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PAPER

A mathematical model of the evolution of individual differences
in developmental plasticity arising through parental bet-hedging

Willem E. Frankenhuis,1 Karthik Panchanathan2 and Jay Belsky3

1. Behavioural Science Institute, Radboud University Nijmegen, The Netherlands

2. Department of Anthropology, University of Missouri, USA

3. Human Ecology, University of California, Davis, USA

Abstract

Children vary in the extent to which their development is shaped by particular experiences (e.g. maltreatment, social support). This

variation raises a question: Is there no single level of plasticity that maximizes biological fitness? One influential hypothesis states

that when different levels of plasticity are optimal in different environmental states and the environment fluctuates unpredictably,

natural selectionmay favor parents producingoffspringwith varying levels of plasticity. The current article presents amathematical

model assessing the logic of this hypothesis – specifically, it examines what conditions are required for natural selection to favor

parents to bet-hedge by varying their offspring’s plasticity. Consistent with existing theory from biology, results show that between-

individual variation in plasticity cannot evolve when the environment only varies across space. If, however, the environment varies

across time, selection can favor differential plasticity, provided fitness effects are large (i.e. variation in individuals’ plasticity is

correlated with substantial variation in fitness). Our model also generates a novel restriction: Differential plasticity only evolves

when the cost of being mismatched to the environment exceeds the benefits of being well matched. Based on mechanistic

considerations, we argue that bet-hedging by varying offspring plasticity, if it were to evolve, would be more likely instantiated via

epigenetic mechanisms (e.g. pre- or postnatal developmental programming) than genetic ones (e.g. mating with genetically diverse

partners). Our model suggests novel avenues for testing the bet-hedging hypothesis of differential plasticity, including empirical

predictions and relevant measures. We also discuss several ways in which future work might extend our model.

Research highlights

• We formalize Jay Belsky’s bet-hedging hypothesis of

differential plasticity.

• Results support the hypothesis’ logical coherence, but

only under restrictive conditions.

• Our model suggests novel avenues for empirically

testing the bet-hedging hypothesis.

• We suggest multiple theoretical extensions of our

model.

. . . it is advisable to divide goods which are exposed to

some danger into several portions rather than to risk them

all together. (Daniel Bernoulli, 1738 (trans. 1954), p. 30)

Put all your eggs in one basket and then watch that basket.

(Mark Twain, 1894, Pudd’nhead Wilson and Other Tales)

Introduction

Developmental plasticity – the ability to adjust develop-

ment based on experience – is ubiquitous in nature

(Schlichting & Pigliucci, 1998), and evolves because it

allows organisms to adaptively tailor their phenotypes to

a range of environmental states (Dall, Giraldeau, Ollson,

McNamara & Stephens, 2005; West-Eberhard, 2003).

Empirical studies of humans show that the degree of

plasticity itself may vary across individuals (‘differential

plasticity’); that is, some individuals are shaped more

than others by the same kinds of experiences (Belsky,

1997, 2005; Belsky & Pluess, 2009a, 2009b; Boyce & Ellis,

2005; Ellis, Boyce, Belsky, Bakermans-Kranenburg &

van IJzendoorn, 2011; for studies of non-human ani-

mals, see Dingemanse & Wolf, 2013). In some cases,

highly plastic individuals are also more susceptible to
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experience: that is, they are more adversely affected by

harmful environments as well as benefit more from

supportive circumstances (‘differential susceptibility’;

Belsky, Jonassaint, Pluess, Stanton, Brummett et al.,

2009; Boyce, Chesney, Alkon, Tschann, Adams et al.,

1995; Pluess & Belsky, 2011, 2013; Ellis et al., 2011).

Such for-better-and-for-worse susceptibility (Belsky, Bak-

ermans-Kranenburg & van IJzendoorn, 2007) implies

that children may benefit or suffer differentially from

such experiences as nurturance or abuse (Belsky &

Pluess, 2009a, 2009b; Boyce et al., 1995), as well as from

prevention and intervention efforts (Belsky & van

IJzendoorn, 2015; van IJzendoorn, Bakermans-Kranen-

burg, Belsky, Beach, Brody et al., 2011). It is crucial to

recognize that for better and for worse, in this context,

refers to mental-health outcomes, not fitness payoffs. We

note this up front because we will later propose that, in

fitness terms, plastic individuals achieve relatively fixed

payoffs (rather than variable payoffs) across environ-

mental conditions, because plasticity enables the devel-

opment of locally adaptive phenotypes (increasing

fitness), but also comes at a cost (reducing fitness).

A theoretical question is why between-individual var-

iation in plasticity exists. Explanations of differential

plasticity include differences in genes and epigenetic

regulation (Belsky et al., 2009; Belsky & Pluess, 2009a,

2009b), aswell as differences in prior experiences (Boyce&

Ellis, 2005; Ellis et al., 2011; Frankenhuis & Panchana-

than, 2011a, 2011b; Pluess & Belsky, 2011). This article

focuses on Belsky’s proposal (1997, 2005; Belsky&Pluess,

2009a) that, when different levels of plasticity are optimal

(in terms of biological fitness) in different environmental

states and the environment fluctuates unpredictably,

natural selection may favor parents producing offspring

with varying levels of plasticity. Before proceeding, a note

on terminology: There is no implication that parents

deliberately weigh their options after estimating environ-

mental variability and then decide on their offspring’s

levels of plasticity. Rather, reproductive decisions result

from mechanistic processes that are the products of

natural selection; organisms need not be consciously

aware of these processes. Accordingly, when we refer to

parental ‘decisions’ or ‘choices’ – for instance, to produce

particular proportions of fixed and plastic offspring – we

are referring to observable outcomes (epiphenomena) that

result from the entire array of causal mechanisms that

determine behavior (from molecules to neural networks),

including but not limited to cognitive processes.

Mechanisms of bet-hedging

Belsky (2005; Pluess & Belsky, 2009, 2011) stipulated two

mechanisms by which parents could diversify their

offspring: one genetic by producing genetically diverse

offspring, the other experiential through pre- and post-

natal regulation of offspring plasticity. Belsky’s experi-

ential version of the bet-hedging hypothesis was inspired

by the work of Boyce and Ellis (2005), who first

proposed that between-individual variation in biological

sensitivity to context – i.e. reactivity of neurobiological

stress systems – can result from differences in experience

(discussed below). In this paper, however, we are not

primarily concerned with the biological mechanisms that

instantiate plasticity, or with the pathways through

which parents influence their offspring’s levels of plas-

ticity. We provide references here (Belsky & Pluess, 2013;

Ellis et al., 2011), and elsewhere in the paper, for readers

seeking more information about these mechanisms and

processes.

Motivating the model

Our main goal is to present a mathematical model that

evaluates the logical coherence of Belsky’s (1997, 2005;

Belsky & Pluess, 2009a) bet-hedging hypothesis of

differential plasticity. Specifically, we examine what are

the necessary conditions for natural selection to favor

parents to hedge their bets by varying offspring plastic-

ity. The idea that diversification of investments can be

adaptive in an unpredictably fluctuating environment is

not novel: In both biology and economics, well-devel-

oped literatures have addressed this issue, even if

psychologists – Belsky’s (1997, 2005; Belsky & Pluess,

2009a) intended audience – have not thought in such

terms. Economists have focused on the conditions in

which investors should diversify their portfolio so as to

maximize their profit in a temporally fluctuating market

(Bernoulli, 1738, trans. 1954; Markowitz, 1952; Stearns,

2000). Biologists have focused on strategies that optimize

organisms’ reproductive success in randomly varying

environments (reviewed in Childs, Metcalf & Rees, 2010;

Donaldson-Matasci, Bergstrom & Lachmann, 2013;

Donaldson-Matasci, Lachmann & Bergstrom, 2008;

Ellis, Figueredo, Brumbach & Schlomer, 2009; Meyers

& Bull, 2002; Simons, 2009, 2011). As we will show

below, Belsky’s (1997, 2005; Belsky & Pluess, 2009a)

version of the bet-hedging argument is formally similar

to some classical bet-hedging models from biology (e.g.

Moran, 1992; Philippi & Seger, 1989; extended in

Starrfelt & Kokko, 2012).

In biology, bet-hedging is typically discussed in the

context of fixed traits, which are non-responsive to local

conditions. Biologists have shown, for instance, that

parents might bet-hedge by producing offspring of

variable sizes (Hopper, 1999; Olofsson, Ripa & Jonz�en,

2009), or variable developmental delay times (i.e.

© 2015 John Wiley & Sons Ltd
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diapause; Childs et al., 2010; Cohen, 1966). In contrast,

Belsky applies the logic of bet-hedging to developmental

plasticity itself (i.e. to contexts where trait development

depends on local conditions). In this sense, Belsky’s

hypothesis is qualitatively distinct from existing bet-

hedging accounts. If bet-hedging theory can be applied

to developmental plasticity, this is interesting and may be

empirically fruitful, because plasticity is a property of

many physiological systems in many species (Fischer,

Van Doorn, Dieckmann & Taborsky, 2014). Moreover,

developmental plasticity is a basic property of many

mechanisms of the human mind and hence a long-

standing focus of inquiry in psychology in general (e.g.

the effects of early-life experience on later-life outcomes)

and developmental psychology in particular.

