�ℎ�ℎ (�) − (�ℎ + ) �ℎ (�)�� (�) 	 (�) − �� (�) �� (�) − (]� + �� + �� (�)) �� (�)
]��� (�) − ���� (�)

)))))))))))))))))
)

. (9)

Let us consider � = (�1, �2)� and�(�) = (�1(�),�2(�))� with�1(�) = (�(�), �(�), 	(�))� and �2(�) = (�ℎ(�), �ℎ(�), �ℎ(�),�ℎ(�), ��(�), ��(�))�. 	en system (8) can be rewritten as
follows: �̇1 (�) = �1 (�1 (�) , �2 (�)) , (10)�̇2 (�) = �2 (�, �1 (�) , �2 (�)) , (11)

with the functions �1 and �2 de�ned as follows:�2 (�, �1 (�) , �2 (�))
=(((((
(

Λ+ �ℎ (�) − (�ℎ + �ℎ (�)) �ℎ (�)�ℎ (�) �ℎ (�) − (�ℎ + �) �ℎ (�)��ℎ (�) − (�ℎ + �� + �ℎ) �ℎ (�)�ℎ�ℎ (�) − (�ℎ + )�ℎ (�)�� (�) 	 (�) − �� (�) �� (�) − (]� + �� + �� (�)) �� (�)
]��� (�) − ���� (�)

)))))
)
,
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�1 (�1 (�) , �2 (�)) = ( �(1 − � (�)�� )	 (�) − (� + �) � (�)� (1 − � (�)�� )� (�) − (�� + ��) � (�)��� (�) − ��	 (�) ) .
(12)

System (10) describes the maturation cycle of mosquitoes and
system (11) describes the dynamics of malaria transmission.
System (10) is biologically well de�ned inΔ fl {(�, �, 	) ∈ R3

+ � ≤ ��, � ≤ ��, 	 ≤ ������} (13)

and system (11) is biologically well de�ned inΩ = {(�ℎ, �ℎ, �ℎ, �ℎ, ��, ��) ∈ R6
+ |�ℎ + �ℎ + �ℎ + �ℎ ≤ Λ�ℎ , �� + �� ≤ ������ } ; (14)

then model (7) is biologically well de�ned in Γ fl Δ × Ω.
3. Mathematical Analysis

3.1. Positivity and Boundedness of Solutions

Lemma 1 (see [6]). �e set Δ is a positive invariant region
under the �ow induced by (10).

We assume that

(H5) �(�) is a 5-periodic positive function with 5 = 12
months,

(H6) all the parameters of the model are positive except the
disease-induced death rate, ��, which is assumed to
be nonnegative.

�eorem 2. For any initial condition 7 ∈ R9
+, system (8) has a

unique solution. Further, the compact Γ is a positively invariant
set, which attracts all positive orbits in R

9
+.

Proof. For all 7 ∈ R9
+, the function � is locally Lipschitzian in�(�). It then follows through Cauchy-Lipschitz theorem that

system (8) has a unique local solution.
Furthermore, according to (6), we have��ℎ�� (�) = Λ − �ℎ�ℎ (�) − ���ℎ (�) ≤ Λ − �ℎ�ℎ (�) ,�	�� (�) = ��� (�) − ��	 (�) ≤ ���� − ��	 (�) . (15)

It then follows that if �ℎ(�) > Λ/�ℎ and 	(�) > ����/��,
then ��ℎ/��(�) < 0 and �	/��(�) < 0.

Let us consider the following di
erential equations:��ℎ�� (�) = Λ − �ℎ�ℎ (�) ,�	�� (�) = ���� − ��	 (�) (16)

with general solutions:�ℎ (�) = Λ�ℎ + (�ℎ (0) − Λ�ℎ) ?−
ℎ�,	 (�) = ������ + (	 (0) − ������ ) ?−
��. (17)

By applying the standard comparison theorem, we obtain,
for all � ≥ 0, �ℎ(�) ≤ Λ/�ℎ and 	(�) ≤ ����/�� if �ℎ(0)≤ Λ/�ℎ and 	(0) ≤ ����/��. 	us, the set Ω is positively
invariant with respect to system (11). 	erefore, from
Lemma 1, the set Δ is positively invariant with respect to
system (10).	en, we conclude that the compact set Γ = Δ×Ω
is positively invariant. 	us, all the solutions of system (8) are
nonnegative and bounded.

3.2. Disease-Free Equilibriums. Let us consider the following
threshold parameter: � = (�/(�+�))(�/(��+��))(��/��).	en
we have the following result.

Proposition 3 (see [6]). System (10) always has the mosquito-
free equilibrium A0 = (0, 0, 0).

