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Abstract

Background: Understanding the interdependencies among inflammatory mediators of tissue damage following

traumatic brain injury (TBI) is essential in providing effective, patient-specific care. Activated microglia and

elevated concentrations of inflammatory signaling molecules reflect the complex cascades associated with

acute neuroinflammation and are predictive of recovery after TBI. However, clinical TBI studies to date have

not focused on modeling the dynamic temporal patterns of simultaneously evolving inflammatory mediators,

which has potential in guiding the design of future immunomodulation intervention studies.

Methods: We derived a mathematical model consisting of ordinary differential equations (ODE) to represent

interactions between pro- and anti-inflammatory cytokines, M1- and M2-like microglia, and central nervous system

(CNS) tissue damage. We incorporated variables for several cytokines, interleukin (IL)-1β, IL-4, IL-10, and IL-12, known to

have roles in microglial activation and phenotype differentiation. The model was fit to cerebrospinal fluid (CSF)

cytokine data, collected during the first 5 days post-injury in n = 89 adults with severe TBI. Ensembles of model fits

were produced for three patient subgroups: (1) a favorable outcome group (GOS = 4,5) and (2) an unfavorable

outcome group (GOS = 1,2,3) both with lower pro-inflammatory load, and (3) an unfavorable outcome group (GOS =

1,2,3) with higher pro-inflammatory load. Differences in parameter distributions between subgroups were ranked

using Bhattacharyya metrics to identify mechanistic differences underlying the neuroinflammatory patterns of patient

groups with different TBI outcomes.

Results: Optimal model fits to data showed different microglial and damage responses by patient subgroup. Upon

comparison of model parameter distributions, unfavorable outcome groups were characterized by either a prolonged,

pathophysiological or a transient, sub-physiological course of neuroinflammation.

Conclusion: By developing a mathematical characterization of inflammatory processes informed by clinical data, we

have created a system for exploring links between acute neuroinflammatory components and patient outcome in

severe TBI.
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Background
The debilitating impact of traumatic brain injury (TBI) af-

fects the lives of an estimated 10 million athletes, soldiers,

and civilians every year around the world [1]. Despite

shared physical, social, and economic burdens, these indi-

viduals experience unique patterns of brain damage and

physiological responses following injury [2, 3]. Potent anti-

inflammatory treatments have generally been unsuccessful

for such a diverse patient population [4–6]. This issue of

heterogeneity renders TBI treatment an immense clinical

challenge due to known variability in the (1) patient popu-

lation, (2) initial injury severity, (3) secondary injury mech-

anisms, and (4) emergent co-pathologies [3, 6, 7].

Neuroinflammation has long been identified as a sec-

ondary injury mechanism following TBI and is emerging

as a major contributor to chronic neurological pathologies

and outcome [2, 5]. Recent work has investigated the

multifaceted role of neuroinflammation post-TBI [3, 6, 8,

9] in attempts to elucidate heterogeneity in the response

that drives different patient outcomes. Resident central

nervous system (CNS) microglia, which are immediately

activated after traumatic insult and propagate the innate

neuroinflammatory response, are implicated with injury-

induced neuroinflammation as multi-dimensional re-

sponders. Research guided by previous macrophage stud-

ies suggests that microglia are selectively polarized via

cytokine signaling to a spectrum of functional phenotypes

ranging from a classic pro-inflammatory M1-like state to

an anti-inflammatory M2-like state. Each phenotypic state

has its respective role in the neuroinflammatory sequence

including phagocytosis of damaged and dysfunctional neu-

rons, neurogenesis, tissue repair and restoration, and im-

mune regulation [2, 5, 10]. Distinguishing these functional

phenotypes in humans by in vivo imaging techniques

(such as positron emission tomography) is still in its in-

fancy [11]. Alternative methodologies are warranted to

complement these technological advancements and to

characterize the temporal progression of microglial activa-

tion and functionality post-injury.

Characterizing the temporal dynamics of interdepend-

ent inflammatory cytokine cascades following injury is a

critical step toward understanding the interplay between

physiological neuroprotection and pathological neurotox-

icity with respect to acute neuroinflammation and micro-

glia activity [9, 12]. Mechanistic mathematical modeling

can be an effective framework for this goal because it pro-

vides a representation of the simultaneous evolution of

inflammatory mediators. Ordinary differential equation

(ODE) models, in particular, have been commonly used to

investigate the time-dependent interactions in complex

inflammatory networks [13–17]. Equations are derived

to represent specific biological mechanisms and fit to

time courses of clinical variables. This methodology

can facilitate the exploration of inflammatory mediator

interactions, indicators of patient prognosis, and thera-

peutic influences.

In the current study, we derived an ODE model that in-

corporates information about cerebrospinal fluid (CSF)

biomarkers and their role in regulating both microglial

behavior and subsequent secondary tissue damage. We

present model fits to clinical CSF cytokine data, and quali-

tative projections of microglial and tissue damage states.

From these results, we derived ensembles of model param-

eters associated with distinct patient clusters with favorable

and unfavorable scores on the Glasgow Outcome Scale

(GOS) at 6 months post-injury. We propose this modeling

framework as a tool to suggest differences in underlying

mechanisms that potentially contribute to the temporal di-

versification of acute neuroinflammatory patterns after in-

jury. We demonstrate these mechanistic computational

modeling results as proof-of-concept data that can provide

key qualitative insights, to be complemented by subse-

quent experimental testing of model predictions, toward

the design of personalized intervention strategies for TBI.

Materials and methods
Study protocol/TBI participants

This study was approved by the Institutional Review Board

at the University of Pittsburgh. We utilized clinical, demo-

graphic, and CSF inflammatory biomarker data from n = 89

individuals with severe TBI who were between 16 and

75 years of age and had admission Glasgow Coma Scale

(GCS) scores ≤ 8 with positive findings on head computed

tomography. Participants were excluded under the follow-

ing circumstances: a penetrating TBI, documented pro-

longed cardiac/respiratory arrest at the time of injury,

evidence of brain death in the first 3 days of injury, or an

Abbreviated Injury Scale (AIS) score ≥ 5 in a non-head

region. Based on International Classification of Disease

(ICD)-9 codes reported at the time of acute care discharge,

no individuals in this study had a history of or concurrent

malignant neoplasms (implicating cancer) at the time of in-

jury. Individuals with TBI received care consistent with The

Guidelines for the Management of Severe Head Injury [18].

CSF sample collection and processing

CSF samples (n = 567) were collected up to twice daily via

extraventricular drain, as close to the hours of 7 AM and

7 PM as possible, for up to 5 days after injury as a part of

routine care. In some instances, it was not possible to ob-

tain CSF samples due to conflicts with clinical care, minimal

CSF output, or removal from the intensive care unit (ICU).

Neuroinflammatory markers were measured using

Luminex™ bead array assays (Millipore, Billerica, MA).

These markers included interleukin (IL)-1β, IL-4, IL-5,

IL-6, IL-7, IL-8, IL-10, IL-12, tumor necrosis factor alpha

(TNF-α), soluble vascular adhesion molecule-1 (sVCAM-

1), soluble intracellular adhesion molecule-1 (sICAM-1),
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and soluble Fas (sFAS). All inflammatory markers were

considered in principal component and cluster analyses,

as reported previously [19]. However, only a subset of

these markers (IL-1β, IL-4, IL-10, and IL-12) was utilized

in the mathematical model to represent hallmark pro-

and anti-inflammatory mediators of microglia activity

and brain tissue integrity [2, 20].

Demographic and clinical variables

Demographic and clinical variables were collected via

in-person interview and electronic medical record ab-

straction. The variables reported include age, sex, body

mass index (BMI), injury severity scale (ISS) score,

best GCS score in 24 h, and length of stay in acute care.