Our contribution is to capture and analyze Belsky’s

hypothesis within a formal specialist-generalist, bet-

hedging framework. We conceptualize low-plasticity

strategies (which produce the same phenotype despite

variable environmental conditions) as specialists adapted

to a particular niche, and high-plasticity strategies (which

produce different phenotypes in different environmental

conditions) as generalists across niches (see Wilson &

Yoshimura, 1994). This interpretation roots developmen-

tal psychologists’ growing interest in differential plastic-

ity within a well-developed body of bet-hedging theory

from evolutionary biology, and it could facilitate inte-

gration between models of bet-hedging and models of

frequency-dependent selection that include specialists

and generalists (Ellis, Jackson & Boyce, 2006; Ellis et al.,

2011; Wilson & Yoshimura, 1994). We regard this as

important given the general lack of consideration of

evolutionary principles – and of evolutionary modeling in

particular – in the field of developmental psychology,

which hinders much-needed theoretical integration with –

and consilience across – the life sciences. Our work might

also inspire biologists to consider between-individual

differences in plasticity as a product of bet-hedging.

Applying the logic of bet-hedging to plastic traits is

reasonable when (a) phenotypic development is not fully

reversible and (b) individuals use imperfect cues to

estimate the environmental state, resulting in maladap-

tive developmental programming in some individuals. If

both conditions hold, then within any generation some

individuals develop phenotypes that are well matched to

the environment, and others do not. On Belsky’s (1997,

2005; Belsky & Pluess, 2009a) account, well-matched

individuals are those whose genetic composition is well

suited to the environment and/or those whose early-life

cues accurately predicted their adult environment; mis-

matched ones are those whose genetic composition is

poorly suited to the environment and/or those whose

early-life cues failed to predict their adult environment.

Before presenting the model, we first chronicle indi-

vidual differences in susceptibility to environmental

influences (for more extensive review, see Aron, Aron

& Jagiellowicz, 2012; Bakermans-Kranenburg & van

IJzendoorn, 2007, 2011; Belsky & Pluess, 2009a; Kim-

Cohen, Caspi, Taylor, Williams, Newcombe et al., 2006),

including related theory. Because our main goal is to

formalize and analyze Belsky’s (1997, 2005; Belsky &

Pluess, 2009a) bet-hedging hypothesis of differential

plasticity, we will not compare theories (see Ellis et al.,

2011).

From risk alleles to plasticity genes

The notion that individuals differ in their susceptibility

to environmental effects has a long history in psychiatry

and psychology (Belsky & Pluess, 2009a). In fact, most

gene–environment interaction (G9E) research con-

ducted over the past decade has been informed by the

so-called diathesis-stress or dual-risk framework (Zuck-

erman, 1999), which stipulates that some individuals are

especially susceptible to negative effects of contextual

adversity. The focus of the differential-susceptibility

model, including G9E, differs from the diathesis-stress

framework. Whereas the latter focuses exclusively on

vulnerability, the former stipulates that some individuals

are not just more vulnerable to contextual adversity, but

also benefit more from supportive environmental condi-

tions. This appears to be the case for some polymor-

phisms long regarded as ‘vulnerability genes’ or ‘risk

alleles’, leading to the proposal that they be regarded as

‘plasticity genes’ instead (Belsky et al., 2009) – with

‘plasticity’ referring to phenotypic outcomes, not fitness

payoffs (as noted earlier, we will argue below that plastic

individuals attain moderate, not variable, fitness pay-

offs). Notably, two recent meta-analyses of G9E

research support the differential susceptibility theorizing:

one focused on dopamine-related genes carried by

children 10 years of age or younger (Bakermans-Kran-

enburg & van IJzendoorn, 2011), and the other on the 5-

HTTLPR polymorphism in Caucasian children under

18 years of age (van IJzendoorn, Belsky & Bakermans-

Kranenburg, 2012). Both of these meta-analyses indicate

that children carrying putative plasticity alleles are more

susceptible to both the negative effects of environmental

adversity and the positive effects of social support (in

terms of mental health).

Importantly, recent experimental human intervention

work that involves randomly assigning individuals to

alternative contextual conditions (Belsky & Van IJzen-

doorn, 2015), thereby overcoming the risk that G9E

findings are an artifact of gene–environment correlation,

© 2015 John Wiley & Sons Ltd
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provides additional support to the claim that some long-

regarded vulnerability genes function as plasticity genes

(for review, see Belsky & Pluess, 2013). Indeed, a recent

meta-analysis of experimental interventions designed to

promote well-being while chronicling truly causal envi-

ronmental effects reveals that DRD4 and 5-HTTLPR

function as plasticity genes, such that carriers of certain

allelic variants of these polymorphisms benefit more – in

mental-health terms – from these efforts (e.g. to promote

early literacy, to prevent teen alcohol abuse) than do

others (van IJzendoorn & Bakermans-Kranenburg,

2015). From an evolutionary perspective, two hypotheses

have been proposed to explain genetic variation in

plasticity that undergirds, by hypothesis, individual

differences in susceptibility.

Frequency-dependent selection

One hypothesis posits that frequency-dependent selec-

tion maintains genetic variation in plasticity (Ellis et al.,

2006, 2011; Wilson & Yoshimura, 1994; see also Wolf,

van Doorn & Weissing, 2008, 2011). Frequency-depen-

dent selection refers to conditions in which a pheno-

type’s fitness is dependent on its frequency relative to

other phenotypes in a population. Individual differences

in plasticity can persist due to frequency-dependent

selection when plastic phenotypes attain higher fitness

than less-responsive phenotypes in a population com-

posed mostly of the latter – and vice versa (Ellis et al.,

2006, 2011; Wilson & Yoshimura, 1994).

Parental bet-hedging

The current article focuses on the bet-hedging hypothesis

of differential plasticity (Belsky, 1997, 2005; Belsky &

Pluess, 2009a). This hypothesis states that it might be

adaptive for parents to produce offspring with varying

levels of developmental plasticity because different levels

of plasticity may be optimal in different environmental

states. Since the future is uncertain, natural selection

might favor parents who spread their investments and

associated risk by producing offspring that vary in their

sensitivity to environmental influences, including par-

enting (Belsky, 1997, 2005; Belsky & Beaver, 2011; Ellis

et al., 2011; Pluess & Belsky, 2010, 2013; see also

Figueredo & Wolf, 2009).

Experiential regulation of plasticity

As noted, between-individual variation in plasticity may

result from between-individual differences in prior expe-

riences (Boyce & Ellis, 2005; Del Giudice, Ellis &

Shirtcliff, 2011; Ellis et al., 2011; Pluess & Belsky,

2011). This view is central to Boyce and Ellis’ (2005)

theory of Biological Sensitivity to Context (BSC), which

regards physiological reactivity as a contextually regu-

lated plasticity factor.

Biological sensitivity to context

Boyce and Ellis (2005) argue that individuals growing up

under extreme environmental conditions may benefit

from developing heightened BSC (Ellis & Boyce, 2008;

Ellis, Essex & Boyce, 2005; Ellis et al., 2011). Such

heightened reactivity can augment vigilance to dangers

and threats in stressful environments and enhance the

benefits derived from support and care in protective ones

(Del Giudice et al., 2011; Ellis et al., 2006). In environ-

ments with an intermediate level of stress, individuals

may down-regulate reactivity, thus avoiding the costs

associated with persistently elevated levels of physiolog-

ical reactivity when the benefits do not outweigh the cost

(Ellis & Boyce, 2008).

Prenatal programming of plasticity

A related view, developed by Belsky (1997, 2005; Belsky &

Pluess, 2009a; Belsky et al., 2007), stipulates that negative

emotionality in infants and young children – a known

correlate of physiological reactivity – also functions as a

plasticity factor. Children manifesting high levels of

negativity (e.g. fear, distress, inhibition) prove not just

more susceptible to the adverse effects of negative

environments (e.g. harsh parenting, maternal depression),

but also benefit more from supportive ones (in terms of

mental health, not fitness). Children’s developmental

experiences, including exposure to prenatal stress (e.g.

Huizink, Bartels, Rose, Pulkkinen, Eriksson et al., 2008;

O’Connor, Ben-Shlomo, Heron, Golding, Adams et al.,

2005; Pesonen, R€aikk€onen, Strandberg & J€arvenp€a€a,

2005), appear to influence both their physiological reac-

tivity (e.g. Claessens, Daskalakis, van der Veen, Oitzl, de

Kloet et al., 2011; Ellis & Boyce, 2008; Kaiser & Sachser,

2009), even when measured in adulthood (Heim, New-

port, Wagner, Wilcox, Miller et al., 2002), and their

negative emotionality (Belsky, Fish & Isabella, 1991).

Consistency in early experiences

Frankenhuis and Panchanathan (2011a, 2011b) recently

proposed a third experiential process that may contribute

to individual differences in plasticity: stochastic sam-

pling. In some developmental domains, organisms may

face a tradeoff between sampling more cues to the

environmental state and tailoring their phenotypes to

© 2015 John Wiley & Sons Ltd
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local conditions. In these domains, some individuals may

receive a homogeneous sample set, resulting in a

confident estimate about the environmental state, leading

such individuals to specialize early in life, and thereby

sacrifice plasticity (assuming that phenotypic develop-

ment is not fully reversible). In contrast, others may

receive a heterogeneous set of cues, resulting in a less

confident estimate, leading them to defer ‘phenotypic

commitment’ (in order to avoid mismatch), keep sam-

pling, and specialize later. As a consequence, individuals

may come to differ in their levels of plasticity.

Developing the model

In building a model of Belsky’s (1997, 2005; Belsky &

Pluess, 2009a) bet-hedging argument of differential plas-

ticity, our first challenge is to translate for-better-and-for-

worse outcomes, which are typically defined in terms of

mental health, quality of life, and social desirability, into

biological fitness (Belsky, 2008; Ellis, Del Giudice, Dish-

ion, Figueredo, Gray et al., 2012; Frankenhuis & Del

Giudice, 2012; Frankenhuis & de Weerth, 2013; Manuck,

2010). In biology, traits are considered beneficial to

organisms to the extent that they increase individuals’

relative survival and reproductive success. In contrast,

developmental psychologists tend to view distressing or

socially undesirable behavior as inherently maladaptive,

and behaviors enhancing well-being and social integration

as inherently adaptive. These different notions of ‘adap-

tive’ are conceptually orthogonal: desirable behavior may

(but need not) enhance reproduction, and fitness-enhanc-

ing behavior may (but need not) have desirable features.

