
24-29 April1993 INR!RCHI

A Mathematical Model of the Finding of Usability Problems

Jakob Nielsen and Thomas K. Landauer

Bellcore

445 South Street

Morristown, NJ 07962-1910

USA

nielsen@bellcore .com and tkl@bellcore.com

Electronic business card for Nielsen can be retrieved by sending any email message to the server at nielsen-info@bellcore. com

ABSTRACT

For 11 studies, we find that the detection of usability prob-
lems as a function of number of users tested or heuristic
evaluators employed is well modeled as a Poisson process.
The model can be used to plan the amount of evaluation
required to achieve desired levels of thoroughness or bene-
fits. Results of early tests can provide estimates of the num-
ber of problems left to be found and the number of
additional evaluations needed to find a given fraction. With
quantitative evaluation costs and detection values, the
model can estimate the numbers of evaluations at which
optimal cost/benefit ratios are obtained and at which mar-
ginal utility vanishes. For a “medium” example, we esti-
mate that 16 evaluations would be worth their cost, with
maximum benefit/cost ratio at four.

Keywords: Usability problems, Usability engineering,
Poisson models, User testing, Heuristic evaluation, Cost-
benefit analysis, Iterative design.

INTRODUCTION

Both user testing [6] [8][18][14][22] and heuristic evalua-

tion [15][21] can be considered as interface debugging tests
with respect to their positioning in the usability engineering

Iifecycle [16]. Their goal is to find and document as many

usability problems in a user interface design as possible so

that the problems can be corrected in future versions.

The two methods are quite different since user testing is

based on bringing real users in and observing them as they
interact with the system in order to perform a given set of

tasks, whereas heuristic evaluation is based on having
usability specialists judge a user interface on the basis of
established usability principles. The mechanics of conduct-
Permission to copy without fee all or part of th!s material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and nooce IS given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

andlor specific permission.

ing these two kinds of evaluations are very different, and

both methods have advantages and disadvantages. For
example, user testing provides insights into the mindset and

working methods of real users. Heuristic evaluation is eas-

ier to set up as there is no need to bring in users or to ana-
lyze interaction protocols, and exploits expert scientific and

experiential knowledge of general problems and solutions.

From a general usability engineering perspective, however,
user testing and heuristic evaluation have two important

similarities. First, they are both debugging methods. Sec-
ond, both involve aggregating results from multiple smaller
evaluation studies. Even though one can in principle con-

duct user testing with a single test user and heuristic evalua-

tion with a single evaluator, good practice calls for the use

of several test users and evaluators. Typically, each test user

or each evaluator identifies a certain list of usability prob-

lems, and these lists are then aggregated for however many
test users or evaluators are employed for a given study.

Most current usability engineering work (e. g.,
[5][7][14][15][20] [21][22]) in effect has a post hoc view of

the actual evaluation process, analyzing the complete
results of finished studies as a whole. In practical develop-
ment environments, one will often be interested in looking

at partial analyses of usability studies as they are performed
with a view towards deciding when enough information has

been gained. Especially when resources are tight and a dis-
count usability engineering approach [12][13] is applied
with an emphasis on using as few test users or heuristic

evaluators as possible, one might be interested in a predic-
tive model that can provide some estimate of the total num-
ber of usability problems in an interface, during the

evaluation process even if all the problems have not been
found yet,

DATASETS

The following analysis contains data from case studies of

the empirical user testing of five user interfaces and the heu-
ristic evaluation of six user interfaces. Table 1 lists all
eleven studies and summarizes some of their pertinent char-

@ 1993 ACM 0-89791 -575 -5/93 /0004 /0206 . ..$1 .50

206

lNTfRcH1’93 24-29 April1993

System Tested Evacuation Type of
Number Observed

[with publication reference] Method Interface
Subjs.1 Usability
EvaIs. Problems

Office System (integrated spread-
User test

Personal com- ,5
sheet etc.) [9] puter, GUI

145

Calendar program [22] User test
Personal com- Z.
puter, GUI

40

Word processor [17] User test
Personal corn- 24 I 9
puter, GUI

Outliner (manipulate hierarchical
User test

Personal com- ~.
structures) [171 puter, GUI

14

Bibliography database [24] User test
Personal com- ,3
puter, CUI

29

Teledata (info on airline depar- Heuristic
tures) [21]

Videotex, CUI
evaluation

37 52

Mantel (hypothetical white pages Heuristic Mainframe,
system) [11] evaluation Cul

77 30

Banking system (transfer money Heuristic Voice
31

between accounts) [15]
19

evaluation
16

response
14

Savings (info on account balances Heuristic Voice
and currency exchange) [21]