(i) If � ≤ 1, then system (10) has no other equilibrium.

(ii) If � > 1, there is a unique endemic equilibriumA1 = (�∗, �∗, 	∗) = (1 − 1� )(��� , ��� , ���� ��� ) , (18)

where � = 1 + (� + �) ��������� ,� = 1 + (�� + ��)����� . (19)

Lemma 4. Model (7) has

(i) trivial disease-free equilibrium �0 = (0, 0, 0, �∗ℎ , 0, 0, 0,0, 0) if � ≤ 1,
(ii) nontrivial disease-free equilibrium �1 = (�∗, �∗, 	∗,�∗ℎ , 0, 0, 0, 0, 0) if � > 1, where �∗ℎ = Λ/�ℎ, 	∗ = �∗� =���∗/��, and �∗, �∗, and 	∗ are given above.

Proof. By solving the system �2(�, �1(�), �2(�)) = 0 at the
disease-free equilibrium, �ℎ(�) = �ℎ(�) = �ℎ(�) = ��(�) =��(�) = 0, ∀� ≥ 0, we get the equilibrium point �+1 =(�∗ℎ , 0, 0, 0, 0, 0) for system (11), with �∗ℎ = Λ/�ℎ. Moreover,
thanks to Proposition 3, system (10) has a unique mosquito-
free equilibrium (0, 0, 0) if � ≤ 1 and a unique endemic
equilibrium (�∗, �∗, 	∗) if � > 1. 	us, we conclude that
system (7) has a trivial disease-free equilibrium �0 = (0, 0, 0,�∗ℎ , 0, 0, 0, 0, 0) if � ≤ 1 and a nontrivial disease-free equilib-
rium �1 = (�∗, �∗, 	∗, �∗ℎ , 0, 0, 0, 0, 0) if � > 1.
Remark 5. We will only consider the equilibrium state �1
because it is more biologically realistic. So, in the rest of the
paper, we assume that � > 1.
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3.3. �reshold Dynamics. Linearizing system (8) at the equi-
librium state �1, we obtain the following system (here we
write down only the equations for the “diseased” classes):��ℎ�� (�) = 
�ℎ� (�) �� (�) − (�ℎ + �) �ℎ (�) ,��ℎ�� (�) = ��ℎ (�) − (�ℎ + �� + �ℎ) �ℎ (�) ,��ℎ�� (�) = �ℎ�ℎ (�) − (�ℎ + ) �ℎ (�) ,����� (�) = 
ℎ�� (�) 	∗�∗ℎ �ℎ (�) + 
ℎ�� (�) 	∗�∗ℎ �ℎ (�)− (]� + ��) �� (�) ,����� (�) = ]��� (�) − ���� (�) .

(20)

	is system can be rewritten as�E (�)�� = (� (�) − F (�)) E (�) , (21)

where E(�) = (�ℎ(�), �ℎ(�), �ℎ(�), ��(�), ��(�))� and �(�) andF(�) are 5 × 5matrix de�ned as follows:� (�)
=(((
(
0 0 0 0 
�ℎ� (�)0 0 0 0 00 0 0 0 00 
ℎ�� (�) 	∗�∗ℎ 
ℎm� (�) 	∗�∗ℎ 0 00 0 0 0 0

)))
)
,

F (�)
=((
(
�ℎ + � 0 0 0 0−� �ℎ + �� + �ℎ 0 0 00 −�ℎ �ℎ +  0 00 0 0 ]� + �� 00 0 0 −]� ��

))
)
.
(22)

Let us assume that H(�, �), � ≥ �, is the matrix solution of
the linear 5-periodic system�I�� = −F (�) I. (23)

	at is, for each � ∈ R, the 5 × 5 matrix H(�, �) satis�es the
equation���H (�, �) = −F (�) H (�, �) , ∀� ≥ �, H (�, �) = �, (24)

where � is the 5 × 5 identity matrix. 	us, the monodromy
matrix Φ−(�) of (23) is equal to H(�, 0), ∀� ≥ 0.

Let �� be the ordered Banach space of all 5-periodic
functions fromR toR5 which is equippedwith themaximum
norm ‖⋅‖ and the positive cone�+� fl {7 ∈ C� : 7(�) ≥ 0, ∀� ∈
R}. 	en, we can de�ne a linear operatorL : �� → �� by

(L7) (�) = ∫∞
0
H (�, � − N) � (� − N) 7 (� − N) �N,∀� ∈ R, 7 ∈ ��. (25)

It then follows from [12] thatL is the next infection operator,
and the basic reproduction ratio is R0 = O(L), the spectral
radius ofL.