Fitness payoffs

Individuals who are relatively sensitive to their environ-

ment are ‘plastic’. They adaptively match their pheno-

types to local conditions more than their peers,

developing danger-adapted phenotypes (e.g. high stress)

in dangerous environments and safe-adapted phenotypes

(e.g. low stress) in safe environments. Whereas danger-

adapted phenotypes are considered maladaptive from a

mental-health perspective, but biologically adaptive in

a dangerous environment, safe-adapted phenotypes in a

safe environment are considered adaptive from an

evolutionary as well as a mental-health perspective.

From a fitness viewpoint, this raises a question: If plastic

individuals match their phenotypes to local conditions,

shouldn’t they attain the same or higher fitness than

individuals who do not adjust development (i.e. fixed

types), hence outcompete them?

This depends on the costs to plasticity, which might

include (a) phenotypic–environment mismatch resulting

from prediction error (i.e. during developmental pro-

gramming, cues may imperfectly indicate current or

future environmental states, resulting in a suboptimal

phenotype; Donaldson-Matasci et al., 2013; Nettle,

Frankenhuis & Rickard, 2013; Rickard, Frankenhuis &

Nettle, 2014), (b) constitutive costs (e.g. energy required

for building and maintaining the neural-cognitive

machinery required for plasticity), (c) information search

costs (e.g. time spent sampling environmental cues), and

(d) a lower degree of phenotypic integration (e.g. add-

ons may be less effective than the same phenotypic

element integrated early in development) compared with

fixed phenotypes that specialize from birth to fit a

particular environmental state (for reviews, see Auld,

Agrawal & Relyea, 2010; DeWitt, Sih & Wilson, 1998;

Relyea, 2002).

We will not consider these costs in detail here, but

assume that there is some cost to plasticity. This cost is

such that within any generation the fitness of plastic

individuals is lower than that of (fixed) specialists

matching the environmental state. However, the cost of

plasticity is low enough for the fitness of plastic individ-

uals to be higher than that of (fixed) specialists not

matching the environmental state. We capture this idea in

our model by assuming that plastic individuals accrue a

fitness of 1 in each environment, which is intermediate

between that of specialists who match the environmental

state – and attain a fitness payoff of 1 + b – and that of

specialists who do not match the environment and thus

attain a payoff of 1�c. We assume that all plastic

individuals attain a fitness of 1 (instead of some attaining

1 + b and others 1�c) because we want to ensure that

plastic individuals, as a group, are always situated in

between matched and mismatched specialists. Plas-

tic individuals are thus ‘generalists’, sacrificing specific-

ity for breadth (Wilson, 1994; Wilson & Yoshimura,

1994).

In contrast, specialists are less malleable, adapting

their phenotypes less to context, developing relatively

similar phenotypes even in different environments (com-

pared with plastic individuals). When their phenotype

matches the environmental state, they thrive because

they achieve a viable phenotype–environment fit without

paying a cost for plasticity; in this case, specialists attain

higher fitness (1 + b) than plastic individuals. However,

when the phenotypes of specialists are not well matched

to the environment, they suffer, attaining lower fitness

(1�c) than plastic individuals. Specialists thus sacrifice

breadth for specificity (Wilson, 1994; Wilson & Yoshim-

ura, 1994).

© 2015 John Wiley & Sons Ltd
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Spatial and temporal environmental variation

The bet-hedging hypothesis of differential plasticity

(Belsky, 1997, 2005; Belsky & Pluess, 2009a) is based

on the idea that parents cannot predict with certainty

what environmental state their offspring will experience.

However, environments can be unpredictable in different

ways, and these may result in different selection pres-

sures, hence different adaptations (in our case, different

offspring compositions; see below). Here we examine two

kinds of environmental variation well known in evolu-

tionary biology: spatial and temporal environmental

variation (some use the terms individual-level and popu-

lation-level; e.g. Bergstrom & Godfrey-Smith, 1998;

Donaldson-Matasci et al., 2008); we do not analyze

their combination (see, e.g. Carja, Furrow & Feldman,

2014). The appropriate fitness calculations under spatial

and temporal environmental variation constitute a rich

field of inquiry in biology; such calculations depend on

the intricacies and degree of realism of assumptions

about organisms and their physical and social environ-

ments. In this article, we will discuss just two stylized

scenarios. We recommend the following works to readers

seeking more information or interested in developing

more refined follow-up models (Frank, 2011; Leimar,

2009; McNamara, Trimmer, Eriksson, Marshall &

Houston, 2011).

Spatial environmental variation

In environments that vary exclusively spatially (and not

temporally), the world is divided into different patches,

each with a particular state (e.g. dangerous or safe).

Within a given generation, any offspring may develop in

either patch, and the associated probabilities are equal

for all individuals (i.e. juveniles disperse from their natal

patch and settle on a new patch at random); some

offspring will develop in one patch (e.g. safe), others in

another patch (e.g. dangerous), and so forth (if there are

more than two patches). Across generations, however,

individuals always face the same spatial distribution, and

so parents attain the same expected fitness within each

generation – and thus also across generations; that is,

there is no variance in parents’ fitness across genera-

tions.1 In this scenario, parents’ fitness can be computed

as the arithmetic mean of the fitness of all their

offspring2: the fraction of offspring in the safe patch

multiplied by their fitness, plus the fraction of offspring

in the dangerous patch multiplied by their fitness (and so

forth, if there are more patches). This calculation implies

that even if some offspring attain low fitness (e.g. they

die), parents might still do well, depending on the fitness

attained by their other offspring.

Temporal environmental variation

In contrast, in environments that vary only temporally

(and not spatially), within a single generation all individ-

uals confront the same environmental state (e.g. danger-

ous); however, in the next generation, their offspring may

face a different state (e.g. safe). Thus, if the environment

fluctuates temporally, the entire population experiences

variation across generations. In such environments, long-

term fitness depends on the fitness of one generation,

multiplied by the fitness of the next generation, and so

forth. The average fitness of this series will not be the

arithmetic mean, but the geometric (i.e. multiplicative)

mean – the n-th root of the product of n fitness values3

(Dempster, 1955; King & Masel, 2007; Lewontin &

Cohen, 1969). Unlike with spatial variation, fluctuations

in success can be catastrophic when the environment

varies temporally. If an entire set of offspring is mis-

matched to its environment in one generation and fails to

reproduce, this lineage will be wiped out.

Formal definition of bet-hedging

Variance in fitness across environments lowers the

geometric mean, but not the arithmetic mean. Indeed,

the geometric mean is often approximated by the

arithmetic mean minus a variance term – most com-

monly, the variance divided by two times the arithmetic

mean4 (Frank, 2011; Starrfelt & Kokko, 2012; Stearns,

1 This expectation being identical across generations assumes that

genotypes produce an infinite number of offspring. If genotypes

produce a finite number of offspring (as they do in reality), they will

experience variance in fitness across generations (Starrfelt & Kokko,

2012). Because this variance becomes very small at even modest

population sizes (Hopper, Rosenheim, Prout & Oppenheim, 2003), we

will ignore it here.

2 We assume discrete, non-overlapping generations, which consist of a

single selective life stage: organisms are born and reproduce; mature

individuals die; and the cycle repeats. Parents and offspring do not

coexist (see also General Discussion section).
3 This assumes an infinitely large and well-mixed population (Starrfelt

& Kokko, 2012). When populations are finite, variance in offspring

number reduces fitness in proportion to the inverse of the population

size (see Frank & Slatkin, 1990, Gillespie, 1974, and Proulx & Day,

2001, for discussions of geometric mean fitness in finite populations,

particularly small ones; for a discussion of the evolution of bet-hedging

in large, structured populations, see Lehmann & Balloux, 2007).
4 This approximation assumes that the fitness of individuals does not

deviate much from the average fitness of their genotype within a given

generation (Starrfelt & Kokko, 2012). If it does, a structurally similar,

albeit less succinct, approximation may be preferable.
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2000; see Young & Trent, 1969, for other approxima-

tions). The long-term fitness of genotypes thus depends

not only on their immediate (arithmetic) expectation for

the next generation, but also on variance in their fitness

across generations (Dempster, 1955). This insight formed

the foundation of bet-hedging theory in biology (Slatkin,

1974). A mean–variance tradeoff exists if an increase in a

strategy’s short-term (i.e. next-generation) expected

arithmetic mean also increases its long-term (i.e. across

generations) expected fitness variance. Bet-hedging strat-

egies are those which, when confronting this tradeoff,

sacrifice short-term fitness to reduce long-term fitness

variance (Seger & Brockmann, 1987; Philippi & Seger,

1989).

Diversified vs. conservative bet-hedging

We will focus on situations in which parents hedge their

bets by producing diverse offspring (i.e. a mixture of

types); this is known as ‘diversified’ bet-hedging (cap-

tured by the idiom: ‘Don’t put all your eggs in one

basket’). Formally, ‘bet-hedging’ applies to any strategy

that increases geometric mean fitness while sacrificing

short-term arithmetic mean fitness. If, for instance,

parents are selected to produce only plastic offspring in

order to reduce variation in fitness, despite a reduction in

short-term arithmetic mean fitness, this is bet-hedging,

too; it is called ‘conservative’ bet-hedging (captured by

the idiom: ‘A bird in the hand is worth two in the bush’)

because individuals avoid extreme payoffs.