The functional capacity of patients was assessed using

the GOS at 6 months to measure long-term global re-

covery. Individuals received the following GOS scores

accordingly: (1) dead, (2) vegetative state, (3) severe dis-

ability, (5) moderate disability, and (5) good recovery [21].

Statistical analysis

Patient demographic, clinical, and inflammatory data

were statistically analyzed using SAS version 9.4 (SAS

Institute Inc., Cary, NC). Descriptive measures included

mean, median, standard error of the mean (SE), and

interquartile range (IQR) for continuous variables and

percentages for categorical variables. Bhattacharyya sta-

tistics were calculated using STATA version 14 (Stata-

Corp, College Station, TX). Statistical significance was

set as p < 0.05 in this study.

Principal component and cluster analysis

Principal component analysis (PCA) previously reported

by R.G. Kumar et al. identified sets of inflammatory

markers that contribute the greatest variance to acute

CSF inflammatory profiles (days 0–5 post-TBI) [19]. In-

dividuals were assigned a score for each significant prin-

cipal component (PC) based on their levels of the

inflammatory markers that contribute to that particular

PC. A non-hierarchical k-means cluster analysis was then

conducted on the scores for significant PCs for all individ-

uals, characterizing patient subpopulations with similar

acute neuroinflammatory profiles post-TBI. This analysis

yielded two major cluster groups that were distinguished

by distinct CSF inflammatory profiles for days 0–3 post-

TBI. Within clusters 1 and 2 identified by R.G. Kumar et al.

[19], we grouped individuals in each cluster based on GOS

scores. Unfavorable and favorable outcome groups were

defined as individuals exhibiting a 6-month GOS = 1,2,3

(dead/vegetative state/severe disability) or a 6-month

GOS= 4,5 (moderate disability/good recovery), respectively.

These clustering techniques produced the following pa-

tient groups: an unfavorable outcome group with a rela-

tively high inflammatory load (cluster 1), a favorable

outcome group with a lower inflammatory load (cluster

2A), and an unfavorable outcome group with a similar

lower load (cluster 2B).

Ordinary differential equation model development

We built upon the initial statistical work described above

by R.G. Kumar et al. [19], which identified patient sub-

groups with distinct acute neuroinflammatory profiles, by

using mathematical modeling techniques to investigate

potential mechanisms in post-TBI neuroinflammation that

may underlie the observed patient heterogeneity. A system

of ODEs was derived to represent the temporal dynamics

of four cytokines (IL-1β, IL-4, IL-10, and IL-12), which

were determined from the literature to constitute the min-

imal set needed to represent the range of roles played by

cytokines in regulating both microglial responses and sub-

sequent secondary CNS tissue damage time courses [2,

20]. The equations consist of terms that represent bio-

logical processes—such as production, inhibition, satur-

ation, or decay of particular inflammatory mediators—and

capture changes in those inflammatory mediator levels

over time. ODE models provide a framework for repre-

senting multiple interactions and dependencies between

mediators post-injury.

To guide the derivation of the ODE model, a simplified

conceptualization of microglial contributions to acute neu-

roinflammation post-TBI was formed (Fig. 1). This theoret-

ical model was limited to a core set of mediators previously

identified as having distinct roles in microglial behavior.

The corresponding reduced mathematical model, much in

the spirit of previous reduced ODE models that have been

proven to be useful in the analysis of acute inflammatory

responses [13–17], aimed to characterize acute neuroin-

flammatory and microglial dynamics through seven

differential equations for the following biological vari-

ables: M1-like microglia (M1), M2-like microglia (M2),

IL-1β (IL1), IL-12 (IL12), IL-10 (IL10), IL-4 (IL4), and

secondary tissue damage (D). The differential equations

include 52 parameters with direct biological interpreta-

tions, as shown in Table 1. The following sections detail

the acute neuroinflammatory processes post-TBI that

are encompassed within our ODE model and a priori

information that guided its derivation.

Microglial activation from resting state

Since the contemporary concept of resting microglial acti-

vation to a classic pro-inflammatory M1-like or an alter-

native anti-inflammatory M2-like state is still evolving,

our model focuses on influences from the CNS cytokine

microenvironment that likely affect microglial dynamics

following TBI. Resting microglia (mr), the brain’s resident

immune cells, continually sample the local microenviron-

ment, surveying for any deviation from homeostasis [22,

23]. Following TBI, resting microglia polarize into two
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broad activation states, M1- or M2-like, in response to

early cellular mediators released by injured cells [23, 24].

The terms Rm1 and Rm2 below describe the cytokine-

based cues for the activation of resting microglia into M1-

and M2-like microglia, respectively. The numerator in the

equation for Rm1 is a mathematical expression known as

a Hill function that tends to a constant value as IL1 and

IL12 become large. This term represents the saturating

promotion of M1 microglial polarization by the initiator

molecule IL-1β and pro-inflammatory molecule IL-12.

Both the denominator of the Rm1 expression and the full

Rm2 expression are based on the action of anti-inflamma-

tory agents, IL-10 and IL-4, which accumulate at the site

of injury, limiting further M1 polarization and driving

microglia differentiation to the M2 state:

Rm1 ¼

kn1∙IL1þ kn12∙IL12ð Þxn

bxnn þ kn1∙IL1þ kn12∙IL12ð Þxn

1þ IL10þIL4
a∞1

� �2

Rm2 ¼
kn4∙IL4þ kn10∙IL10ð Þzn

yznn þ kn4∙IL4þ kn10∙IL10ð Þzn
:

Together, these terms shape how the brain’s resting

microglia reserve is allocated to undergo M1- or M2-like

activation based on cytokine cues from the local

environment [23, 25, 26]. For modeling purposes, we as-

sume that resting microglia (mr) are produced at a con-

stant rate smr and decay at a constant rate μmr, and that

the overall level of activation rapidly equilibrates to

changes in Rm1 and Rm2. That is, we set to zero the

right-hand side of the ODE:

dmr

dt
¼ smr−Rm1∙mr−Rm2∙mr−μmr ∙mr ð1Þ

and solve for mr to derive the quasi-steady-state

expression:

mr ≈
smr

Rm1þ Rm2þ μmr

: ð2Þ

Microglial polarization dynamics

Although recent conceptual reviews have suggested that

there may be an activation spectrum of microglial states

[2, 9, 10, 22, 23], for simplicity we consider the two ex-

tremes of characteristic M1 and M2 states. In addition to

the activation of resting microglia described in “Microglial

activation from resting state” subsection, and basic decay

or cell death rates, levels of microglia in these states are

influenced by the repertoire of neuroinflammatory reac-

tions occurring post-TBI. These processes cause cytokine

Fig. 1 TBI acute neuroinflammation network schematic. Model variables include resting microglia (mr), M1-like microglia (M1), M2-like microglia

(M2), interleukin(IL)-1 (IL1), IL-12 (IL12), IL-4 (IL4), IL-10 (IL10), tissue damage (D), and type 2 T-helper cells (Th2). Model components appearing next

to pathways stimulate (+) or inhibit (−) the correspoding reaction
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levels to fluctuate and, in turn, drive microglia phenotype

switching [22, 27]. We introduce a Hill function Rms to

represent contributions of anti-inflammatory mediation

by IL-4 and IL-10 toward shifting neurotoxic M1-like

microglia into a neuroprotective and reparative M2-like

microglia state:

Rms ¼
τn4∙IL4þ τn10∙IL10ð Þgn

m
gn
n þ τn4∙IL4þ τn10∙IL10ð Þgn

:

The majority of cells maintain M2-like status once cel-

lular debris has been cleared from the initial injury and

regenerative processes are initiated; therefore, we do not

include switching from the M2 to the M1 phenotype.