34
evaluation

48
response

Transport (information to public on Heuristic Voice

bus routes) [21] evaluation I 34
I

34
response

Integrating system (internal tele- 1Heuristic Workstation, I 11
phone company application) [20] evaluation GUI I 40

Mean values 42

Problems Model

found

~,t F?by one ~ y

eva/uatn. fit

16?10 .12 166 .996

3670 .32 39 .986

3t)~o .30 9 1.00

28% .26 14 .998

=Fl=t=i
I I I

51% .48 50 .971

38V0 .34 26 .937

22?’0 .21 12 .965

41% .38 16 .991
60% .58 16 .992

I I I
26% .26 40 .988 I

*

33~o .31 41

Table 1 List of the user interface evaluations analvzed in this ~a~er.
Note;: GUI = Graphical User Inte#ace, CUI = Cha;acjer-based User Interface. The Banking inte~ace was evalu-
ated by three different groups of evaluators: 31 non-specialists, 19 usability specialists, and 14 double specialists
with expertise in both usability and the kind of interlace being evaluated. The mean value of N-fit was calculated
using the resultfiom only one of these groups (N-jit=16).

acteristics, as well as the results of fitting the Poisson model

discussed in the next section to the data. Since the Banking

System was evaluated by three independent groups of eval-
uators, it generated three datasets, so the total number of
datasets is thirteen. The Office System was a collection of

applications that together provided integrated support for

standard professional work tasks, including a spreadsheet, a
word processor, a file system, etc., but it was tested as a sin-
gle system.

A POISSON MODEL OF THE FINDING OF
USABILITY PROBLEMS

To develop the mathematical model, we make some basic
assumptions about the finding of usability problems. In
using the simple and well-understood probabilistic model of

Poisson processes, we assume that the probability of finding

any given usability problem in any given testis independent

of the outcome of previous tests. Not only is the Poisson
model well-behaved, but it has also been found to describe

the finding of traditional programming errors (“bugs”)
[1] [2] in software development projects under some condi-

tions. This problem is similar to the “debugging” of user
interface designs implied by usability engineering.

For some kinds of usability evaluation, the Poisson assump-
tion seems quite reasonable. For example, heuristic evalua-

tions are often conducted by having evaluators inspect the
interface independently of each other. With this procedure it

would seem obvious that the probability of having any
given evaluator find any one specific problem would be

207

24-29 April1993 INTIRCHI
independent of whether the other evaluators had found that

problem.

For user testing, the finding of a usability problem depends

of two factors: First, the subject has to experience the prob-
lem, and second, the experimenter has to realize that the
user experienced the problem. To the extent that user tests

are run according to classic experimental methodology, sub-

jects can probably be. considered independent of each other.

Regarding the experimenter’s role, however, the indepen-

dence assumption may not hold in all cases. Some usability

problems may not be easy to recognize, and the probability

of having the experimenter find the problem in a test session
where a user encounters the problem may therefore be

dependent on whether the experimenter had seen (but not
recognized) the problem before in previous test sessions. In

spite of this potential difficulty, it would still seem likely
that most aspects of the experimenter’s finding of usability

problems can be approximated by a Poisson model.

The discussion so far has concentrated on the finding of

individual usability problems. In real projects, there are of

course many usability problems in any given user interface,

and we would like to have a model that accounts for the
finding of several usability problems, As argued above, the
finding of each individual usability problem probably fol-
lows a Poisson model. However, the parameters of the Pois-

son model will most likely be different for each usability
problem. Nielsen found that severe problems were more

likely to be found than less severe problems in heuristic

evaluation, though not much more so [15], and Virzi found

that severe problems were much more likely to be found

than less severe problems by user testing [23].

For any given interface, some problems will be easy to find,

being glaring design catastrophes andlor being encountered

by almost all test users, whereas others will be more diffi-

cult to find, being more subtle and/or only encountered

under special circumstances. However, adding two indepen-

dent Poisson processes with respective rates A and B yields
a Poisson process with rate A+B [3], so we can still model
the finding of the set of usability problems with a single

Poisson model, even though the different problems have
different probabilities of being found. This additive prop-

erty of the Poisson model assumes that detection of various
usability problems are independent of each other. This
assumption is a simplification, since some user difficulties

do tend to co-occur.