Diversified bet-hedging can be instantiated in different

ways: by producing genetically diverse offspring, or by

producing genetically homogenous offspring each of

which randomly develops a phenotype (as if drawn from

a fixed probability distribution). The latter is called

‘adaptive coin flipping’ because, metaphorically, each

individual flips a coin to determine what phenotype he or

she will develop: e.g. specialist or generalist (Cooper &

Kaplan, 1982; Kaplan & Cooper, 1984; Salath�e, Van

Cleve & Feldman, 2009). We defer further discussion of

instantiation to the General Discussion section.

A gambling metaphor

Before introducing the mathematical model, we intro-

duce a gambling metaphor in order to introduce key

concepts, develop intuitions, and preview results. Imag-

ine a casino with a large number of identical roulette

wheels. All wheels are spun simultaneously throughout

the night (e.g. every five minutes). Each spin of the

wheels corresponds to a generation and the outcome of a

spin corresponds to the environmental state experienced

by developing offspring in the model we later present.

Each roulette wheel has a certain number of red pockets

and a certain number of black pockets, where black

pockets correspond to a safe environment and red

pockets to a dangerous environment (we ignore numbers

associated with different pockets). The fraction of black

pockets is given by the probability p. For example, if

p = .75 there are three times as many black pockets as

red pockets for each and every roulette wheel in the

casino.

Next to each wheel is a felt table with three squares,

one black, one red, and one white. Before each spin,

gamblers place their chips on these squares. A gambler

represents a parent and the set of all gamblers in the

casino represents an evolving population of parents.

Each chip represents a child. Just as a gambler chooses

to bet on black, red, or white, a parent can have a child

that is a safe-specialist, a danger-specialist, or a gener-

alist. A chip bet on the white square returns back that

same chip regardless of the outcome of the spin (i.e. no

gain, no loss). A chip bet on the black square returns

1 + b chips if the wheel comes up black (where b

represents a fraction of one chip, varying between 0 and

1) and 1�c chips if the wheel comes up red (where c

represents a fraction between 0 and 1). Similarly, a chip

bet on red returns 1 + b chips if the outcome is red and

1�c if the outcome is black.

Gamblers must bet all of their chips every time the

wheels spin (i.e. they cannot reserve chips, though betting

on white results in the same outcome). Each gambler has

a strategy she uses in placing her bets. Some strategies

will, over time, do better than other strategies. And we

might expect that most gamblers end up deploying

similar strategies. There is, after all, a uniquely best

strategy for any combination of values for p, b, and c.

Note: we chose roulette as a metaphor, rather than

poker, because our model assumes that the payoff of a

strategy is not dependent on its frequency relative to

other strategies in the population. We leave an extension

of our model that incorporates frequency-dependent

selection – in which parents are playing games not only

against nature, but against each other as well – for a

future study.

On some nights, the casino limits gamblers such that

they can only bet one chip on each wheel every time the

wheels spin (e.g. if a gambler has 20 chips, she must place

20 bets on 20 different roulette wheels). On other nights,

the casino forces gamblers to place all of their chips on

just one wheel each time the wheels spin (e.g. the gambler

must now place all 20 of her chips on just one of the

roulette wheels).

In the first version, in which separate bets are placed

on separate wheels, a gambler does best by betting all of
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her chips on just one color (i.e. red, black, or white); she

should never bet on different colors. To understand why,

we need to calculate the expected return in any round

for betting on each of the three colors. If a gambler bets

on black, her expected payoff is 1 + pb � (1�p)c (see

Appendix for details). When this expectation is greater

than 1, the gambler will, over time, make more money

betting on black than betting on white, which is the safe

bet. If, instead, a gambler bets on red, her expected

payoff is 1 + b(1�p) � pc. Again, if this is greater than

1, she will make more money, on average, by betting on

red than on white. If both of these expectations (i.e.

betting on red and betting on black) are less than 1, the

gambler does poorly betting on either black or red; her

best play is to bet on white and preserve her chips. If

one expectation (e.g. betting on red) is greater than 1

and the other expectation less than 1 (e.g. black), she

should bet on the color that has an expected rate of

return greater than 1. And if both are greater than 1,

she makes the most money betting on the color with the

higher expected rate of return. In this game, because

gamblers bet each chip on a separate wheel and because

the outcomes across wheels are independent, losing at

any particular wheel is no big deal, especially when

betting a large number of chips each time. What

matters, in the long run, is the arithmetic average across

wheels. In this case, that average is maximized by

betting on just one color, depending on the values of p,

b, and c.

Things are less simple in the second version of the

game, in which a gambler must place all of her chips on

just one wheel each time the wheels spin. If, for

example, she places all of her chips on the red square

and black comes up, she stands to lose money; the

larger the value of c, the more the gambler loses. When

c = 1, the most it can be, the gambler is wiped out.

Rather than placing all of her chips on a single color,

she must be more cautious in this version of the game,

especially when the value of c is large, hedging her bets

to insure against catastrophe. In this type of game, a

gambler seeks to maximize the geometric mean payoff,

not the arithmetic mean (see above section Spatial and

Temporal Environmental Variation). To maximize the

geometric mean, the gambler must take into account

variation in her payoffs across gambles. How to

maximize the geometric mean exactly depends on the

values of p, b, and c.

To preview results for this second version of the game

(which we describe in more detail below), when the

benefit of a correct bet exceeds the cost of an incorrect

bet (b>c), a gambler does best by placing all her chips on

the black square, all her chips on the red square, or

distributing her chips between black and red squares; she

should never place any chips on the white square. The

precise distribution between red and black depends on

the values of p, b, and c. When the cost of being wrong

exceeds the benefit of being correct (c>b), a gambler

sometimes does best by placing some chips on the white

square and the remainder on either the black square (if

p > .5) or the red square (if p < .5), but never both.

These betting strategies ensure a good payoff without

suffering catastrophic failure.

This gambling metaphor has fundamental similarities

with the problem faced by parents in choosing the

developmental strategies of their offspring when the

environment fluctuates across time and space. The nights

in which gamblers can bet only one chip per roulette

wheel corresponds to a purely spatially varying ecology,

whereas the nights in which gamblers must place all their

chips on just one wheel corresponds to a purely

temporally varying ecology.

The mathematical model

In our model, parents can produce plastic offspring

(generalists), who can adapt their phenotype to local

conditions, attaining a payoff of 1 in each of the two

environmental states. Parents can also produce fixed

offspring (safe- and danger-specialists), who are less

able to adapt to local conditions, attaining high payoffs

(relative to generalists) in environments matching their

phenotypes (1 + b), and low payoffs (relative to

generalists) in environments not matching their pheno-

types (1�c). We assume that b and c range between 0

and 1; this assumption ensures that mismatched

specialists do not attain negative fitness, and implies

that well-matched specialists can at most attain double

the fitness of generalists. This assumption is justified

because empirical work shows that fitness effects of

natural phenotypic variation virtually always fall

within this range in humans (reviewed in Keller &

Miller, 2006; Nettle & Pollet, 2008; Penke, Denissen &

Miller, 2007; Stearns, Byars, Govindaraju & Ewbank,

2010), as well as other organisms (reviewed in Endler,

1986; Hoekstra, Hoekstra, Berrigan, Vignieri, Hoang

et al., 2001; Kingsolver, Hoekstra, Hoekstra, Berrigan,

Vignieri et al., 2001; Morrissey & Hadfield, 2012;

Siepielski, Gotanda, Morrissey, Diamond, DiBattista

et al., 2013).

Optimal offspring distribution

Our goal is to compute the fraction of safe-specialists

(x), danger-specialists (y), and plastic individuals (z) that

natural selection favors parents to produce. Each of these
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fractions ranges between 0 and 1, and all three must sum

to 1. We are particularly interested in the region where

0 < z < 1, because there natural selection favors paren-

tal bet-hedging via the production of both fixed and

plastic offspring. The optimal values of x, y, and z will

depend on features of the evolutionary ecology; that is,

on the probabilities of a safe (p) and dangerous

environment (1�p), and the magnitude of fitness effects

(b and c). These fitness effects specify how much better

or worse specialists do compared with generalists if their

phenotypes match or do not match the environmental

state. We assume that environmental parameters (p, b,

and c) are extrinsic, meaning that parents and offspring

cannot control them. We leave an extension of our model

that incorporates developmental niche construction

(Flynn, Laland, Kendal & Kendal, 2013) – in which

parents and/or offspring can influence environmental

parameters – for a future study.

For simplicity, we assume that safe-specialists in a safe

environment attain the same fitness as danger-specialists

in a dangerous environment (namely, 1 + b). We also

assume that safe-specialists in a dangerous environment

attain the same fitness as danger-specialists in a safe

environment (namely, 1�c). This symmetry in payoffs

justifies limiting our analyses to cases where p ≥ 1�p

(with p < 1�p, our results would be the same, flipping x

for y). However, a future study should extend our model

to include asymmetric fitness payoffs, where the benefits

and costs of being well matched or mismatched vary by

environmental state; such asymmetries might severely

reduce the scope for bet-hedging to evolve (Salath�e et al.,

2009).

Results with spatial environmental variation

When the environment varies spatially (but not tempo-

rally), parental fitness (w) is given by equation 1 (see

Appendix for details):

w ¼ 1þ x½pb� cð1� pÞ� þ y½bð1� pÞ � pc� ð1Þ

The 1 just to the right of the equal sign represents the

payoff achieved by a generalist. If parents only produce

generalists, they will achieve a fixed payoff of 1. The

second term, x[pb � c(1�p)] represents the change in

fitness when producing safe-specialists instead of gener-

alists, in which x represents the fraction of safe-

specialists among the offspring, pb the benefit of

safe-specialists developing in a safe environment, and c

(1�p) the cost of safe-specialists developing in a

dangerous environment. The third term, y[b(1�p) �
pc], represents the change in fitness when producing

danger-specialists instead of generalists, and has a

similar interpretation to the second term. The sum of

these terms represents the arithmetic mean of fitness,

averaging across the three types of offspring.