In order to calculateR0, we consider the following linear5-periodic system:�P (�)�� = [ 1R� (�) − F (�)] P (�) ,∀� ∈ R+, R ∈ (0,∞) . (26)
Let U(�, �, R), � ≥ �, � ∈ R, be the evolution operator of
system (26) on R

5. ClearlyU(�, 0, 1) = Φ�−(�), ∀� ≥ 0. 	e
following result will be used in our numerical calculation of
the basic reproduction ratio.

Lemma 6 (see [12]). (i) If O(U(5, 0, R)) = 1 has a positive
solution R0, then R0 is an eigenvalue ofL, and henceR0 > 0.

(ii) If R0 > 0, then R = R0 is the unique solution ofO(U(5, 0, R)) = 1.
(iii)R0 = 0 if and only if O(U(5, 0, R)) < 1, for all R > 0.

3.4. Stability of Equilibrium State �1. In this section, we will
study the asymptotic behaviour of the nontrivial equilibrium�1; thus we have the following result, which will be used in
the proofs of our main results.

Lemma 7 (see [12]). �e following statements are valid:

(i) R0 = 1 if and only if O(Φ�−(5)) = 1.
(ii) R0 < 1 if and only if O(Φ�−(5)) < 1.
(iii) R0 > 1 if and only if O(Φ�−(5)) > 1.

Lemma 8 (see [6]). If � > 1, then A1 is globally asymptotically
stable in int(Δ), with respect to system (10).

�eorem9. �enontrivial equilibrium�1 is locally asymptot-
ically stable ifR0 < 1 and unstable ifR0 > 1.
Proof. LetA(�) be the Jacobian matrix of (8) evaluated at �1.
	en we have

A (�) = (A11 A12

A21 A22 (�)) , (27)
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where

A12 = (0 0 0 0 �(1 − �∗��) �(1 − �∗��)0 0 0 0 0 00 0 0 0 −�� −�� ),

A21 =(((((
(

0 0 00 0 00 0 00 0 00 0 00 0 0
)))))
)
,

A11

=(−(� + �) − �	∗�� 0 (� + �) �∗	∗(�� + ��) �∗�∗ − (�� + ��) − ��∗�� 00 �� −�� ),
A22 (�) = (−�ℎ � (�)0̂ � (�) − F (�))

(28)

with � (�) = (0 0  0 −
�ℎ� (�)) ,0̂ = (0, 0, 0, 0, 0)� . (29)

�1 is locally asymptotically stable ifO(ΦA(5)) < 1.	ematrix
A11 is a constant matrix and its characteristic equation is
given by ](^) = ^3 + N1^2 + N2^ + N3, whereN1 = (1 − 1� )( ������ + ����������) + �� + �� + � + �+ ��,N2 = [ ���������� (1 − 1�)] [ ������ (1 − 1� ) + �� + ��+ ��] + �������� (1 − 1� ) + �� (�� + ��) ,N3 = �� (1 − 1� ) [ �������� (1 − 1�) + (� + �) ������+ (�� + ��) ����������] .

(30)

If � > 1, then N1, N2, N3 and N1N2 − N3 are clearly positive.
So, thanks to Routh-Hurwitz criterion, all eigenvalues ofA11
have negative real part. It then follows that O(ΦA11(5)) < 1.
	us, the stability of �1 depends onΦA22(5).

	us, if O(Φ�−(5)) < 1, then O(ΦA22(5)) < 1 and then�1 is stable. If O(Φ�−(5)) > 1 then �1 is unstable. So, thanks
to Lemma 7, �1 is locally asymptotically stable ifR0 < 1 and
unstable ifR0 > 1.

Lemma 10 (see [13]). Let a = (1/5) ln O(Φ�(⋅)(5)); then there

exists a positive 5-periodic function V(�) such that ?��V(�) is a
solution of ḃ(�) = 	(�)b(�).
�eorem 11. If R0 < 1 and �� = 0, then �1 is globally
asymptotically stable.

Proof. If �� = 0, we can rewrite (6) as follows:��ℎ�� (�) = Λ − �ℎ�ℎ (�) ,�	�� (�) = ��� (�) − ��	 (�) . (31)

	us, there exists a period5� such that ∀� ≥ 5�,�ℎ(�) ≥ �∗
ℎ −c and 	(�) ≤ 	∗ + c, ∀c > 0.