The equations describing the M1- and M2-like microglia

population changes thus take the form:

dM1

dt
¼ Rm1∙mr−Rms∙M1−μM1∙M1 ð3Þ

dM2

dt
¼ Rm2∙mr þ Rms∙M1−μM2∙M2: ð4Þ

Pro-inflammatory processes

M1-like microglia are the major agents of pro-in-

flammatory cytokine secretion in the model, with a

release rate that we describe using a term Rp. In

addition to a baseline level of pro-inflammatory cytokine

release, this term includes the promotion of M1 pro-

inflammatory cytokine secretion by IL-12. Also in-

cluded in the numerator of Rp is the effect of dam-

aged tissue, with level D, which releases damage-

associated molecular patterns (DAMPs) that augment

Table 1 Biological interpretations of ODE model parameters for

acute neuroinflammation

Parameter Description

Resting microglia

smr Source of resting microglia (mr)

μmr Decay rate of mr

M1-like activation

kn1 Rate of M1 activation by IL1

kn12 Rate of M1 activation by IL12

bn Half-activation constant

xn Hill coefficient

a
∞1 Threshold-like factor for IL4 and IL10 inhibition of M1

polarization

M2-like activation

kn4 Rate of M2 activation by IL4

kn10 Rate of M2 activation by IL10

yn Half-activation constant

zn Hill coefficient

Microglial phenotype switch

τn4 Relative effectiveness of IL4 in driving M1 to M2
differentiation

τn10 Relative effectiveness of IL10 in driving M1 to M2
differentiation

mn Half-activation constant

gn Hill coefficient

Microglial decay

μM1 Decay rate of M1

μM2 Decay rate of M2

Cytokine release by Th2 cells

ktbase Baseline rate of Th2 cytokine release

ktn12 Relative effectiveness of IL12 in inhibiting the Th1 pro-
inflammatory response and promoting Th2 anti-
inflammatory response

rn Half-activation constant

cn Hill coefficient

Pro-inflammatory cytokines

kM1base Baseline rate of M1 pro-inflammatory cytokine release

kcd Relative effectiveness of tissue damage (D) in promoting
pro-inflammatory cytokine production

vn Half-activation constant

hn Hill coefficient

kpn1 Relative rate of IL1 release

kpn12 Relative rate of IL12 release

μn1 Decay rate of IL1

μn12 Decay rate of IL12

Anti-inflammatory cytokines

kM2base Baseline rate of M2 anti-inflammatory cytokine release

kc4 Relative effectiveness of IL4 in promoting anti-inflammatory
cytokine production

Table 1 Biological interpretations of ODE model parameters for

acute neuroinflammation (Continued)

Parameter Description

wn Half-activation constant

qn Hill coefficient

a
∞2 Threshold-like factor for IL10 inhibition of cytokine release

ktn10 Rate of IL10 release by Th2 cells

ktn4 Rate of IL4 release by Th2 cells

kpn10 Rate of IL10 release by M2

kpn4 Rate of IL4 release by M2

μn10 Decay rate of IL10

μn4 Decay rate of IL4

Tissue damage

αn12 Rate of IL12 induction of damage

αn1 Rate of IL1 induction of damage

γM1 Rate of damage clearance by M1

γM2 Rate of damage clearance by M2

rM1 Rate of damage production by M1
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pro-inflammatory pathways and recruit other immune

cells. Anti-inflammatory mediators, IL-10 and IL-4, act

as inhibitors of this positive feedback loop between

pro-inflammatory cytokines and delayed tissue damage

[27, 28], as represented in the denominator of Rp, which

overall takes the form:

Rp ¼

kM1base∙M1þM1
IL12þ kcd∙Dð Þhn

vhnn þ IL12þ kcd∙Dð Þhn

 !

1þ IL10þIL4
a∞1

� �2
:

The release rates of pro-inflammatory cytokines,

IL-1β and IL-12, by M1 as described in Eqs. (5)–(6) are

both dependent on this pro-inflammatory cytokine pro-

duction term (Rp), each modulated by its own scaling

factor:

dIL1

dt
¼ kpn1∙Rp−μn1∙IL1 ð5Þ

dIL12

dt
¼ kpn12∙Rp−μn12∙IL12 ð6Þ

T-helper cell involvement

The proposed ODE model is microglia-based; how-

ever, T-helper (Th) cells have considerable influence

on neuroinflammatory cascades post-TBI because they

synthesize and secrete cytokines relevant to microglial

activation and to the M1→M2 phenotype transition

[29]. Therefore, a term Rt was designated to account

for indirect influences of Type 2 Th (Th2) cells on the

production of IL-4 and IL-10:

Rt ¼

ktbase þ
IL4þ ktn12∙IL12ð Þcn

rcnn þ IL4þ ktn12∙IL12ð Þcn

� �

1þ IL10
a∞2

� �2
:

These Th2 cell interactions are crucial in resolving the

pro-inflammatory M1-like state by allowing for transi-

tion to anti-inflammatory M2-like conditions. As pro-in-

flammatory IL-12 accumulates in the local environment,

Th2 cells are signaled to produce IL-4, which initiates

M1 polarization to M2 [22] as captured in Eqs. (3)–(4).

Another pertinent aspect of these reactions is the

self-regulatory nature of IL-10, which is produced by

Th2 in the presence of IL-4. IL-10 suppresses T cell re-

sponses (represented mathematically by its appearance

in the denominator of Rt) and, in turn, its own produc-

tion [30]. This autocrine inhibitory signaling protects

cells against unregulated anti-inflammatory processes in

the return to health.

Anti-inflammatory processes

The rate of synthesis and secretion of anti-inflammatory

cytokines by M2-like microglia is represented by the

term Ra. IL-4 serves the dual role of driving additional

microglial polarization toward the M2 phenotype and

inducing anti-inflammatory cytokine production [28].

Negative feedback by IL-10 (as described in “T-helper cell

involvement” subsection) is crucial to the resolution of

cytokine production [30], and is thus represented in the

denominator of the anti-inflammatory cytokine produc-

tion term:

Ra ¼

kM2base∙M2þM2
kc4∙IL4ð Þqn

w
qn
n þ kc4∙IL4ð Þqn

� �

1þ IL10
a∞2

� �2
:

Th2 and M2 contributions to anti-inflammatory cyto-

kine production, together with baseline decay of cyto-

kines, are combined to give the following ODEs:

dIL10

dt
¼ ktn10∙Rt þ kpn10∙Ra−μn10∙IL10 ð7Þ

dIL4

dt
¼ ktn4∙Rt þ kpn4∙Ra−μn4∙IL4: ð8Þ

Secondary tissue damage

While the acute neuroinflammatory response is designed

to be neuroprotective, certain processes cause adverse

secondary injury reactions, particularly if they are sus-

tained or exaggerated [22, 31]. If unregulated, M1-like

microglia can compromise healthy tissue through un-

selective phagocytosis and lead to progressive neurode-

generation. Also, pro-inflammatory positive-feedback

loops may induce a prolonged, detrimental inflamma-

tory cycle in which inflammatory processes overwhelm

anti-inflammatory constraints. The potentially dam-

aging effects of pro-inflammatory cytokines lie in their

promotion of additional pro-inflammatory pathways, as

opposed to direct tissue damage [14, 23].

In our model, damage (D), which evolves according to

the ODE (9), represents a qualitative secondary tissue

damage level, serving as a proxy for long-term outcome

among individuals with TBI. Equation (9) incorporates

factors that contribute to further neurodegeneration in-

cluding exacerbated pro-inflammatory pathways by IL-

1β and IL-12, which are inhibited by IL-10, and M1-like

microglia that release neurotoxic chemicals and may

unselectively phagocytize healthy tissue [32, 33]. Add-

itionally, neuroprotective features of microglia are cap-

tured in Eq. (9) to represent processes that mitigate

further tissue damage. M1-like microglia are essential

to tissue recovery via their role in host defense

mechanisms (pro-inflammatory cytokine, chemokine,
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and reactive oxygen species release) that recruit im-

mune cells to the site of injury, antigen-presenting

capabilities, and limited phagocytic activity [22, 33].