Given the assumptions discussed above (that the finding of
usability problems are independent of whether they have
been found before and independent of each other), we can

expect a Poisson model to describe the finding of usability

problems. The number of usability problems that have been
found at least once by i evaluators or subjects is

Found(i) = N(l – (l-A)i) (EQ 1)

where N is the total number of problems in the interface,
and the parameter k is the probability of finding the average

usability problem when running a single, average subject, or

using a single, average heuristic evaluator.* Table 1 shows

the results of fitting this model to the data from the studies
for 1 through 15 evaluators or subjects, using a least squares
method. For the Integrating System, the fitted model was
based on data for 1 through 11 evaluators, and for the Bibli-
ography database, the fitted model was based on data for 1

through 13 test users. The fits re mostly very good as indl-
f.

cated by the high values of R m Table 1, and as also seen

in Figure 1, which shows the fitted model curves and the

datapoints from the original datasets.

1–1 is the probability of a usability problem remaining

unfound for one more test given that it has not been found

already. ~ thus indicates the probability of finding a usabil-
ity problem with one more person given that it has not been

found yet. As can be seen from Table 1, this value corre-

sponds fairly closely to the proportion of usability problems

actually found by single heuristic evaluators or when run-
ning single subjects. The single-person values from the

studies are larger than the fitted values, however. Such a dis-

crepancy would be accounted for by a small positive corre-
lation between the problems found by different people.

Similarly, Table 1 indicates that the model slightly under-
estimates the total number of usability problems N for most
interfaces. The main exception is the Office System, where
the model predicts 166 problems, 21 more than were found

by ruining 15 subjects. Closer examination of the underly-
ing data indicates that it is reasonable to assume that the

Office System actually contains more usability problems

than were found by the test with the 15 subjects. Out of the

145 problems that were found, as many as 76 were observed

for only a single subject, thus providing some indication

that there might be more remaining problems that would
have been found by running additional subjects. The Office

System actually comprised several different applications, so

15 subjects may simply not have been enough for an
exhaustive test of this type of major integrated system.
Overall, the model seems to slightly underestimate N, so

applications of the model should preferably rely on esti-
mates of the number of remaining problems to be found

rather than the total number of problems in the interface.

* The model as presented is simplified by assuming that all
evaluations (subjects or heuristic evaluators) find exactly the

mean number of usability problems. (That is, if one finds 10
and another 20, we act as if both found 15, though the overlap
is greater between two sets of 15 than between a set of 10 and a
set of 20.) This has the effect of somewhat underestimating the
probability of finding a problem, k, and consequently also
somewhat overestimating the total number of usability prob-
lems, N. The model also ignores the likely positive correlation
between some problems. This has an opposing effect. (Overall,
we seem to be underestimating N). Relaxing these two assump-
tions would lead to a more complex model with more parame-
ters, which would, therefore, require more data before
predictions could be made. From our results, it appears that the
simpler model is sufficiently accurate for practical purposes.

208

INIIRCHI’93 24-29 April1993

1

0.75

0.5

0.25

0

4/

! 1 1 I I r 1 1 r I I I 1 11 1

0 5 10 15
Number of test subjects (filled points) or heuristic evaluators (outline points)

Figure 1 Proportion of usabili~ problems found with increasing numbers of subjects or evaluators for the interj%aces in
Table 1. The markers indicate the actual valuesfiom the studies and the lines indicate the~tted curves according
to (EQ 1). The valuesfiom the various studies have been normalized to proportions rather than absolute number
of problems to allow comparisons in a single jigure.

As can be seen from Table 1, k varies substantially between

studies. The exact value of k in any given usability study
will depend on

● The properties of the system and its interface.

● The stage of the usability lifecycle. For example, it

might well be the case that usability problems are easier

to find in an initial rough design with plenty of obvious

problems than in a polished n’th iteration. Also, it might

matter whether the interface has been fully implemented
or only exists as a prototype or a paper design. For

example, Nielsen [15] found that usability problems

relating to missing features in a user interface were

much harder to find by heuristic evaluation of paper

mockups than of running prototypes.

“ The evaluation method used. For example, an evaluation
based on an analysis of logs of user interactions might

require data from more users than a thinking aloud study

would.

. The skills of the heuristic evaluators and the experiment-

ers running a user test. For example, Nielsen [15] found
that evaluators with usability expertise found many
more problems in a heuristic evaluation than evaluators
without such expertise and that evaluators with “double

expertise” (both usability and the kind of interface being

evaluated) found even more problems. Nielsen and

Molich [11] found a positive correlation of .57 between

the number of usability problems found by the same

evahtators in two case studies of heuristic evaluation,
indicating that some people tend to be better than others
even within a given expertise category. As another

example, Nielsen [14] found that the number of usability

problems found in user testing using the thinking aloud

technique had a positive correlation of .76 with the

methodological quality of the test procedures used.