At disease-free equilibrium, we have �∗
ℎ = �∗ℎ and �∗� =	∗. So, 	(�)/�ℎ(�) ≤ (	∗ + c)/(�∗ℎ − c). It then follows from

system (11) that��ℎ�� (�) ≤ 
�ℎ� (�) �� (�) − (�ℎ + �) �ℎ (�) , (32a)��ℎ�� (�) = ��ℎ (�) − (�ℎ + �ℎ) �ℎ (�) , (32b)��ℎ�� (�) = �ℎ�ℎ (�) − (�ℎ + )�ℎ (�) , (32c)����� (�) ≤ 
ℎ�� (�) 	∗ + c�∗ℎ − c �ℎ (�)+ 
ℎ�� (�) 	∗ + c�∗ℎ − c �ℎ (�)− (]� + ��) �� (�) ,
(32d)

����� (�) = ]��� (�) − ���� (�) . (32e)

Let us consider the following auxiliary system:��ℎ�� (�) = 
�ℎ� (�) �� (�) − (�ℎ + �) �ℎ (�) ,��ℎ�� (�) = ��ℎ (�) − (�ℎ + �ℎ) �ℎ (�) ,��ℎ�� (�) = �ℎ�ℎ (�) − (�ℎ + )�ℎ (�) ,����� (�) = 
ℎ�� (�) 	∗ + c�∗ℎ − c �ℎ (t)+ 
ℎ�� (�) 	∗ + c�∗ℎ − c �ℎ (�)− (]� + ��) �� (�) ,����� (�) = ]��� (�) − ���� (�) ,

(33)

which can be rewritten as follows:�ℎ�� (�) = e� (�) ℎ (�) ;ℎ (�) = (�ℎ (�) , �ℎ (�) , �ℎ (�) , �� (�) , �� (�))� (34)
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with

e� (�) =((((
(

−(�ℎ + �) 0 0 0 
�ℎ� (�)� − (�ℎ + �ℎ) 0 0 00 �ℎ − (�ℎ + ) 0 00 
ℎ�� (�) 	∗ + c�∗ℎ − c 
ℎ�� (�) 	∗ + c�∗ℎ − c − (]� + ��) 00 0 0 ]� −��
))))
)
. (35)

From Lemma 7, if R0 < 1, then O(Φ�−(5)) < 1. Clearly,
lim�→0+Φ��(5) = Φ�−(5) and, by continuity of the spectral
radius, we have lim�→0+O(Φ��(5)) = O(Φ�−(5)) < 1. 	us,
there exists c1 > 0 such that O(Φ��(5)) < 1, ∀c ∈ [0, c1[.

From Lemma 10, there exists a positive 5-periodic func-
tion V(�) such that ℎ(�) = ?��V(�) is a solution of (34).
Since O(Φ��(5)) < 1, a < 0. 	e 5-periodic function

V(�) is bounded and it then follows that lim�→∞ℎ(�) = 0.
Applying comparison theorem on system (32a)–(32e), we
get lim�→∞(�ℎ(�), �ℎ(�), �ℎ(�), ��(�), ��(�)) = (0, 0, 0, 0, 0).
Using the theory of asymptotically periodic semi�ow [[14],
	eorem 3.2.1], we have lim�→∞�ℎ(�) = �∗ℎ , lim�→∞	(�) =	∗ = �∗�. From Lemma 8, if � > 1 then A1 is globally
asymptotically stable, so lim�→∞�(�) = �∗ and lim�→∞�(�) =�∗. Hence, the equilibrium �1 is globally attractive.
3.5. Existence of Positive Periodic Solutions. System (8) is
constructed by coupling two subsystems. 	e term coupling
these two systems is given by the function ���(�). 	e cou-
pling takes place only in one direction because the dynamics
of system (11) depend on the dynamics of system (10). 	e
asymptotic behaviour of system (10) is given by Lemma 8.
Now we are going to study the existence of positive periodic
solutions of system (11):��ℎ�� (�) = Λ + �ℎ (�) − (�ℎ + �ℎ (�)) �ℎ (�) ,��ℎ�� (�) = �ℎ (�) �ℎ (�) − (�ℎ + �) �ℎ (�) ,��ℎ�� (�) = ��ℎ (�) − (�ℎ + �� + �ℎ) �ℎ (�) ,��ℎ�� (�) = �ℎ�ℎ (�) − (�ℎ + ) �ℎ (�) ,����� (�) = �� (�) 	 (�) − �� (�) �� (�)− (]� + �� + �� (�)) �� (�) ,����� (�) = ]��� (�) − ���� (�) .

(36)

Model (11) is well de�ned inΩ and if � > 1 it has a disease-free
equilibrium �+1 = (�∗ℎ , 0, 0, 0, 0, 0) with �∗ℎ = Λ/�ℎ.

Let us consider the following sets:� fl R
6
+,�0 fl {(�ℎ, �ℎ, �ℎ, �ℎ, ��, ��) ∈ � | �ℎ > 0, �ℎ> 0, �ℎ > 0, �� > 0, �� > 0} ,j�0 fl � \ �0.