M2-like microglia act to alleviate damage by clearing

dysfunctional neurons and cellular debris, promoting

neurogenesis and remyelination, as well as suppress-

ing destructive inflammatory processes [34, 35], as

represented in the negative terms in Eq. (9):

dD

dt
¼

αn12∙IL12þ αn1∙IL1

1þ IL10
a∞2

� �2

þ rM1∙M1−γM1∙M1∙D−γM2∙M2∙D: ð9Þ

Parameter optimization

Our ODE model (Eqs. (3)–(9)) includes a large number

(52) of parameter values, mostly representing rate con-

stants, half-activation, or saturation levels, and exponents

that affect sensitivity to changes in levels of evolving quan-

tities. These parameter values were constrained by previ-

ous literature and biological requirements (e.g., positivity),

but many have not been measured experimentally. Our

approach was to tune parameter values through param-

eter optimization methods to produce outputs consistent

with observed clinical inflammatory biomarker trajectories

while remaining within the constraints that we imposed.

Optimization was performed over the 45 parameters listed

in Table 1, as well as over initial condition values for M1,

M2, IL1, IL12, IL10, IL4, and D. Model integration and

parameter optimization were performed using Matlab

(MathWorks, Natick, MA).

For each patient group, the model was fit to com-

puted CSF cytokine averages over the first 5 days follow-

ing TBI in 6-h increments. A moving-average smoothing

procedure was applied to the cytokine data to diminish

the effect of outliers and short-term fluctuations in the

data. Specifically, we defined overlapping 12-h bins, each

shifted by 6 h relative to the previous bin, consisting of

data from 0 to 12, 6–18, 12–24 h post-TBI, and so on. For

each cytokine, all values that occurred during the time

range encompassed by a bin were averaged together.

Initial parameter estimates were guided by available

values reported in the literature [14, 16]. The Nelder-

Mead simplex method was then employed as a nonlinear

optimization algorithm to determine sets of initial condi-

tions and parameter values that best fit model outputs,

obtained by numerical integration of Eqs. (3)–(9) from a

given set of initial conditions, to the averaged clinical

data [36]. This method was implemented by using the

fminsearch function in Matlab to attain optimal model

fits to cytokine data from each subcluster. The Matlab

function ode15s was used to solve the system of ODEs.

Goodness of fit to patient data was determined by

evaluating an error function that compared the model-

generated cytokine values to mean patient cytokine

values at every 6-h mark, summing the squared differ-

ences and dividing by the squared standard deviation to

normalize. Additionally, the following microglia heuristics

were set in place: M1 >M2 prior to day 2, M2 >M1 after

day 3, and M1, M2 > 2 for the entire time course. A pen-

alty value of 100 was added to the error calculation for

each of these conditions that was violated. Empirically,

smaller penalty values did not yield enforcement of the de-

sired conditions.

Ensemble of optimal model fits

Parameter estimation techniques led to a representative

parameter set that fit cytokine data for each patient

group. This baseline parameter set was then randomly

perturbed to provide new parameter sets that would

serve as starting estimates for an additional 100 itera-

tions of subsequent parameter estimation. Perturbations

were randomly selected from a uniform distribution

from 0.5 to 1.5 times the baseline parameter set values.

The parameter optimization procedure was repeated

for each of the 100 distinct parameter sets for each pa-

tient group, yielding an ensemble of model fits. The use

of this method was intended to allow for the possibility

that diverse parameter sets could provide similar model

fits and to capture the variability in biological charac-

teristics that would naturally occur across a patient

population.

Parameter distribution analyses

The ensembles of 100 model trajectories and parameter

sets from which they were generated were compared

across patient groups to investigate relative differences

in cytokine, microglia, and tissue damage temporal dy-

namics. Statistically comparing the distributions of each

parameter value between clusters was used to elucidate

physiological mechanistic differences that potentially ex-

plain divergent clinical outcomes post-TBI.

Bhattacharyya metrics

The Bhattacharyya distance (BD) was calculated as a

statistical comparison of parameter distributions be-

tween patient groups. BD quantifies the level of spread

between distributions by incorporating their means and

variances. The Bhattacharyya coefficient (BC) measures

the degree of overlap between distributions [37]. A BC

of 0 indicates that the parameter distributions are non-

overlapping, while larger values signify greater similar-

ity. Conversely, a greater BD is associated with greater

spread between parameter distributions. These metrics

were computed via the bhatt function in STATA.
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Sensitivity analysis

In differential equation modeling, the values of particu-

lar parameters may influence model output at certain

time points more than others. Among parameter distri-

butions that differed significantly in the previous statis-

tical analyses, those that exhibit most influence on

model behavior merit the most attention as potential

sources of cluster differences in acute neuroinflamma-

tory mechanisms post-TBI.

Sensitivity analyses were conducted in Matlab by per-

turbing each parameter value individually by ± 2% and

observing subsequent changes in model output. Model

sensitivity (S) is calculated as:

S ¼
∆x tð Þ

∆p
∙

p

x tð Þ
;

where ∆x(t) is the difference in model outputs at time t,

and ∆p is the difference between the perturbed and ori-

ginal parameter value. The model sensitivity is normal-

ized to account for the nominal value of the parameter p

and model output x(t).

Results

Acute neuroinflammatory profile association with long-

term clinical outcome

In previous work, R.G. Kumar et al. identified groups of

patients with similar neuroinflammatory profiles in the

acute phase with no a priori knowledge of long-term

outcome [18]. However, further analysis revealed signifi-

cant associations between cluster group assignment and

long-term outcome based on GOS score. The vast ma-

jority (93.1%) of individuals in cluster 1 experienced un-

favorable outcomes (GOS = 1,2,3), whereas members of

cluster 2 varied greatly in their recovery status 6 months

post-TBI. We thus grouped cluster 2 into cluster 2A,

consisting of the 45.5% of individuals in cluster 2 report-

ing favorable outcomes (GOS = 4,5), and cluster 2B,

composed of the remaining 54.5% with unfavorable out-

comes (GOS = 1,2,3). Grouping by 6-month GOS score

was not implemented in cluster 1 due to the small num-

ber of favorable outcome patients belonging to this

group (n = 2). GOS scores at 6 months post-TBI (Table 2)

and clinical characteristics (Table 3) are reported for

each of these patient clusters. Those in cluster 1 were

substantially older compared to individuals in cluster 2,

and hospital length of stay was shorter, a finding likely

due (in part) to higher acute mortality rates in this pa-

tient cluster. These groupings show that (1) different

acute neuroinflammatory response profiles may lead to

similar outcomes, and (2) similar acute neuroinflamma-

tory responses may lead to disparate outcomes.

ODE model trajectories obtained by fitting to CSF

cytokine time courses

An ODE model (Eqs. (3)–(9)) for the combined tem-

poral evolution of M1- and M2-like microglia, levels of

cytokines IL-1β, IL-12, IL-10, IL-4, and a secondary tis-

sue damage variable D was derived based on

well-supported biology underlying the acute inflamma-

tory response to TBI (“Ordinary differential equation

model development” section). Parameter optimization

methods were used to find collections of the 52 model

parameters for which model trajectories best fit the aver-

aged and smoothed data for each patient group (“Param-

eter optimization” section). Ensembles of 100 model fits,

which were produced by a range of initial parameter sets

along with averaged cytokine data values, are shown for

each patient cluster in Figs. 2, 3, and 4.

Divergent responses are observable among the model

trajectories for microglia, cytokines, and tissue damage

across the three patient clusters. Cluster 1, which had

the highest inflammatory load associated with unfavor-

able outcomes, demonstrated the most prolonged and

elevated microglial expression of the three clusters.