If both the second and third terms are negative, safe-

and danger-specialists do worse, on average, than gen-

eralists. In this case, parents maximize fitness by

producing all generalists (z = 1, x = 0, y = 0). If the

second term is positive and the third negative, safe-

specialists do better, on average, than generalists, who do

better, on average, than danger-specialists. In this case,

parents should produce all safe-specialists (z = 0, x = 1,

y = 0). If the second term is negative and third term

positive, danger-specialists do best and parents should

only produce them (z = 0, x = 0, y = 1). Finally, if both

the second and third terms are positive, generalists do

worse than safe- and danger-specialists. If one of these

specialists has even a slight edge over the other, parents

should exclusively produce the specialist with the edge

(x = 1, y = 0 or x = 0, y = 1).

As with the version of roulette in which gamblers can

only bet one separate chip on each roulette wheel, when

environmental variation is only spatial, parents maxi-

mize their fitness by either producing all safe-, all

danger-specialists, or all generalists, and never a mix-

ture.5 With spatial variation, we expect no variation in

plasticity due to bet-hedging.

Results with temporal environmental variation

When the environment varies temporally (but not

spatially), selection never favors a mixture of all three

types (see Appendix for details). Instead, selection favors

the production of either only one type (safe-specialist,

x = 1; danger-specialist, y = 1; or generalist, z = 1) or a

mixture of two types (safe-specialists and danger-spe-

cialists, x+y = 1; safe-specialists and generalists, x+z = 1;

or danger-specialists and generalists, y+z = 1). Because

we assume that p ≥ 1�p, the mixture between danger-

specialists and generalists is never favored. So, for

mixtures, we have just two strategies: safe-specialists

and generalists (henceforth, ‘differential plasticity’), or

safe-specialists and danger-specialists (henceforth, ‘mix-

ture of specialists’).

5 Levene (1953) showed mathematically that spatial environmental

variation with local population regulation maintains genetic polymor-

phisms (for related theory, see Frank & Slatkin, 1990; Maynard Smith

& Hoekstra, 1980; Seger & Brockmann, 1987; for related empirical

work, see Kawecki & Ebert, 2004; Savolainen, Lascoux & Meril€a,

2013). We do not consider this case here, because the genetic

polymorphisms that evolve with local population regulation do not

result from a mean–variance tradeoff, and therefore do not qualify as

bet-hedging (see the section on Formal Definition of Bet-hedging).
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With temporal variation, differential plasticity can

sometimes be favored. In the Appendix, we provide

analytical results. Figure 1 depicts the regions of param-

eter space in which differential plasticity is uniquely

favored; that is, where it attains higher, not lower or

equal, fitness than all of the other strategies (see also

figures in Appendix).

Consistent with previous findings from biology (Don-

aldson-Matasci et al., 2008; Moran, 1992; Starrfelt &

Kokko, 2012), natural selection only favors bet hedging

when fitness effects are large (i.e. the variation in fitness

associated with different types must be large), in order to

reduce costly (or even catastrophic) variance in fitness.

We also report a novel result: Natural selection only

favors differential plasticity when the cost of being

mismatched exceeds the benefit of being well adapted

(c>b; Figure 1; see also figures in Appendix). We reflect

on these results below.

When benefits exceed costs

When the benefit of being well matched is larger than the

cost of being mismatched (b>c), selection never favors

differential plasticity (x+z = 1). Instead, selection favors

producing either all safe-specialists (x = 1) or a mixture

of specialists (x+y = 1). Producing all safe-specialists is

favored when the benefit of being well matched and the

cost of being mismatched are small (b,c << 1) or the

probability of experiencing the safe environment is high.

With small fitness effects, fitness variance is also small,

so we are back to a world that is approximately like

spatial variation; selection favors producing only the

type that has the highest arithmetic mean fitness. When p

is high, there is little point in producing a second type to

capture some benefits in the rare environment; individ-

uals do best by producing only the type that is well

matched to the common environment, despite suffering

the occasional loss. When the benefit and cost are large

(b,c >> 0) and p is not that high, selection favors

producing a mixture of specialists. A mixture of special-

ists does better than only safe-specialists because the

mixture experiences much less variation in fitness across

time. And when the environment varies temporally, what

matters is geometric mean fitness, not arithmetic mean

fitness. A high variance in payoff reduces the geometric

mean.

Focusing on the region in which selection favors a

mixture of specialists, we can ask why a mixture of

specialists beats differential plasticity (see the Appendix

for a proof). In this region, when p is not that high and b,

c >> 0, producing only safe-specialists results in too

much exposure to risk. When the environment is

dangerous, safe-specialists do very poorly. To mitigate

this risk, selection favors mixing safe-specialists with

another type, either danger-specialists or generalists.

When the benefit of being well matched exceeds the cost

of mismatch, this other type should be danger-specialists.

To understand why, we can think about the effect of

the two kinds of mixing on the variance in fitness across

environments. With a mixture of specialists, there is

always a mix that results in the same or nearly identical

payoffs in each environment (see figures in Appendix);

this is true even if the environmental state is highly

variable (e.g. p = .6). With differential plasticity, there is

no way of mixing safe-specialists and generalists to

eliminate variance in payoff across environments; the
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Figure 1 The x-axis represents the additional benefit (b) fixed specialists obtain, compared with plastic generalists, if their
phenotype matches the environmental state. The y-axis represents the additional cost (c) fixed specialists incur, compared with
plastic generalists, if their phenotype does not match the environmental state. Contour lines indicate the optimal fraction of safe-
specialists, when the probability of a safe environment equals 0.6, 0.75, and 0.9 (from left to right). In regions denoted ‘S’ (shaded
dark gray), only safe-specialists are favored; if ‘G’ (shaded medium gray), pure generalists; if ‘M’ (shaded light gray), mixtures of
specialists (i.e. safe- and danger-specialists); if ‘D’ (not shaded), differential plasticity (i.e. mixtures of generalists and safe-specialists).
If b > c, differential plasticity is never favored. If c > b, differential plasticity can be favored, especially if c is large.
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only way to eliminate fitness differences in the two

environments is to produce all generalists. Mixtures of

specialists can always reach lower variance in payoffs

than differential plasticity, which all else being equal (e.g.

the arithmetic mean) results in higher geometric mean

fitness.

When costs exceed benefits

When the cost of mismatch exceeds the benefit of being

well matched (c>b), selection sometimes favors differen-

tial plasticity. When the magnitude of benefit and cost

are small (c,b << 1), selection favors producing only

generalists when p is below some threshold (the precise

value of this threshold depends on the values of b and c).

When the magnitude of fitness effects is large (c,b >> 0),

selection often favors differential plasticity over a mix-

ture of specialists.

To understand why, we can think about gains and

losses. With differential plasticity, the safe-specialists do

somewhat better than generalists in the more common

safe environment and a lot worse in the more rare

dangerous environment. With a mixture of specialists,

the safe-specialists do reasonably well in the safe

environment and a lot worse in the dangerous environ-

ment; the danger-specialists do reasonably well in the

dangerous environment and very poorly in the safe

environment. Because the cost exceeds the benefit,

differential plasticity is exposed to smaller losses than a

mixture of specialists. As a result, differential plasticity

experiences less variance in payoffs across environments

compared to a mixture of specialists, thereby achieving

higher geometric mean fitness.

General discussion

We presented a mathematical model in order to examine

whether individual differences in plasticity could result

from parental bet-hedging. Our results support the

hypothesis’ logical coherence in that there are ecological

scenarios in which natural selection might favor differ-

ential plasticity. However, three conditions must simul-

taneously hold. First, environmental variation must

occur temporally, not exclusively spatially. Second,

fitness effects must be large (i.e. variation in individuals’

plasticity is correlated with substantial variation in

fitness). Both of these conditions are consistent with

other biological models of bet-hedging (Donaldson-

Matasci et al., 2008; Moran, 1992; Starrfelt & Kokko,

2012). Third, the costs of being mismatched must exceed

the benefits of being well matched. To our knowledge,

this result is novel and may be specific to the evolution of

differential plasticity. If these three conditions are met,

our model can account for differential plasticity (i.e. the

coexistence of plastic generalists and fixed specialists).

However, our model cannot account for a coexistence of

plastic generalists and multiple fixed specialists (i.e.

different specialists adapted to different environments).

Including density-dependence in the model will likely

change this result (see Kawecki & Ebert, 2004; Savolai-

nen et al., 2013; Wilson & Yoshimura, 1994); however, a

future study should formally examine this.

Empirical predictions

Before discussing the plausibility of large fitness effects,

we will first derive empirical predictions. We will focus

on two predictions, which apply to contemporary

populations only to the extent that individuals inhabit

environments that share properties with those environ-

ments in which parental bet-hedging may have originally

evolved (i.e. no evolutionary disequilibrium).

First, if parental bet-hedging explains differential

plasticity, we should expect large fitness consequences

of variation in plasticity. For example, at a given level of

environmental harshness, danger-specialists should

attain much higher fitness than plastic generalists who

should attain much higher fitness than safe-specialists.

Measuring fitness (even proxies) is difficult in long-lived

organisms such as humans, but it is not impossible. For

instance, fieldwork on Yanomam€o Indians of Amazonas

indicates that 88% of unokai (men who have killed) sired

at least one offspring, compared with 49% of non-unokai

(Chagnon, 1988; see also Walker & Bailey, 2013).