● Other factors, such as whether test users are representa-
tive of the actual user population.

ESTIMATING THE NUMBER OF PROBLEMS
REMAINING TO BE FOUND

One use for this model would be as an aid to deciding when
to stop testing. After two or more evaluations, one can eas-

ily estimate k and N. It is impossible to derive estimates

based only on the first subject or evaluator, as (EQ 1) has
two unknowns, and therefore needs at least two datapoints
to be estimated. Of course, one could still get a rough esti-
mate of N if L was assumed to be equal to some value that
had previously been found to describe usability studies in a
given organization. It is unknown, however, whether the
variability in 1 would in fact be smaller if one only consid-

209

24-29 April1993 lNTfRcH1

Number of Test Users or
Standard Deviation of

Evaluators on which
Estimated N (Expressed

Estimate was Based
as a Proportion of

Observed N)

3 d4~o

4 21 0/0

5 11’%

6 90/0

7 870

8 6Y.

9 5°h

10 5~o

Table 2 The spread of estimates ofN made on the basis of
various number of test users or evaluators,
expressed as the standard deviation of the esti-
mates. Values are given across the datasets.

ered user interfaces of a given type developed in a single

organization and evaluated by the same usability staff using

the same methodology.

Once estimates for N and k have been made, one has a

rough idea of the number of usability problems yet to be

found in the user interface. The model also indicates the

likely number of these problems that will be found by the

next test subject or heuristic evaluator. If a usability man-

ager knows the approximate value of finding additional

problems, it is then a simple matter to decide whether it

would be worth the additional cost to continue the test.

The accuracy of these estimates of N and A will improve as
more data becomes available. As shown in Table 2, the esti-

mates are highly variable as long as they are based on data
from two or three test users or heuristic evaluators, and they

are reasonably tight when data is available from about six or
more people. For i greater than two, the parameters can be

estimated by least-squares curve-fitting, for which programs
are available in many graphics and statistics packages. For

i=2, the parameters can be estimated as follows (derived
from (EQ 1) by simple algebraic manipulation):

k= 2- (Found(2)/ Found(1)) (EQ 2)

N= Found(l)/X (EQ 3)

where Found(i) indicates the number of different usability
problems found after i evaluations. Both for curve fitting

and for use of (EQ 2) and (EQ 3) it is recommended to cal-
culate values for Found(i) that are independent of the partic-
ular sequence in which the evaluations were performed. For
example, Found(1) should be the average number of usabil-
ity problems found in a single evaluation and not just the
number found by whatever evaluator or test subject hap-
pened to be the first. Similarly, Found(2) should be calcu-

lated as the mean number of problems found by all pairs of

o“~
o 5 10 15 20

Number of Evaluations (i)

Figure 2 Nomograph showing the proportion of usabil-
ity problems found for various number of eval-
uations. Each curve represents a certain value
of ?L,as noted on the curves, from .05 (bottom
curve) to .6 (top curve).

evaluations, Found(3) should be calculated based on all

triplets, and so on. In practice, it is not necessary to consider

all permutations of evaluations, but one should sample a

reasonably large number of combinations.

Estimates of N are useful for development projects as they
give an indication of how many usability problems might

remain in an interface and how much additional work would

be required to find them. Estimates of L can help plan a test-

ing program based on the expected shape of the curve of
found usability problems. The nomograph in Figure 2

shows such curves over a common range of k-values.

A PRIORI ESTIMATES OF THE OPTIMUM NUMBER
OF EVALUATORS AND TEST USERS

The decision of when to stop trying to find usability prob-

lems will obviously depend on the characteristics of the

individual development project, including especially the

specific costs of each test user or heuristic evaluator as well
as the probable savings to be realized from improved usabil-

ity in the released software. Given this information, as well
as information about the values of N and k that are normally

found in an organization’s projects, one can also calculate

rough a priori estimates of the amount of usability work that
will be necessary. These estimates are obviously much less

reliable than estimates made by fitting the model to mea-
sured data as it is accumulated from actual usability activi-
ties, but they can still be of some value for early planning.

This section provides examples of how a priori cost-benefit
estimations can be made, using sample data estimated from

210

lNTfRtHr93 24-29 April1993

Project Size
Heuristic

Evaluation
User Testing

Small 9 7

Medium-large 16 15

Very large 21 20

Table 3 Estimates of the optimal number of heuristic
evaluators and test users for our examples.

our experience and the published literature. We will con-

sider three sample projects, called small, medium-large, and
very large. In reality, the magnitude of usability projects is
not a simple, one-dimensional property. Several parameters
influence the scope of usability activities, including the size

of the interface (whether measured in lines of code or in

number of screens, dialog boxes, or other interface ele-

ments), the number of expected users, and the duration,

intensity, and possible mission-critical nature of their usage.