(37)

Let l(�, m) be the unique solution of (11) with initial condi-
tions m, Φ(�) the periodic semi�ow generated by periodic
system (11), and A : � → � the Poincaré map associated
with system (11); namely,A (m) = Φ (5)m = l (5, m) , ∀m ∈ �,A� (m) = Φ (n5)m = l (n5,m) , ∀n ≥ 0. (38)

Proposition 12. �e sets �0 and j�0 are positively invariant
under the �ow induced by (11).

Proof. Note that if �0 is positively invariant, then j�0 is
positively invariant. 	us we only need to prove that �0 is
positively invariant.

For any initial condition m ∈ �0, solving the equations of
system (11) we derive that

�ℎ (�) = exp(−∫�
0
(�ℎ (�) + �ℎ) ��) [�ℎ (0)+ ∫�

0
(Λ + �ℎ (�) + �ℎ (�))⋅ exp(∫�

0
(�ℎ (
) + �ℎ) �
) ��]≥ exp(−∫�
0
(�ℎ (�) + �ℎ) ��)⋅ [∫�

0
(Λ + �ℎ (�) + �ℎ (�))⋅ exp(∫�

0
(�ℎ (
) + �ℎ) �
) ��] > 0, ∀� > 0,
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�ℎ (�) = ?−(
ℎ+�)� (�ℎ (0) + ∫�
0
�ℎ (�) �ℎ (�) ?(
ℎ+�)���)≥ ?−(
ℎ+�)� (∫�

0
�ℎ (�) �ℎ (�) ?(
ℎ+�)���) > 0, ∀� > 0,�ℎ (�) = ?−(
ℎ+
�+�ℎ)� (�ℎ (0) + ∫�

0
��ℎ (�) ?(
ℎ+
�+�ℎ)���)≥ ?−(
ℎ+
�+�ℎ)� (∫�

0
��ℎ (�) ?(
ℎ+
�+�ℎ)���) > 0,∀� > 0,�ℎ (�) = ?−(
ℎ+�)� (�ℎ (0) + ∫�

0
�ℎ�ℎ (�) ?(
ℎ+�)���)≥ ?−(
ℎ+�)� (∫�

0
�ℎ�ℎ (�) ?(
ℎ+�)���) > 0, ∀� > 0,�� (�) = ?∫�0 −(��(�)+
�+]�)
� [�� (0) + ∫�

0
�� (�)⋅ (	 (�) − �� (�)) ?∫�0 (��(�)+
�+]�)
���]≥ ?∫�0 −(��(�)+
�+]�)
� [∫�

0
�� (�) (	 (�) − �� (�))⋅ ?∫�0 (��(�)+
�+]�)
���] > 0, ∀� > 0,�� (�) = ?−
�� (�� (0) + ∫�

0
]��� (�) ?
��)≥ ?−
�� (∫�

0
]��� (�) ?
��) > 0, ∀� > 0.

(39)

	us, �0 is positively invariant. So, j�0 is also positively
invariant.

Note that, from 	eorem 2, Ω is a compact set which
attracts all positive orbits in �, which implies that the
discrete-time system A : � → � is point dissipative.
Moreover, ∀o0 ≥ 1, A�0 is compact; it then follows from
	eorem 2.9 in [15] that A admits a global attractor in�.
Lemma 13. IfR0 > 1, there exists q > 0 such that when ‖m −�+1 ‖ ≤ q, ∀m ∈ �0, we have lim sup�→∞‖A�(m) − �+1 ‖ ≥ q.
Proof. Suppose by contradiction that lim sup�→∞‖A�(m) −�+1 ‖ < q for some m ∈ �0. 	en, there exists an integer o ≥ 1

such that, for all n ≥ o, ‖A�(m) − e‖ < q. By the continuity
of the solution l(�, m), we have ‖l(�, A�(m)) − l(�, �+1 )‖ ≤ r
for all � ≥ 0 and r > 0. For all � ≥ 0, let � = n5 + �1, where�1 ∈ [0, 5] and n = [�/5]. [�/5] is the greatest integer less
than or equal to �/5. If ‖m − �+1 ‖ ≤ q, then by the continuity
of the solution l(�, m) we havettttl (�, m) − l (�, �+1 )tttt= ttttl (�1 + n5,m) − l (�1 + n5,e)tttt= ttttΦ (�1 + n5)m − Φ (�1 + n5)�+1 tttt= ttttΦ (�1)Φ (n5)m − Φ (�1)Φ (n5)�+1 tttt= ttttΦ (�1) A� (m) − Φ (�1) A� (�+1 )tttt= ttttΦ (�1) A� (m) − Φ (�1) �+1 tttt ≤ r.