Accordingly, among the Yanomam€o, an individual who

develops a danger-adapted phenotype (e.g. physical

strength, high levels of vigilance) might be more likely

(than conspecifics who develop safe-adapted pheno-

types) to become unokai, and less likely to become a

victim, thus garnering fitness benefits. However, for

selection to potentially favor differential plasticity (as

opposed to only danger-specialists), at other times safe-

specialists would need to have a large advantage. In those

periods, selection pressures may resemble those faced by

the Waorani of Ecuador, among whom more aggressive

men have fewer children surviving to reproductive age

(Beckerman, Erickson, Yost, Regalado, Jaramillo et al.,

2009). Moreover, for differential plasticity to beat

mixtures of specialists, in times when aggression is

favored, the benefits of aggression must be smaller than

its costs in times when it is disfavored.

Second, we expect the extent to which individuals

differ in their plasticity levels to depend on: (a) environ-

mental variance and (b) the cost–benefit ratio (i.e. the

extent to which the costs of being mismatched exceed the
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benefits of being well matched). Specifically, populations

experiencing larger environmental variance should

include more plastic generalists, and fewer specialists,

than populations experiencing smaller environmental

variance (Figure 1; for evidence of bet-hedging plants

producing proportions of offspring types that track

frequencies of environmental states, see Graham, Smith

& Simons, 2014, and Rajon, Desouhant, Chevalier,

D�ebias & Menu, 2014; for evidence of bet-hedging

plants producing proportions of offspring types that

track both frequencies of environmental states and

ontogenetic information, see Sadeh, Guterman, Gersani

& Ovadia, 2009, and Simons, 2014). Further, we expect

the proportion of plastic generalists to be larger, and the

proportion of specialists to be smaller, in those popula-

tions in which the cost–benefit ratio is greater (Figure 1),

as larger mismatch costs penalize specialists. Having

stated predictions, we now turn to the question whether

the conditions our results point to plausibly pertain to

human evolutionary history.

Plausibility of large fitness effects

Our results indicate that selection can favor differential

plasticity, provided fitness effects are large (i.e. variation

in individuals’ plasticity is correlated with substantial

variation in fitness). Larger fitness effects increase fitness

variance (lowering geometric mean fitness), which can be

reduced by producing mixtures of types – including, if

c>b, differential plasticity. Meta-analyses of studies of

wild animal populations show that frequencies of fitness

effects are exponentially distributed, with smaller effects

being much more common than larger ones (reviewed in

Endler, 1986; Hoekstra et al., 2001; Kingsolver et al.,

2001; for studies of humans, see Keller & Miller, 2006;

Nettle & Pollet, 2008; Penke et al., 2007; Stearns et al.,

2010). Moreover, recent analyses suggest that large

fitness effects are even less common than earlier surveys

indicated (Morrissey & Hadfield, 2012; Siepielski et al.,

2013). The plausibility of large fitness effects in the

present case depends, among other things, on the extent

to which ‘plasticity levels’ are correlated across different

developmental domains. If an individual’s plasticity level

in one domain (e.g. metabolic adaptation) predicts her

plasticity levels in other domains (e.g. reproductive

development, stress responsivity), then the effects on

overall fitness could be large. In contrast, if plasticity

levels are narrowly trait-specific, their effects will be

restricted to single traits as well, reducing their impact on

overall fitness. The extent to which plasticity levels are

correlated across domains is an open and interesting

question, which has recently come into focus in studies of

humans (Aron et al., 2012; Belsky & Pluess, 2013; Del

Giudice et al., 2011) and other animals (Dingemanse,

Kazem, R�eale & Wright, 2010; Sih & Del Giudice, 2012;

Stamps & Groothuis, 2010). Initial evidence suggests

that plasticity levels are correlated across domains, but it

would be premature to draw firm conclusions (Belsky &

Pluess, 2013). Future research is needed to clarify this

important issue.

Limitations and future directions

Models are by design simplified, idealized versions of

reality, the goal of which is to capture some essential

components of a process or system. Moreover, models

may serve different kinds of purposes. One distinction is

that between general and specific models (Parker &

Maynard Smith, 1990): ‘General models promote under-

standing of qualitative features. The parameters of such

models may not be easy to measure. Specific models are

based on a particular system and have parameters that

can be measured so that predictions can be made’

(Houston & McNamara, 2005, p. 934). We presented a

general model whose goal is to: (a) explicate assump-

tions, (b) test their theoretical consequences and thus the

logical cogency of hypotheses, and (c) understand

interactions between variables that are difficult to intuit,

if not impossible, without the help of formalizations (see

Fawcett, Hamblin & Giraldeau, 2013; Frankenhuis,

Panchanathan & Barrett, 2013). We have provided one

way of capturing and analyzing the bet-hedging argu-

ment of differential plasticity (Belsky, 1997, 2005; Belsky

& Pluess, 2009a, 2009b). However, our work is imperfect

and incomplete, and we hope that future research will

address these limitations.

First, our model does not address how mechanistic

instantiation might constrain optimality (McNamara &

Houston, 2009). We assume that parents can produce

optimal proportions of offspring types, unhindered by

genetic, developmental, physiological, or cognitive con-

straints. Such an assumption of unbounded optimality is

sometimes called the ‘phenotypic’ or ‘behavioral’ gambit

(Grafen, 1984; Fawcett et al., 2013; Frankenhuis et al.,

2013). In real organisms, however, constraints abound.

To give one example: we assume that offspring can

produce exactly the same distributions of offspring types

as their parents did (‘like begets like’). This assumption

is realistic in haploid asexual organisms, where selection

happens among competing clones, but not in humans,

who have two sets of chromosomes. Diploid genetic

systems (a) constrain the offspring distributions that

parents can produce (i.e. some types of offspring may not

be producible), and (b) limit the extent to which parents

can control the distribution of those offspring types that

they can in fact produce (e.g. due to random shuffling of
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alleles, recombination, and other processes); this is why

heterozygotes, who are less susceptible to sickle-cell

anemia than homozygotes, are not universal in popula-

tions exposed to malaria.

Given the randomness inherent to sexual reproduc-

tion, it seems implausible that in species producing small

numbers of offspring, like humans, parents will diversify

their offsprings’ levels of plasticity using genetic means –

for instance, by mating with multiple, genetically diverse

partners (e.g. serial monogamy, promiscuity). Instead, it

is more likely that parental bet-hedging, if it occurs in

humans, is instantiated via epigenetic mechanisms, such

as pre- or postnatal programming (Belsky, 2005; Belsky

& Pluess, 2009a, 2011; Ellis et al., 2011; for evidence in

non-human animals, see Crean & Marshall, 2009). In

this scenario, natural selection would favor parents who

transmit to their offspring, not so much different genetic

variants, but rather variation in epigenetic settings that

determines the extent to which experience shapes phe-

notypic development (i.e. epigenetic variation in sensi-

tivity to developmental programming). An alternative

possibility is that natural selection favors adaptive ‘coin-

flipping’, in which parents produce offspring that

stochastically vary in their levels of plasticity, irrespective

of offspring experience (Bull, 1987; Cooper & Kaplan,

1982; Kaplan & Cooper, 1984; Salath�e et al., 2009).

Regardless, it would be valuable to formally examine

how diploid genetics might influence scope for differen-

tial plasticity to evolve.

A second limitation is that our model assumes

discrete, non-overlapping generations, which consist of

a single selective life stage, as these assumptions are

implicit in the way we computed geometric mean fitness:

organisms are born and reproduce; mature individuals

die; and the cycle repeats. Parents and offspring do not

coexist. This assumption does not hold for humans.

Therefore, future work should explore variants of our

model that include overlapping generations. Classical

biological models show that temporally fluctuating

selection – in which the relative fitnesses of different

phenotypes vary over time – is ineffective in maintaining

genetic variation if generations are non-overlapping (e.g.

Frank & Slatkin, 1990; but see Svardal, Rueffler &

Hermisson, 2011). However, as Del Giudice (2012) notes,

this result changes ‘in species with (a) overlapping

generations in which juveniles and adults coexist, and

(b) multiple life stages, at least [one] of which is

temporarily “shielded” from the [selective] effects of

environmental change. When these conditions are met,

temporally fluctuating selection becomes extremely

effective in maintaining genetic variation, as multiple

life stages store genetic variation and maintain it as the

environment changes’ (p. 55; for supporting references,

see Del Giudice, 2012). Although maintenance of genetic

variation in fluctuating environments does not normally

result from bet-hedging (i.e. from strategies that sacrifice

short-term mean fitness in order to reduce long-term

fitness variance), in some cases it might (Svardal et al.,

2011). It will thus be interesting to examine how

including overlapping generations affects scope for

differential plasticity to evolve.

A third limitation is that we assume discrete types of

offspring (one plastic type, and two fixed types); our

model does not consider continuous variation in the

degree of plasticity. It is uncertain whether between-

individual variation in plasticity would also evolve if

individuals could develop such continuous levels. Con-

ceivably, in that case, parents might produce all offspring

with the same, intermediate level of plasticity. This is

especially worth exploring because human G9E inter-

action research suggests that variation in plasticity may

be better characterized in terms of a gradient than in

typological terms (Belsky & Pluess, 2009a, 2009b; Belsky

& Beaver, 2011).