Cluster 1 trajectories were also characterized by rela-

tively constant levels of pro-inflammatory cytokines

IL-1β and IL-12, high initial values of IL-10, and rapid

decay of IL-4. Interestingly, two types of damage re-

sponses were observed: a more common response in

which damage rose only slowly, and a minority response

with a rapid rise in damage following by a slow increase,

a finding that likely captures heterogeneity expected in

any patient population.

Trajectories for cluster 2A, which was associated with

favorable patient outcomes, showed a more rapid micro-

glial decay than cluster 1, with a noticeably faster decay

of M1-like than M2-like microglia. Somewhat surpris-

ingly, levels of pro-inflammatory cytokines IL-1β and

IL-12 grew over time, with higher IL-12 levels than were

observed for cluster 1. On the anti-inflammatory side,

IL-10 levels were lower in cluster 2A compared to clus-

ter 1, while IL-4 levels were slower-decaying than for

cluster 1, and in some cases even increased, presumably

helping to suppress D values.

Model projections for cluster 2B, characterized by

lower inflammatory loads than cluster 1 yet unfavorable

outcomes, showed the most elevated levels of tissue

damage and the most transient microglial response of

the three clusters. Additional features of cluster 2B tra-

jectories included a significant rise in IL-12 levels near

the end of the simulations, IL-10 levels that started high

but decayed rapidly, and an abrupt decay of IL-4. These

factors suggest that there may be a significant pro-in-

flammatory contribution which is exacerbated by transi-

ent anti-inflammation to the high levels of D arising for

cluster 2B.
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Comparison of parameter distributions between clusters

Optimal model fits to patient data were achieved by tun-

ing biological parameters that appear in our set of differ-

ential equations (Eqs. (3)–(9)) describing the time course

of acute neuroinflammation post-TBI. The resulting dis-

tributions of values for each parameter were compared

to identify those parameters with the most significant

variation across patient clusters (“Parameter distribution

analyses” section). Each model parameter has a corre-

sponding biological interpretation (Table 1), and the

neuroinflammatory role of each identified parameter was

considered in order to understand its contribution to

the relative temporal dynamics of cytokines, microglia,

and tissue damage that differentiate long-term outcome.

Table 4 shows a summary of the most dissimilar param-

eter distributions between clusters, based on Bhattachar-

yya metrics of overlap (BC) and spread (BD). Parameter

distribution differences were ranked by ascending over-

lap (BC) and descending spread (BD). We report and

discuss the most disparate parameter distributions that

were selected under the following criterion: BC ≤ 0.38,

and BD ≥ 0.97.

In conjunction with Bhattacharyya tests applied to

compare parameter distributions between clusters, a

parameter sensitivity analysis was implemented through

Matlab to ensure that the significantly different param-

eters under consideration also significantly influence

model behavior (“Sensitivity analysis” section). Model

sensitivities to values of all parameters reported in

Table 4 exceeded our sensitivity threshold of 2. An add-

itional file provides the ranges and averages of each dis-

similar parameter distribution by pairwise cluster

comparisons (see Additional file 1).

Cluster 1 vs. cluster 2A

Cluster 1 and cluster 2A were the most dissimilar groups

in this analysis, differing in acute neuroinflammatory

marker levels and 6-month GOS score. Differences in

the degree of acute neuroinflammation post-TBI are ap-

parent in the disparate parameter distribution differ-

ences shown between clusters in Fig. 5. A more

aggressive and sustained course of inflammation is evi-

dent for cluster 1 as reflected in greater release rates of

IL-1β (kpn1) and IL-12 (kpn12) from activated M1-like

microglia and slower decay rates of M1 (μM1) and IL-10

(μn10) during acute injury. The level of a∞2 is greater in

cluster 1 than in cluster 2A, which points to an ineffect-

iveness of IL-10 at inhibiting pro-inflammation in cluster

1 patients, also consistent with the elevated inflamma-

tory load in cluster 1.

Cluster 1 vs. cluster 2B

While clusters 1 and 2B both reported unfavorable out-

comes at 6 months, individuals in these clusters

expressed different acute neuroinflammatory loads. Fig-

ure 5 depicts the most dissimilar parameter distributions

between these clusters, which potentially explain mal-

adaptive features of the inflammatory response in each

cluster. Cluster 2B exhibits a more transient inflamma-

tory response with greater decay rates of M1- (μM1) and

M2-like (μM2) microglia, as well as IL-10 (μn10). This

finding suggests that the acute inflammatory profile of

cluster 2B individuals does not sustain microglial signal-

ing and anti-inflammatory control for an adequate

amount of time to achieve an effective, balanced inflam-

matory response.

In contrast, cluster 1 demonstrates a stronger early

pro-inflammatory response driven by elevated produc-

tion of IL-1β (kpn1) and IL-12 (kpn12) by M1, with greater

sensitivity to accumulating IL-12 and D levels (larger hn)

leading to exacerbated pro-inflammatory pathways.

Negative feedback is also apparent, as mean levels of

IL-10 are significantly greater in cluster 1 to counterbal-

ance greater pro-inflammatory cytokine production

rates. Despite greater IL-12 production rates by cluster 1

Table 2 Six-month Glasgow Outcome Scale score by cluster group

6-mo. GOS score, n (%) Cluster 1 Cluster 2A Cluster 2B

1 14 (48.28) 11 (34.38)

2–3 13 (44.83) 21 (65.63)

4–5 2 (6.90) 28 (100)

Table 3 Clinical and demographic associations with cluster group

Cluster 1 Cluster 2A Cluster 2B p value

(n = 29) (n = 28) (n = 32)

Age, Mean (SE) 46.09 (3.26) 31.29 (2.70) 32.59 (2.64) 0.0026

Sex, Men (%) 23 (71.88) 25 (89.29) 27 (84.38) 0.1949

BMI, Mean (SE) 26.14 (0.90) 27.71 (1.06) 26.99 (1.15) 0.5391

ISS score, Mean (SE) 32.81 (1.72) 33.30 (1.27) 34.53 (1.50) 0.5804

GCS score (best in 24 h.), Median (IQR) 6 (5–7) 7 (6–9.25) 6.5 (5–7) 0.1703

Length of stay in acute care (days), Mean (SE) 17.49 (1.77) 21.68 (1.64) 25.09 (2.21) 0.0088

Italic signifies statistical significance at α = 0.05
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than those observed in cluster 2B, its decay is also more

rapid (μn12), potentially resulting in inadequate signal-

ing to Th2 cells to increase anti-inflammatory cytokine

production and counter the excessive pro-inflammatory

presence.

Cluster 2A vs. cluster 2B

Cluster 2A and 2B, which were initially one inflamma-

tory profile group from previous PCA and cluster ana-

lysis, were investigated separately to determine which

neuroinflammatory pathways drove differential outcomes

at 6 months. Figure 5 highlights dissimilar parameter dis-

tributions between these clusters that potentially explain

the disparity in their inflammatory programs post-TBI.

Once again, the rapid decay of M2 in cluster 2B patients

(μM2) is evident. This effect translated into fast decreases

in anti-inflammatory levels, which is coupled with a less

effective inhibition of pro-inflammatory effects by IL-10

(a∞2). Cluster 2B also features a greater production of

IL-12 than cluster 2A (kpn12). Together, these factors imply

that cluster 2B individuals exhibit short-lived, less potent

M2 responses yielding neuroinflammatory behavior that

does not sufficiently impact the acute tissue damage

post-TBI.

CSF biomarker levels by cluster

R.G. Kumar et al. found considerable differences between

clusters 1 and 2 in terms of steroid hormones [18]. Mo-

tivated by previous work showing the existence of three

patient groups with significantly different cortisol tra-

jectories over the first 6 days post-injury [38], we inves-

tigated CSF cortisol level differences between patient

groups (Table 5) to supplement our inflammatory marker

comparisons. In post-hoc analyses, we found that cluster 1

had higher cortisol levels than both cluster 2A and 2B

over the full time course (p < 0.001 for all comparisons).