(40)

It then follows that �∗ℎ−r ≤ �ℎ(�) ≤ �∗ℎ+r and	∗−r ≤ 	(�) ≤	∗ +r. So, there exists r∗ > 0 such that �ℎ(�)/�ℎ(�) ≥ 1 − r∗
and 	(�)/�ℎ(�) ≥ 	∗/�∗

ℎ − r∗.
From (11) we have��ℎ�� (�) ≥ 
�ℎ� (�) (1 − r∗) �� (�) − (�ℎ + �) �ℎ (�) ,��ℎ�� (�) = ��ℎ (�) − (�� + �ℎ + �ℎ) �ℎ (�) ,��ℎ�� (�) = �ℎ�ℎ (�) − (�ℎ + )�ℎ (�) ,����� (�) ≥ � (�) ( 	∗�∗

ℎ
− r∗) [
ℎ��ℎ (�) + 
ℎ��ℎ (�)]− (]� + ��) �� (�) ,����� (�) = ]��� (�) − ���� (�) .

(41)

Let us consider the following auxiliary linear system:�ℎ̂�� (�) = e�∗ (�) ℎ̂ (�) ;ℎ̂ (�) = (�̂ℎ (�) , �̂ℎ (�) , �̂ℎ (�) , �̂� (�) , �̂� (�))� (42)

with

e�∗ (�) =(((
(
−(�ℎ + �) 0 0 0 (1 − r∗) 
�ℎ� (�)� − (�ℎ + �ℎ) 0 0 00 �ℎ − (�ℎ + ) 0 00 
ℎ�� (�) (	∗�∗ℎ − r∗) 
ℎ�� (�) (	∗�∗ℎ − r∗) − (]� + ��) 00 0 0 ]� −��

)))
)
. (43)
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By applying the same method as above, if R0 > 1 thenO(Φ�	∗ (5)) > 1. In this case a is positive, and then ℎ̂(�) → ∞
as � → ∞. Moreover, since �0 is positively invariant, then
there exists an integer w ≥ o and a real number x > 0 such
that (�ℎ (w5) , �ℎ (w5) , �ℎ (w5) , �� (w5) , �� (w5))≥ xℎ̂ (0) . (44)

Applying the theorem of comparison principle, we get(�ℎ (w5 + �) , �ℎ (w5 + �) , �ℎ (w5 + �) , �� (w5 + �) ,�� (w5 + �)) ≥ xℎ̂ (�) , ∀� ≥ 0. (45)

It then follows that lim�→∞|�ℎ(�), �ℎ(�), �ℎ(�), ��(�), ��(�)| =∞, which contradicts the fact that solutions are bounded.

�eorem 14. If R0 > 1, then system (7) has at least one
positive periodic solution.

Proof. We �rst prove that A is uniformly persistent with
respect to (�0, j�0).

We de�ne the following sets:e = {m ∈ j�0 | A� (m) ∈ j�0, for any n ≥ 0} ,
D = {(�ℎ, 0, 0, 0, 0, 0) ∈ � | �ℎ ≥ 0} . (46)

Let us prove thate = D.
It is easy to remark that D ⊂ e . We only need to prove

thate ⊂ D.
Let m ∈ j�0 \D. If

(i) �ℎ(0) > 0, ��(0) > 0, and �ℎ(0) = ��(0) = �ℎ(0) = 0,
thenwehave �ℎ(�) > 0, �ℎ(�) > 0, ��(�) > 0,��(�) > 0,�ℎ(�) > 0, �ℎ(�) > 0, ∀� > 0,

(ii) �ℎ(0) = ��(0) = 0 and �ℎ(0) > 0, ��(0) > 0, �ℎ(0) >0, then we have �ℎ(�) > 0, �ℎ(�) > 0, ��(�) > 0,��(�) >0, �ℎ(�) > 0, �ℎ(�) > 0, ∀� > 0.
For any cases, it follows that (�ℎ(�), �ℎ(�), �ℎ(�), �ℎ(�), ��(�),��(�)) ∉ j�0 for � > 0 su�ciently small, which contradicts
the fact that j�0 is positively invariant. Hence, e ⊂ D.
	us, it then follows thate = D.

	e equality e = D implies that �+1 is a �xed point ofA and acyclic ine ; every solution ine approaches to �+1 .
Moreover, Lemma 13 implies that �+1 is an isolated invariant
set in � and U�(�+1 ) ∩ �0 = 0. By the acyclicity theorem
on uniform persistence for maps, 	eorem 1.3.1 and Remark1.3.1 in [14], it follows that A is uniformly persistent with
respect to �0. 	us, 	eorem 3.1.1 in [14] implies that the
periodic semi�ow Φ(�) : � → � is also uniformly persistent
with respect to �0. 	anks to 	eorem 1.3.6 in [14], model
(11) has at least one5-periodic solution l̃(�, m∗)withm∗ ∈ �0
and � ≥ 0. Now, we show that l̃(�, m∗) is positive.