Fourth, our model makes specific assumptions about

rates of environmental change. It assumes that, first, the

environmental state (e.g. safe or dangerous) is stable

enough within generations for developmental program-

ming to evolve, but not perfectly stable, resulting in

maladaptive developmental programming in some indi-

viduals. Second, the environmental state is variable

between generations to an extent that parents cannot

predict the environment their offspring will experience

any better than the long-term average probabilities of

environmental states. In other words, our model assumes

high environmental auto-correlation within generations,

and no environmental auto-correlation between genera-

tions. An extension of the current model would be to

consider between-generation auto-correlation in the

environment. Recent evidence suggests that there have

been periods in human history characterized by climatic

fluctuations on the scale of decades to millennia, which is

very rapid over evolutionary timescales but rather slow

over one or even several individual lifetimes (Potts, 1998;

Richerson, Boyd & Bettinger, 2001). This means that

being born at a time of nutritional stress, or abundance,

would have predicted – albeit imperfectly – a lifetime of

such conditions for oneself and one’s offspring. There

might have been between-generation autocorrelation in

dimensions of the social environment as well. For

instance, within-society differences in social status

(determining access to resources) may have been mod-

erately stable across lifetimes in ancestral societies as

they are in many extant societies (Borgerhoff Mulder,

Bowles, Hertz, Bell, Beise et al., 2009) and in some non-

human primates (Cheney, 1977). Formal models show
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that moderate degrees of environmental stability across

generations provide favorable conditions for the evolu-

tion of systems of epigenetic inheritance (Jablonka,

Oborny, Moln�ar, Kisdi, Hofbauer et al., 1995; Lach-

mann & Jablonka, 1996). With between-generation auto-

correlation, uncertainty is reduced across generations. It

is not clear what effect this type of uncertainty reduction

will have on the scope for the evolution of bet-hedging.

Conclusions

Belsky’s bet-hedging hypothesis (Belsky, 1997) is widely

cited and is having interdisciplinary impact, inspiring

research not only in observational and experimental

studies in developmental psychology, but also in related

fields, such as clinical science, pedagogy, and public

policy (White, Li, Griskevicius, Neuberg & Kenrick,

2013). Despite its success, however, the bet-hedging

hypothesis has never been formalized, even though

related models have long existed in the biological

sciences. Here we have provided such an analysis. Results

support the argument’s logical coherence, but only under

restrictive conditions. We hope that future research will

extend and modify our work, resulting in a family of

models, with each examining the consequences of

particular assumptions.
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Appendix

Bet-hedging model

Model set up

Parents can produce plastic offspring, who are adaptable,

achieving a payoff of 1, irrespective of the environmental

state. Parents can also produce fixed offspring (special-

ists), who are less adaptable, achieving a high payoff in a

safe environment (1+b), and a low payoff in a dangerous

environment (1�c).

Our goal is to compute the fraction of safe-specialists

(x), danger-specialists (y), and plastic individuals (z) that

natural selection favors parents to produce. Each of these

fractions ranges between 0 and 1. We are particularly

interested in the region where 0<x+y<1, because there

natural selection favors parental bet-hedging via the

production of both fixed and plastic offspring. The

optimal value of x and y will depend on features of the

evolutionary environment; that is, on the probabilities of

a safe (p) and dangerous environment (1�p), and the

magnitude of fitness effects (b and c). These fitness

effects specify how much better or worse specialists do

compared with generalists if their phenotypes match or

do not match the environmental state.

We assume that safe-specialists in a safe environment

attain the same fitness as danger-specialists in a danger-

ous environment (namely, 1+b). We also assume that

safe-specialists in a dangerous environment attain the

same fitness as danger-specialists in a safe environment

(namely, 1�c). This symmetry in payoffs justifies limiting

our analyses to cases where p>1�p (with p<1�p, our

results would be a mirror image). Note that the higher p

is, the more predictable the environment is across

generations from the parents’ viewpoint; if p=1�p, the

environmental state is completely unpredictable from

one generation to the next.

Parameters

w� parental fitness

x� fraction of safe-specialists (fixed type adapted to safe

environment)

y� fraction of danger-specialists (fixed type adapted to

dangerous environment)

z�1�x�y� fraction of plastic type

p� probability of a safe environment (range: 0–1)

1�p� probability of a dangerous environment

b� benefit to a fixed individual when fitting the local

ecology (range: 0–1)

c� cost to a fixed individual when mismatched to local

ecology (range: 0–1)

Intragenerational spatial variation

In spatially varying environments, the environment

consists of different patches, each with a particular state

(e.g. safe or dangerous). Within any generation, some

offspring are born in one environmental state and other

offspring in another. In such environments, parental

fitness is given by the arithmetic mean across patches.

Fitness function

w = p(payoff in safe environment) + (1-p)(payoff in

dangerous environment)

w ¼ p ð1� x� yÞð1Þ þ xð1þ bÞ þ yð1� cÞ½ �

þð1� pÞ ð1� x� yÞð1Þ þ xð1� cÞ þ yð1þ bÞ½ �
ð2Þ

A basic and simple calculation leads to a reformulation:

w ¼ 1þ x½pb� cð1� pÞ� þ y½bð1� pÞ � pc� ð3Þ

This equation has a straightforward interpretation: In

the second term, pb represents parents’ expected benefit

© 2015 John Wiley & Sons Ltd
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of well-matched safe-specialists (i.e. the probability of a

safe environment multiplied by the benefit that safe-

specialists obtain in this environment), and c(1�p)

represents the expected cost of mismatched safe-special-

ists (i.e. the probability of a dangerous environment

multiplied by the cost that safe-specialists incur in this

environment). In the third term, b(1�p) represents

parents’ expected benefit of well-matched danger-spe-

cialists (i.e. the probability of a dangerous environment

multiplied by the benefit that danger-specialists obtain in

this environment), and pc represents the expected cost of

mismatched danger-specialists (i.e. the probability of a

safe environment multiplied by the cost that danger-

specialists incur in this environment).

If both of these expectations are negative, then parents

maximize fitness (w) by producing x+y=0 (i.e. all plastic

children).

If the former expectation is positive and latter nega-

tive, then parents maximize fitness by producing x=1 (i.e.

all safe-specialists).

If the former expectation is negative and latter

positive, then parents maximize fitness by producing

y=1 (i.e. all danger-specialists).

If both expectations are positive, then parents maxi-

mize fitness by producing all offspring of the type that

has the highest expectation (i.e. either x=1 or y=1).

Thus, if environmental variation is exclusively spatial,

parents always maximize their fitness by producing

either all safe- or danger-specialists, or all plastic

individuals, and never a mixture (of both specialist

types, or of one or both of the specialist types and the

plastic type); thus, in this scenario, we would expect no

variation in plasticity due to bet-hedging.

Intergenerational temporal variation

In environments that vary temporally between gener-

ations (but which remain stable within generations),

the state of the environment changes simultaneously

for all individuals across time. For instance, in one

generation all individuals may develop in a safe patch,

their offspring in a dangerous patch, and so forth. We

assume that environmental states are independent and

identically distributed (IID) across generations. In this

case, if generations are discrete and non-overlapping,

parental fitness is given by the average of sequential

payoffs across generations. The average of n values

multiplied is the nth root of their product, their

geometric mean.

Fitness function

w ¼ ð1� x� yÞð1Þ þ xð1þ bÞ þ yð1� cÞ½ �p

ð1� x� yÞð1Þ þ xð1� cÞ þ yð1þ bÞ½ �ð1�pÞ
ð4Þ

We ask what values of x and y maximize parents’ fitness.

Normally, we would find these values where the deriv-

ative of the fitness function w equals zero. However, the

current case is exceptional, as shown below. Taking the

natural log:

lnðwÞ ¼ p � ln 1� x� yþ xð1þ bÞ þ yð1� cÞ½ �þ

ð1� pÞ � ln 1� x� yþ xð1� cÞ þ yð1þ bÞ½ �
ð5Þ

Simplifying within brackets:

lnðwÞ ¼ p � lnð1þ xb� ycÞ þ ð1� pÞ � lnð1� xcþ ybÞ

ð6Þ

Taking the partial derivative with respect to x:

@lnðwÞ

@x
¼

pb

1þ xb� yc
�

cð1� pÞ

1� xcþ yb
ð7Þ

Taking the partial derivative with respect to y:

@lnðwÞ

@y
¼

bð1� pÞ

1� xcþ yb
�

pc

1þ xb� yc
ð8Þ

Both partial derivatives equal zero when:

pb

1þ xb� yc
�

cð1� pÞ

1� xcþ yb
¼ 0 ð9Þ

bð1� pÞ

1� xcþ yb
�

pc

1þ xb� yc
¼ 0 ð10Þ

Rewrite as: u=1+xb�yc and: v=1�xc+yb:

pb

u
�
cð1� pÞ

v
¼ 0 ð11Þ

bð1� pÞ

v
�
pc

u
¼ 0 ð12Þ

Reorganizing:

pbv ¼ ð1� pÞcu ð13Þ

pcv ¼ ð1� pÞbu ð14Þ

Solve for v:

v ¼
1� p

p

� �

c

b

� �

u ð15Þ
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v ¼
1� p

p

� �

b

c

� �

u ð16Þ

These conditions simultaneously hold when:

1� p

p

� �

c

b

� �

u ¼
1� p

p

� �

b

c

� �

u ð17Þ

Dividing out ð1�p
p
Þ, multiplying both sides by bc, and

reorganizing:

c2u ¼ b2u ð18Þ

uðb2 � c2Þ ¼ 0 ð19Þ

uðbþ cÞðb� cÞ ¼ 0 ð20Þ

Formally, this equation has four solutions: u=0, b=c,

b=�c, and c=�b. However, the last two of these are not

biologically meaningful, so we ignore them. The second

solution is an implausible knife edge (b=c), and we will

show later that differential plasticity is never uniquely

favored in this condition. Thus, we will focus on the first

solution:

u ¼ 1þ xb� yc ¼ 0 ð21Þ

v ¼ 1� xcþ yb ¼ 0 ð22Þ

Solving each for x:

xb ¼ yc� 1 ¼) x ¼
yc� 1

b
ð23Þ

xc ¼ ybþ 1 ¼) x ¼
ybþ 1

c
ð24Þ

These conditions simultaneously hold when:

yc� 1

b
¼

ybþ 1

c
ð25Þ

Multiplying both sides by bc, and reorganizing:

y ¼
�1

b� c
ð26Þ

We obtain the corresponding x:

xb ¼
�c

b� c
� 1 ¼) x ¼

�1

b� c
ð27Þ

This equilibrium x ¼ y ¼ �1
b�c

cannot be attained. If b>c,

then x<0 and y<0; if c>b, then x>1 and y>1. These results

show that selection never simultaneously favors the

optimal x and y (unless, perhaps, when b=c, discussed

later). If b 6¼c, selection will take x and y to the edges of a

triangle, bounded by points: (x=0, y=0), (x=1, y=0), and

(x=0, y=1). Within this triangle, the fitness function is

monotonically increasing or decreasing, depending on

the values of p, b and c.