For days 0–3, cluster 2A had significantly lower levels of

cortisol compared to cluster 2B (p = 0.002). However,

transitioning into day 4–6, differences in average cortisol

levels were no longer significant between cluster 2A and

2B (p = 0.340).

Discussion

A set of differential equations was derived in this study to

model acute neuroinflammatory phenomena following se-

vere TBI, intended to represent dynamic time-dependent

interactions within and to generate hypotheses about

the complex communication network between resident

microglia and neuronal tissue via circulating cytokines.

Fig. 2 Cluster 1 ensemble of model trajectories for days 0–5 post-TBI. Dots represent moving-average data (see “Parameter optimization” section)

collected from patients, while bars represent standard error of the mean
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Microglia are potent effector cells in post-TBI neuroin-

flammation; however, there is limited early clinical infor-

mation collected regarding their activation, polarization,

and functional plasticity. Therefore, we leveraged cytokine

dynamics in our model to generate predictions on the state

of neuroinflammation, microglia phenotype distributions,

and tissue integrity in the acute injury recovery phase (day

0–5). This mechanistic model was generated on a founda-

tion of a priori information regarding core cytokine inter-

actions established empirically in the field of TBI.

Neuroinflammation, although a main contributor to sec-

ondary damage post-TBI, is an inherent set of host defense

mechanisms aimed to protect and restore tissue integrity

[2, 39, 40]. While studies aim to label particular aspects of

this response neurotoxic or neuroprotective, this is ul-

timately a context-dependent consideration. The spatial

and temporal regulation of select neuroinflammatory

mechanisms may potentially preserve positive physio-

logical function and endogenous tissue homeostatic ef-

forts [3]. Modulating the coordinated balance of pro- and

anti-inflammatory cytokines, timely activation of M1 and

M2 microglia, and appropriate feedback signaling may

provide an adequate amount of pro-inflammation with

relatively less secondary tissue damage ensuing [41, 42].

Our ODE modeling techniques provide a platform that re-

capitulates the relative levels of evolving inflammatory me-

diators observed with TBI patient data and projects time

courses of microglia activation and tissue damage that are

mechanistically consistent with these data, thereby pre-

dicting the extent to which secondary TBI pathologies

may be arising in these clinically observed scenarios.

In this study, we stratified patient subgroups based on

long-term neurological outcome from patients that ex-

hibited distinct day 0–3 neuroinflammatory profiles [18].

Leveraging this methodology allowed model fits to be

generated for each patient cluster and respective out-

come, providing insight on potential differences in their

acute neuroinflammatory programs that may contribute

to disparate 6-month outcomes.

Assessing neuroinflammatory status via cytokine

trajectories

Initial statistical work by our group applied principal

component and cluster analysis to identify variability in

Fig. 3 Cluster 2A ensemble of model trajectories for days 0–5 post-TBI. Dots represent moving-average data (see “Parameter optimization” section)

collected from patients, while bars represent standard error of the mean
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acute neuroinflammatory biomarkers among individ-

uals following TBI [18]. These analyses suggested sets

of cytokines that demonstrate similar acute expression

patterns and may contribute to similar courses of in-

flammation and tissue recovery, helping to justify the

inclusion of a small number of specific cytokines in

our current modeling work. In this study, we sought

to utilize cytokine dynamics to infer the neuroinflamma-

tory state and subsequent microglial activation profile of

each patient cluster.

This methodology is a progressive direction in the TBI

field in that relative concentrations of cytokines can be

tracked and used to inform hypotheses regarding early

injury severity patterns and patient prognosis. While

studies have shown that absolute levels of acute anti-in-

flammatory mediators are predictive measures of initial

brain damage and complications, such as intracranial

pressure [43], our model illustrates the relative relation-

ships and time courses of mediators to provide a more

comprehensive view of neuroinflammation post-TBI.

The model was designed on the premise that cytokines

are expressed simultaneously following injury, collect-

ively contribute to microglial polarization profiles, and

may serve as useful biomarkers patterns to gauge the

level of neuroprotection or neurotoxicity in the local

microenvironment [3, 41, 44].

Novelty of modeling TBI-induced neuroinflammation

mathematically

In extension to cytokine measurement studies that

characterize neuroinflammation post-TBI, this modeling

framework is a novel method of investigating (1) temporal

dynamics of inflammatory mediators, (2) interdependent

cytokine pathways and feedback interactions, and (3) cyto-

kine influences on differential microglia expression and

tissue damage responses. Differential equations are well

suited for representing post-TBI neuroinflammation be-

cause the relative concentration changes of inflammatory

mediators can be modeled with respect to time. This ini-

tial report serves as a proof-of-concept that implementing

mechanistic modeling can further our understanding of

inflammatory network dynamics, kinetics, and phenotypic

polarization.

While early delivery of anti-inflammatory agents has

been an intuitive strategy for containing post-TBI neuroin-

flammation, the lack of consistent success suggests there

is more to consider for this approach. Suppressing a single

neuroinflammatory mechanism does not facilitate healthy

Fig. 4 Cluster 2B ensemble of model trajectories for days 0–5 post-TBI. Dots represent moving-average data (see “Parameter optimization” section)

collected from patients, while bars represent standard error of the mean
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tissue recovery due to complex interdependencies of neu-

roinflammation [3, 39]. There has been a shift of perspec-

tive in the TBI field that acknowledges not only the dual

role of neuroinflammation post-TBI, but also the dichot-

omy of roles such as perpetuating damage and maintain-

ing homeostasis by individual mediators, including

cytokines and microglia phenotypes [9, 45]. The utility of

ODE modeling in this context is to elucidate the benefit

or detriment of particular mediators relative to

time-post-injury and expression of other local mediators.

Model simulations performed on patient-specific data

from different outcome groups produced quantitative

projections of cytokine dynamics and qualitative predic-

tions of microglia and tissue damage dynamics. The en-

sembles of parameters, which were tuned to generate

optimal fits for each patient cluster, were statistically

compared to generate hypotheses regarding differences

in the neuroinflammatory regimes of each cluster. These

analyses are a contribution to ongoing attempts to

characterize the functional roles and heterogeneous ef-

fects of microglia and related cytokines in acute TBI

neuroinflammation [9, 46]. This report presents the first

computational model in the field that aims to model the

temporal evolution and M1/M2 phenotypic balance of

microglia. In the following sections, we discuss the

inflammatory trends, unique parameter differences, and

additional clinical considerations for each respective pa-

tient cluster and long-term outcome.

Unfavorable outcome groups (clusters 1 and

2B)—maladaptive features of neuroinflammation

R.G. Kumar et al. had identified a group of individuals

(cluster 1) with relatively high day 0–3 CSF inflamma-

tory loads, almost all of which experienced poor long-

term outcomes [18]. After subgrouping cluster 2 individ-

uals by 6-month GOS score, we identified another poor

outcome group yet with a relatively lower acute inflam-

matory load (cluster 2B). We hypothesized that the dis-

parity in acute neuroinflammatory profiles could drive

differential, yet both detrimental, courses of inflamma-

tion post-TBI that hinder recovery.

Cluster 1—evidence of prolonged inflammation

Elevated inflammation and highly activated microglia

were apparent through several model parameter differ-

ences that emerged when comparing across clusters. In

comparison to cluster 2B, cluster 1 model parameters

were significantly lower for microglial (both M1 and

M2 types) and IL-10 decay rates; higher for IL-1β and

IL-12 release rates; and higher for sensitivity to pro-in-

flammatory cytokine and damage signals. This combin-

ation of parameter differences is potentially reflective of

the failure of acute neuroinflammation and microglia

activity to resolve appropriately.