Suppose that m∗ = 0; then, for all � > 0, we obtainl̃!(�, m∗) > 0, for � = 1, 2, 3, 4, 5, 6. By using the periodicity of

the solution, we have �∗ℎ (0) = �∗ℎ(o5) = 0, �∗ℎ (0) = �∗ℎ (o5) =0, �∗ℎ (0) = �∗ℎ (o5) = 0, �∗ℎ (0) = �∗ℎ (o5) = 0, �∗�(0) =�∗�(o5) = 0, �∗�(0) = �∗�(o5) = 0, ∀o ≥ 1, which contradicts
the fact that l̃!(�, m∗) > 0 for � = 1, 2, 3, 4, 5, 6. So, the periodic
solution is positive.

4. Numerical Simulation

In this section, we will present a series of numerical simula-
tions of model (11) in order to support our theoretical results,
to predict the trend of the disease, and to explore some control
measures.

4.1. Initial Conditions and Estimation of �(�). To validate our
results, we choose the following initial conditions: �(0) =2400, �(0) = 1200, �ℎ(0) = 1500, �ℎ(0) = 50, �ℎ(0) = 200,�ℎ(0) = 50, ��(0) = 3000, ��(0) = 100, ��(0) = 500, and	(0) = 3600. Our numerical simulation will be performed
using the MATLAB technical computing so�ware with the
fourth-order Runge–Kutta method [16].

Using the method developed in [11], we express the biting
rate as follows:� (�) = �0 − 1.83692 cos (0.523599�)− 0.175817 cos (1.0472�)− 0.166233 cos (1.5708�)− 0.16485 cos (2.0944�)− 0.17681 cos (2.61799�)− 1.37079 sin (0.523599�)+ 0.296267 sin (1.0472�)+ 0.2134 sin (1.5708�)− 0.295228 sin (2.0944�)− 0.201712 sin (2.61799�) ,

(47)

with �0 ≥ 3.
4.2.�e Model Parameters and�eir Dimensions. Numerical
values of parameters are given in Table 1.

4.3. Numerical Results. Using the above initial conditions, we
now simulate model (11) in order to illustrate our mathemat-
ical results.

By taking �0 = 7, �� = 0.0028, 
�ℎ = 0.022, 
ℎ� = 0.48,
ℎ� = 0.048, � = 180, � = 15, � = 6, �� = 7.5, �� = 15,�� = 3.4038 and considering the above initial conditions, we
get � = 25.1819,R0 = 1.3310 > 1 and Figures 2, 3, and 4.

Figure 2 describes the evolution of infected (exposed
and infectious) humans. Figure 3 describes the evolution
of infected (exposed and infectious) mosquitoes and Fig-
ure 4 describe the evolution of susceptible humans and
mosquitoes. Figures 2 and 3 show that malaria remains
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Table 1: Values for constant parameters for the malaria model.

Parameter Description Value Reference DimensionΛ Constant recruitment rate for humans 400 Estimated Humans/month�ℎ Human death rate 0.019 Estimated /month� Transmission rate of humans from �ℎ to �ℎ 3.04 [17] /month�� Disease-induced death rate for humans 0.0028 [11] /month�ℎ Recovery rate of humans 0.0159 [11] /month Per capita rate of loss of immunity for humans 0.0167 [11] /month�� Transfer rate from � to adult 15 [6] /month�� Death rate for adult vectors 3.4038 [11] /month

]� Transmission rate of mosquitoes from �� to �� 2.523 [11] /month
�ℎ Probability of transmission of infection from �� to �ℎ 0.022 [17] Dimensionless
ℎ� Probability of transmission of infection from �ℎ to �� 0.48 [17] Dimensionless
ℎ� Probability of transmission of infection from �ℎ to �� 0.048 [17] Dimensionless�� Available breeder sites occupied by eggs 30000 Estimated Space�� Available breeder sites occupied by larvae 18000 Estimated Space� Transfer rate from � to � 15 [6] /month� Eggs laying rate 180 [6] /month� Death rate of eggs 6 [6] /month�� Larvae death rate 6 [6] /month
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Figure 2: Distribution of infected humans.

persistent in the two populations. Besides, we observe that

system (11) has one positive periodic solution. So, these

numerical results illustrate the result of our 	eorem 14.