Exploring the edges

For each combination of parameter values (i.e. p, b, and

c), we want to know the associated fitness of the edge

solutions. The edge solution that yields the highest

fitness for a given set will be favored by natural selection.

We find the optimal edge solution for x between points

(x=0, y=0) and (x=1, y=0) by entering y=0 into our

fitness equation ln(w).

lnðwy¼0Þ ¼ p � lnð1þ xb� 0cÞ þ ð1� pÞ � lnð1� xcþ 0bÞ

ð28Þ

Taking the partial derivative with respect to x:

@lnðwy¼0Þ

@x
¼

pb

1þ xb
�
ð1� pÞc

1� xc
ð29Þ

Setting this partial derivative to zero and solving for x:

x̂y¼0 ¼
pb� cð1� pÞ

bc
ð30Þ

When 0\x̂y¼0\1, differential plasticity is favored over

only plastic individuals, and over only one type of

specialist. This is when:

c

bþ c
\p\

c

bþ c
þ

bc

bþ c
ð31Þ

Next,we find the optimal edge solution for y between

points (x=0, y=0) and (x=0, y=1) by entering x=0 into ln

(w), and taking the partial derivative with respect to y:

@lnðwx¼0Þ

@y
¼

�cp

1� yc
þ
ð1� pÞb

1þ yb
ð32Þ

Setting this derivative to zero, and solving for y:

ŷx¼0 ¼
bð1� pÞ � pc

bc
ð33Þ

When 0\ŷx¼0\1, a mix of y and z is favored over only

plastic individuals, and over only one type of specialist:

b

bþ c
�

bc

bþ c
\p\

b

bþ c
ð34Þ

Finally, we find the optimal edge solution for x between

points (x=1, y=0) and (x=0, y=1), by entering

z=1�x�y=0 (i.e. y=1�x) into ln(w), and taking the

partial derivative with respect to x:

270 Willem E. Frankenhuis et al.

© 2015 John Wiley & Sons Ltd



@lnðwz¼0Þ

@x
¼

pðbþ cÞ

1þ xb� cð1� xÞ
�

ð1� pÞðbþ cÞ

1� xcþ bð1� xÞ

ð35Þ

Setting this derivative to zero, and solving for x:

x̂z¼0 ¼
pð1þ bÞ � ð1� pÞð1� cÞ

bþ c
ð36Þ

When 0\x̂z¼0\1, a mix of specialists is favored over

either pure specialist:

1� c

2þ b� c
\p\

1þ b

2þ b� c
ð37Þ

Differential plasticity can be favored if c>b

We know that natural selection will favor edge solutions;

hence, we will consider differential plasticity (DP) as

producing safe-specialists and plastic individuals only

(not danger-specialists). DP beats Mixtures of Specialists

(MS) if:

ð1þ xbÞpð1� xcÞ1�p
[ ð1þ xb� ycÞpð1� xcþ ybÞ1�p

ð38Þ

Dividing by DP:

1[
1þ xb� yc

1þ xb

� �p
1� xcþ yb

1� xc

� �1�p

ð39Þ

Taking the natural log:

0[ p � ln
1þ xb� yc

1þ xb

� �

þ ð1� pÞ � ln
1� xcþ yb

1� xc

� �

ð40Þ

Assume DP produces xdp ¼ x̂ms � ŷms (it can, because

x̂ms[ ŷmsÞ:

0[ p � ln
1þ xb� yc

1þ ðx� yÞb

� �

þ ð1� pÞ � ln
1� xcþ yb

1� ðx� yÞc

� �

ð41Þ

Distributing terms in the denominators:

0[ p � ln
1þ xb� yc

1þ xb� yb

� �

þ ð1� pÞ � ln
1� xcþ yb

1� xcþ yc

� �

ð42Þ

The left log term is negative because �yc<�yb. The right

one because yb<yc. This proof ignores (1) that the slope

of log terms <1 are steeper than that of log terms >1, and

(2) the left log term is weighted by p, which >1�p. Thus,

the proof holds for all values of p. If taken into account,

(1) and (2) strengthen DP’s superiority over MS. Barring

the strategies converging on production of only Special-

ists, DP beats MS.

Differential plasticity is never favored if b >c

We can show that when b>c, DP never beats MS:

ð1þ xbÞpð1� xcÞ1�p �ð1þ xb� ycÞpð1� xcþ ybÞ1�p

ð43Þ

If MS attains equal or higher fitness than DP in either

environment, its geometric mean fitness across environ-

ments will also equal or exceed that of DP (in which case

DP is never uniquely favored if b>c):

1þ ðx̂dpÞb� 1þ ðxmsÞb� ðymsÞc ð44Þ

1� ðx̂dpÞc� 1� ðxmsÞcþ ðymsÞb ð45Þ

Deducting 1 from all sides:

ðx̂dpÞb�ðxmsÞb� ðymsÞc ð46Þ

�ðx̂dpÞc� � ðxmsÞcþ ðymsÞb ð47Þ

Solving for xms (note: the sign flips in the bottom

equation):

ðx̂dpÞbþ ðymsÞc

b
�ðxmsÞ ð48Þ

ðx̂dpÞcþ ðymsÞb

c
�ðxmsÞ ð49Þ

Combined in one line:

ðx̂dpÞbþ ðymsÞc

b
�ðxmsÞ�

ðx̂dpÞcþ ðymsÞb

c
ð50Þ

ðx̂dpÞ þ ðymsÞ
c

b

� �

�ðxmsÞ� ðx̂dpÞ þ ðymsÞ
b

c

� �

ð51Þ

c

b
�

ðxmsÞ � ðx̂dpÞ

ðymsÞ
�

b

c
ð52Þ

Where xms>yms. Consider x̂dp ¼ 0þ e, where e is tiny:

c

b
�

xms � ð0þ eÞ

yms

�
b

c
ð53Þ

c

b
�

xms � e

yms

�
b

c
ð54Þ

If b>c, MS can always fulfill this condition (note: since

xms>yms, the left side of the equation always holds). Now

consider x̂dp ¼ 1� e:
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ð1� eÞ þ ðymsÞ
c

b

� �

�ðxmsÞ� ð1� eÞ þ ðymsÞ
b

c

� �

ð55Þ

Now yms can be taken down to a very small number such

that xms will be between the two ends. Note that yms must

be smaller than 0+e. To see this, consider yms=0+e

(meaning that xms=1�e):

ð1� eÞ þ ð0þ eÞ
c

b

� �

�ð1� eÞ� ð1� eÞ þ ð0þ eÞ
b

c

� �

ð56Þ

ðeÞ
c

b

� �

� 0�ðeÞ
b

c

� �

ð57Þ

If, however, yms=0+d, where d<e, then:

ð1� eÞ þ ð0þ dÞ
c

b

� �

�ð1� dÞ� ð1� eÞ þ ð0þ dÞ
b

c

� �

ð58Þ

Subtracting 1, multiplying by �1, and simplifying (note:

the signs flip):

e� d
c

b

� �

� d � e� d
b

c

� �

ð59Þ

Dividing by d:

e

d

� �

�
c

b

� �

� 1�
e

d

� �

�
b

c

� �

ð60Þ

Because b
c
[

c
b
, the right term will always be smaller than

the left term. MS can always produce a value of d that

ensures the right term is smaller than one, and the left

term larger than one. Thus, if b>c, MS can always match

or beat DP.

Arithmetic mean fitness, variance in fitness, and
geometric mean fitness

In the article, we present the regions of parameter space

in which differential plasticity is uniquely favored in a

temporally fluctuating environment (Figure 1). Here, we

present the arithmetic mean fitness, variance in fitness,

and geometric mean fitness, for three strategies (in

order): differential plasticity, mixtures of specialists, and

only safe-specialists. We do not present a separate figure

for pure generalists: its arithmetic and geometric mean

fitnesses are 1, and its fitness variance is 0, in the entire

parameter space.

In the following three figures, the x-axis represents the

additional benefit (b) fixed specialists obtain, compared

with plastic generalists, if their phenotype matches the

environmental state. The y-axis represents the additional

cost (c) fixed specialists incur, compared with plastic

generalists, if their phenotype does not match the

environmental state. The top row depicts a strategy’s

arithmetic mean fitness when the probability of a safe

environment equals 0.6, 0.75, and 0.9 (from left to right);

here, contour lines indicate the value of arithmetic mean

fitness. The middle row depicts a strategy’s variance in

fitness when the probability of a safe environment equals

0.6, 0.75 and 0.9 (from left to right); here, contour lines

indicate the value of variance in fitness. The bottom row

depicts a strategy’s geometric mean fitness when the

probability of a safe environment equals 0.6, 0.75, and 0.9

(from left to right); here, contour lines indicate the value

of geometric mean fitness. In all of the figures, in regions

denoted ‘S’ (shaded dark gray), only safe-specialists are

favored; if ‘G’ (shaded medium gray), pure generalists; if

‘M’ (shaded light grey), mixtures of specialists; if ‘D’

(not shaded), differential plasticity. If b>c, differential

plasticity is never favored. If c>b, differential plasticity

can be favored, especially if c is large.
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