The self-perpetuating cycle of inflammation displayed

in cluster 1 trajectories has been shown to be detrimen-

tal to recovery for various reasons. While initial upregu-

lation of pro-inflammatory processes is intrinsically a

host defense response essential for the phagocytosis of

cellular debris and activation of immune system [6, 46],

extended activation may hinder neurogenesis and con-

tribute to additional neuronal loss and unselective clear-

ance of healthy tissue [8, 41]. In cluster 1 microglia

trajectories, the M2 response appears to persist along

with M1 activity but is not elevated enough to keep

M1-induced secondary damage suppressed via compen-

satory pro-health mechanisms.

Of note, the mean age of cluster 1 individuals (46.09

± 3.26 year) was significantly higher than both cluster

2A and 2B indicating that there may be age-related dys-

functions in microglia involved after TBI. With increas-

ing age, microglia morphology changes and functional

impairments are observed. Microglia are found in less

ramified form with altered cytokine receptor patterns

which may hinder their ability to respond appropriately

to inflammatory stimuli [33, 40, 44]. In addition to an

already elevated baseline inflammatory state in aged indi-

viduals, surveying microglia cells lean toward a “primed”

phenotype characterized by activation at a lower threshold,

Table 4 Sensitive parameters with most disparate distributions

between each cluster pair

Parameter Bhattacharyya Metrics

BC BD

Cluster 1 vs. Cluster 2A

a
∞2 0 n/a

kpn12 0 n/a

μM1 0 n/a

μn10 0 n/a

kpn1 0.2 1.61

Cluster 1 vs. Cluster 2B

μM1 0 n/a

μn10 0 n/a

kpn12 0.01 n/a

hn 0.134 2.01

kpn1 0.2 1.61

μM2 0.209 1.56

μn12 0.245 1.41

Cluster 2A vs. Cluster 2B

a
∞2 0 n/a

μM2 0.045 3.11

vn 0.3 1.2

kpn12 0.379 0.971

Only parameters with model sensitivities exceeding a sensitivity threshold of 2

were included
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Fig. 5 Disparate parameter distributions between patient clusters. Box and whisker plots depict the distributions of the most dissimilar parameter

values between clusters 1, 2A, and 2B. Dots represent the parameter value averages by cluster. A star represents statistical significance for pairwise

cluster comparisons
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tendency to adopt an exaggerated pro-inflammatory

phenotype, and resistance to regulatory anti-inflammatory

cues [6, 40]. In cerebral ischemia injury models, stress has

similarly been shown to contribute to microglial priming

which may exacerbate inflammatory dynamics following

brain injury [47]. Stress-related implications likely arise in

cluster 1, as acute CSF cortisol levels are significantly ele-

vated compared to the other clusters. These findings are

in line with previous work showing that exaggerated in-

flammatory responses, especially among aged individuals,

are associated with elevated acute CSF cortisol levels and

TBI mortality [19, 38].

Additionally, mean IL-10 levels in cluster 1 were signifi-

cantly higher than both cluster 2A and 2B (57.54 vs. 8.08

and 11.54 pg/mL, respectively) over the first 5 days post-

TBI. Despite increased anti-inflammatory presence, pro-

inflammatory production levels and microglia activity per-

sisted perhaps due to reduced sensitivity of microglia to

anti-inflammatory mediation [40] and insensitivity of cyto-

kine release to anti-inflammation (elevated a∞2 in our

model). Our findings for cluster 1 are consistent with pre-

vious studies that found associations between CSF IL-10

levels, age, and mortality rates [48, 49].

Cluster 2B—evidence of transient inflammation

In contrast to cluster 1, both M1 and M2 microglia and

IL-10 levels decrease early and rapidly in cluster 2B.

Pro-inflammatory mediator levels remain elevated but

plateau, providing little to no re-initiation of microglial

activation and polarization once the levels fall to base-

line. There is a late rise in IL-1β that appears over day 3,

possibly due to secondary tissue damage release, but the

model could not capture an elevation of such low mag-

nitude. This rise in IL-1β does, however, fit nicely to the

late IL-12 rise. The consistent pro-inflammatory expres-

sion through day 5, coupled with the rapid decreases of

IL-4 and IL-10 and greater sensitivity to IL-10 inhib-

ition of further cytokine, leads to the elevated tissue

damage in cluster 2B model ensembles.

The most elevated levels of the tissue damage term

are observed for cluster 2B. This qualitative evidence

from our modeling efforts supports the concept that

the complete suppression of the neuroinflammatory re-

sponse and microglial activity, of either phenotype, is

potentially detrimental to tissue recovery post-TBI [5,

6]. In the absence of adequate microglia activity over

the first 5 days, damage from the initial injury may not

be addressed, leading to further damage and perpetuat-

ing other secondary injury cascades.

By PCA and cluster analysis [18], cluster 2A and 2B

were indistinguishable when considering day 0–3 neuroin-

flammatory profiles. However, when considering CSF hor-

mone data, we found that cluster 2B individuals were

characterized by significantly higher cortisol levels than

cluster 2A over the first 3 days post-TBI, consistent with

differences in cortisol trajectories group membership

found between patient groups in previous work [38].

Elevated cortisol immediately following injury poten-

tially contributes to the premature immunosuppression

observed with cluster 2B, leading to a sub-physiological

microglial response.

Favorable outcome group (cluster 2A)—neuroprotective

features of neuroinflammation

Cluster 2A model ensembles best demonstrate a benefi-

cial physiological response to TBI. Microglial activity

was present for a length of time that was neither permis-

sive nor indiscriminate in pro-inflammatory mediated

damage (as in cluster 1), or sub-physiological in minim-

izing tissue damage associated with other forms of sec-

ondary injury (as in cluster 2B). This observation is

reflected in significant parameter differences regarding

the decay of microglia and IL-10, as well as release rates

of the pro-inflammatory cytokines. Although we observe

a gradual increase in the damage expression, it is lower

in magnitude than both unfavorable outcome clusters

and appears to be well contained as it plateaus near day

5. Particularly of note, the relative ratio of M2:M1

microglia in cluster 2A was approximately 1:1 after the

initial injury, becoming larger than 1 as the microglial

response progressed. Conversely, M2:M1 ratios in clus-

ters 1 and 2B were nearly 1:4 initially and became even

smaller over time. These findings may support the

physiological importance of microglia, even perhaps of

the stereotypically neurotoxic M1-like phenotype, in the

acute injury phase post-TBI.

Challenges and limitations of modeling microglial

physiology

There is considerable need in the TBI field to

characterize neuroinflammation, particularly with respect

to the contributions of microglial functionality, in order

to assess acute injury progression and tailor interven-

tion strategies to enhance neuroprotection for particu-

lar patient subgroups. In this study, we implemented

CSF cytokine time courses as proxies to indicate the

state of neuroinflammation post-TBI and inform micro-

glia activation and polarization dynamics. However, the

consistent collection of informative neuroinflammatory

data is not always clinically feasible. The refinement of cere-

bral microdialysis (CMD) and CSF cytokine measurement

Table 5 Day 0–3 and 4–6 CSF cortisol levels (ng/mL) by cluster

group

CSF Cortisol (ng/mL) Cluster 1 Cluster 2A Cluster 2B p-Value

Day 0–3 Mean (SE) 33.34 (1.89) 17.7 (1.19) 22.58 (1.68) < 0.001

Day 4–6 Mean (SE) 23.07 (1.69) 15.20 (1.44) 15.29 (1.44) 0.006

Italic signifies statistical significance at α = 0.05
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methodology will contribute to ongoing efforts to cen-

trally monitor TBI-induced neuroinflammation [50].

While cytokine data was available from a large patient

cohort, more limited samples were available to contrib-

ute to each 6-h smoothed mean. Serial sampling and

cytokine data at a greater temporal resolution would im-

prove model trajectories to provide more accurate pre-

dictions of the progression of neuroinflammation post-

TBI. The inflammatory data remained oscillatory in

nature despite a smoothing procedure for averaging.