In order to understand the model behaviour around the

disease-free equilibrium, we consider the same above initial

conditions and the following values: �0 = 4, �� = 0, 
�ℎ =0.022, 
ℎ� = 0.24, 
ℎ� = 0.024, � = 180, � = 15, � = 6,
�� = 7.5, �� = 15, �� = 6. 	en we get � = 14.2857 andR0 =0.2602 < 1. Figures 5 and 6 illustrate that the disease dies out
in both populations. 	us, the numerical results are the same

as what we got in	eorem 11.

4.4. Parameters of Control of Malaria. Now, we assume that

people becamemore conscious about the malaria disease and
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Figure 3: Distribution of infected mosquitoes.
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Figure 4: Distribution of susceptible humans and mosquitoes.

they use some e�cient methods to reduce the proliferation of
mosquitoes. 	at reduction can perhaps consist in �ghting
against the development of eggs, larvae, and pupa, �rstly,
by using chemical application methods (larvicide) or by
introducing larvivore �sh, and secondly, by using ecological
methods (cleaning up the environment) to reduce the breed-
ing sites of eggs and larvae. Let �1, �2 ∈ [0, 1[, respectively,
be the e�ciency of both intervention measures. So, we will

use �̃ = (1 − �1)�, �̃� = (1 − �2)��, and �̃� = (1 − �2)��

in order to evaluate their impact on the dynamics of malaria
transmission.

	us, by considering the above initial conditions and by
taking �0 = 7, �� = 0.0028, 
�ℎ = 0.022, 
ℎ� = 0.48, 
ℎ� =0.048, �� = 3.4038, we obtain the following results.

(i) Numerical Results for �1 ≃ 89%. For this value, we get�̃ = 2.8204 and R0 = 0.6414. Moreover, according to
Figure 7, we notice that the distribution of infected humans
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and mosquitoes has highly reduced and the malaria is
progressively dying out in the populations.

(ii) Numerical Results for �2 = 80%. Using �2 = 0.8, we get�̃� = 6000, �̃� = 3600, and R0 = 0.5953. Further, Figure 8
clearly shows that the disease is quickly disappearing from the
populations.

Remark 15. We must notice that the two parameters are
important in the malaria transmission because a little
perturbation of those parameters in�uences the dynamics of

malaria transmission. So they can be used to �ght against the
persistence of the disease. 	e control �1 is e�cient but its
action is very slow in �nite time, but the control �2 is the
best because it is more optimal and its action is very quick.
	us cleaning up the environment can be a very good mean
of controlling malaria in the populations.

5. Conclusion

In this paper, we have presented a seasonal determinist model
of malaria transmission. From the theoretical point of view,
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Figure 7: Distribution of infected humans and mosquitoes for � = 80, � = 10, � = 15, �� = 6, and �� = 14.
we have shown that the basic reproduction ratio, R0, is
the distinguishing threshold parameter of the extinction or
the persistence of the disease: if R0 is less than 1 malaria
disappears in the human and mosquito populations and if it
is greater than 1malaria persists.

It also emerges from our study that the transmission of
malaria is highly in�uenced by the dynamics of immature
mosquitoes and depends on the regulatory threshold param-
eter of the mosquito population, �. 	us, the severity of
malaria increases with this parameter. So, the life cycle of the
anopheles is a very important aspect that must be taken into
account in malaria modeling.

Moreover, we have shown that malaria transmission can
be controlled by �ghting against the proliferation of the
mosquitoes, namely, by reducing the value of � or by reducing

the value of available breeder sites, �� and ��. We have
proved that the reduction of the available breeder sites is a
very e�cient and more ecological method in �ghting against
malaria transmission. It then follows that environmental
sanitation can be a very goodmeans to control malaria in the
endemic regions.

However, it must be noticed that our model is limited due
to the following reasons: (i) we have not considered the e
ect
of climate change on the life cycle ofmosquitoes. (ii)	e larva
and pupa class were not distinguished.

In the future, one can develop a more realistic model by
incorporating the above important factors and by considering
the general force of infection. In addition, we can also
take into account the degree of vulnerability of human
populations in the model.



14 Journal of Applied Mathematics

Exposed humans

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500 6000

Time (month)

Infectious humans

0

200

400

600

800

1000

1200

I H

100 200 300 400 500 6000

Time (month)

Infectious mosquitoes

0

50

100

150

200

250

300

350

400

450

500

I m

100 200 300 400 500 6000

Time (month)

Exposed mosquitoes

0

100

200

300

400

500

600

700

E
m

100 200 300 400 500 6000

Time (month)

E
H

Figure 8: Distribution of infected humans and mosquitoes for � = 180, � = 15, � = 6, �� = 15, and �� = 7.5.
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