Marked changes in inflammatory mediator dynamics

were largely absent, with most levels present at con-

sistently low levels. As a result, the fits to cytokine

data did not produce noticeable fluctuations between

microglia phenotypes.

There is inherent abstraction in mathematically mod-

eling biological processes. In our model, microglia sub-

types and tissue damage are qualitatively projected with

arbitrary units rather than quantified by cell count or

tissue volume. This limits the direct interpretation of

these time courses to an estimate of the M1- or M2-like

“state” of the brain following injury. Moreover, param-

eter values cannot be taken as literal rates with estab-

lished units. Although model parameters were initially

guided by existing experimental literature, scaling pro-

cedures on cytokine data and confounding factors in

experimental situations complicate the direct rate inter-

pretations. Our determination of differences between

parameter value distributions should be viewed as a

relative test of neuroinflammatory distinctions between

clusters, which integrated additional statistical metrics

to inform the degree to which the distributions differed.

Due to limitations of the statistical methodology, we in

fact de-emphasized the value of traditional hypothesis

testing alone and considered two Bhattacharyya metrics

to inform our comparative parameter analyses. Param-

eter value differences were ranked by lowest overlap

(BC) and highest spread (BD) to highlight the most dis-

similar parameter distributions between clusters.

Additionally, as a reduced model, the set of ODEs de-

rived were limited to prototypical markers of microglia

activation and acute inflammation to encompass basic

regulatory components in the inflammatory network:

initiation, propagation, phenotype switching, and inhib-

ition. The model was designed to represent recent find-

ings that IL-4 and IL-10 act as switch-like factors in

microglia polarization. However, the self-regulating and

immunosuppressive role of these anti-inflammatory me-

diators may be overemphasized in this model, based on

the relatively rapid return of microglia to baseline levels

predicted in all clusters. Inclusion of additional media-

tors may create a more comprehensive and nuanced il-

lustration of the inflammatory network that drives the

microglial response to TBI.

In general, the understanding of microglia classifica-

tion and roles is still evolving in the neurotrauma field.

At first, a spectrum of activation states was proposed,

ranging from M1 to M2 extremes, with multi-func-

tional subtypes of M2 in between [46, 51]. Not only are

more nuanced views now being considered as alterna-

tives to these rigid phenotype classifications, a layer of

complexity has been added as simultaneous expression

of M1 and M2 phenotypic markers on the same cell

has now been observed in animal models [9]. This de-

veloping research area calls for further classification of

molecular profiles and associated functional roles of

microglia, particularly advancements that successfully

translate in vitro findings to in vivo scenarios. Macro-

phage research and dynamics have informed our ODEs

and have paved the way for much of our understanding

of phenotype polarization and functionality; however, it

is necessary to investigate these parallels in the brain

with microglia in order to extend M1 and M2 charac-

terizations explicitly. A key strength of our work is that

the modeling framework that we utilize need not be

interpreted in terms of a strict M1/M2 dichotomy. Ra-

ther, the framework allows for a flexible interpretation

of the M1 and M2 variables as cell counts, states, or

even associated microglia functions. The focus is on the

relative contribution and effects of the pre-specified cy-

tokines on the model behavior of those variables as well

as the physiological processes of pro- and -inflamma-

tory cytokine production, tissue damage, and healing

that M1 and M2 represent in our model; as long as

these elements are present and interrelated in the bio-

logical response to damage, our predictions related to

these quantities are not dependent on any specific M1/

M2 dichotomy.

More generally, our model encodes physiological in-

teractions among biological quantities thought to con-

tribute to inflammatory response dynamics as well as to

tissue damage and healing in the acute phase post-TBI.

This framework requires making assumptions about

which physiological processes contribute and in what

ways. We acknowledge that alternative sets of assump-

tions could lead to different conclusions, but we have

attempted to tailor our modeling choices to reflect

current understanding derived from previous experi-

mental, clinical, and computational work, albeit with

some simplifications to retain tractability. Nonetheless,

any experimental or clinical work aimed at predicting

outcome, such as suggesting early-warning signs for pa-

tient risk groups and targets for therapeutic interventions,

would necessarily proceed based on some theoretical

framework, typically reflecting the prevailing scientific

viewpoint, which would exert a strong impact on the

study performed. Among the advantages of the model-

ing approach used here in this report, we note that the
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underlying assumptions are clearly stated (see “Ordinary

differential equation model development” section) and the

parameter fitting process does not impose any additional

biases; rather, this modeling approach evaluates all model

parameters’ contributions to cluster differences, giving all

an equal chance to emerge as significant.

Lastly, microglia responses in the acute phase may be

a transient phenomenon overshadowed by subsequent

chronic elevations [46, 52], which have been observed as

late as 11 months to 17 years post-TBI in humans [40],

and accompanying pathologies; nonetheless, these tran-

sients may contribute to long-term influences of acute

neuroinflammation on patient outcome [18].

Stratifying patient subgroups for improved prognosis and

treatment

PCA and cluster analysis by R.G. Kumar et al. identified a

cluster of individuals (cluster 1) with elevated inflamma-

tion with respect PC1 markers. However, the outcomes of

cluster 2 individuals in this study were variable, despite

negative PC1 scores for the majority [18]. This work indi-

cates that elevations of PC1 markers (IL-5, IL-6, IL-8,

IL-10, sVCAM, sICAM, and sFAS) were predictive of out-

come for a subset of the patients in the study; however,

other predictive measures were yet to be unveiled to dis-

tinguish patient prognosis in cluster 2. In the current

study, we grouped cluster 2 patients by 6-month GOS

score to investigate differences in their inflammatory and

microglial dynamics post-TBI beyond classification of par-

ticular acute inflammatory markers. Despite having

greater cortisol levels in the first 3 days following TBI,

cluster 2B individuals were also projected to be in an im-

munosuppressed state due to early microglia decay and

greater sensitivity to IL-10 in negative feedback mecha-

nisms that control cytokine production.

Our findings on cluster 2B emphasize the important

point that microglial responses underlying poor patient

outcomes post-TBI are likely heterogeneous; in particu-

lar, poor outcomes in some patients might relate to a

sub-physiological microglial response. This interpret-

ation of results exemplifies the utility of mathematical

modeling in exploring how early patient stratification

based on inflammatory marker expression may lead to

informed understanding of acute recovery trajectories

and guide decision-making for specific immunomodula-

tory therapy types that may benefit from additional

pre-clinical evaluation.

Conclusion
This modeling approach makes both clinical and compu-

tational contributions to the growing conceptualization of

microglia pathophysiology following severe TBI. We have

integrated statistical and mechanistic modeling to investi-

gate potential sources of acute pathologies that lead to

particular outcomes. This novel approach in TBI dem-

onstrates the feasibility of computationally extracting

predictions about intervention targets in a way that is

informed by mechanistic understanding of the under-

lying physiology. In future studies, this mathematical

modeling framework can serve as a manipulable sys-

tem, via adjustment of target parameters that are of

mechanistic importance to the neuroinflammatory sys-

tem, to simulate pharmacological intervention effects

and improve our understanding of neuroinflammatory

kinetics. Our model can also be augmented to incorp-

orate additional biological features that connect with

available data. Our results predict that the early stratifi-

cation of distinct patient subgroups based on neuroin-

flammatory differences could support personalized

therapies that modulate the microglial response, includ-

ing the balance and timing of transitions of M1- and

M2-like states, or the associated inflammation-related

processes, following TBI. Informing such computa-

tional approaches with new evidence on phenotypic

markers and specific roles of each microglia subtype, as

well as validating model predictions with additional pa-

tient data, will promote the development of TBI inter-

ventions that harness the multifaceted nature of

neuroinflammation and microglia in a way that miti-

gates secondary injury and improves patient outcome.
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