Costs seem to be the easiest to estimate. In one analysis

[20], heuristic evaluation was estimated as having fixed
costs of between $3,700 and $4,800, with the variable cost

of each evaluator being between $420 and $520. User test-

ing using an extreme “discount usability engineering”
approach with very little preparation or data analysis was
estimated as having fixed costs of $2,600, with the variable

cost of each test user being $410. Another analysis [10] did

not consider heuristic evaluation, but estimated the fixed

costs of user testing at $8,000 and the variable costs per test

user at $2,000 (when updated to 1993 dollars).

Other studies have been less explicit in calculating the costs

of usability engineering techniques, but one can convert
information in one study [7] into the following estimates:
The fixed cost of preparing to use heuristic evaluation was
about $4,400, and the fixed cost of preparing to use user

testing was about $3,400. The variable cost was about $900

per evaluator for heuristic evaluation and about $1,900 per

test user for user testing. Another study [5] did not provide

information about fixed versus variable costs, but estimated

about $500 in total costs per heuristic evaluator and $3,000

in total costs per test user.

These estimates vary strikingly, which is understandable
given the differences in user interfaces being evaluated and

the methodologies being applied. For example, one would
expect a test of a large system to take longer and thus be

more expensive than a test of a small, walk-up-and-use sys-

tem. For illustration, we will use fixed costs of $4,000 for
heuristic evacuation and $3,000 for user testing and variable

costs of $600 per evaluator for heuristic evaluation and

$1,000 per test user for user testing, except for the “very
large” project, where all costs will be assumed to be twice
as large.

Project Size cost Benefits
BenefiV

Cost Ratio

Small $9,400 $39,500 4.2

Medium-large $13,600 $613,000 45

Very large / $33,200 I $8,200,000 I 247 /

Table 4 Cost–benejit analysis for using the optimal num-
ber of evaluators in a heuristic evaluation.

Medium-large $18,000 $613,000 34

Very large $46,000 $8,200,000 178

Table 5 Cost–benefit analysis for using the optimal num-
ber of test users in user testing.

Benefits are harder to calculate. One analysis [20] conserva-
tively estimated the mean benefit from having found a

usability problem as $13,500, not including the software

engineering savings from not having to change the interface
in a maintenance release of the product. Another analysis
[10] estimated the mean benefit from having found a usabil-

ity problem as $19,300 (when updated to 1993 dollars).

Both these estimates considered systems that were going to

see fairly extensive use, and for the sake of simplicity, we

will use $15,000 as the benefit estimate per usability prob-

lem found for such systems. For smaller systems that are
going to be used less frequently or by fewer users (for

example, much in-house software in medium-sized compa-

nies), we will use $1,000 as the benefit estimate per usabil-
ity problem found.

For systems that are going to see extremely intensive use by

very large numbers of users, the benefit of finding a usabil-

ity problem can be considerably higher and reach into the

millions of dollars [4]. Such large systems probably warrant
individual analyses taking their special circumstances into
account, but again for simplicity, we will use $200,000 as

the benefit estimate per usability problem found.

For all systems, we will use the prediction formula in (EQ
1) with the mean values of N and 1 from Table 1, N=41, and

b.31. Of course, the actual values of N and h will vary for

any given development project, so the following results
should be seen only as very approximate “rules of thumb”
that can be used to arrive at rough estimates before the start
of a project. It is recommended that project managers

acquire estimates of the cost and benefit values from their
own organizations and that they also refine the estimates of
N and k for their specific project as data becomes available

211

24-29 April1993 lNTi!iRrJH
75

Heuristic

.2 50
/

8 Use>

% Testing

g
~
aJ

Z 25

0 1 I I 1 1 , 1 1 I 1 1 1

0 5 10 15
Number of Evaluators/Test Users

Figure 3 Ratio between benefits and costs for using various numbers of heuristic evaluators and test users tofmd usability
problems in a medium-large so~are project, as calculated using the various assumptions listed in the text.

from their own usability activities. Of course, estimates for

any specific project should also be refined as soon as a few

evaluations have been performed for that project.

Given estimates for both costs and benefits as well as our

prediction formula for the finding of usability problems, one
can easily calculate the optimum number of heuristic evalu-

ators or test users. The optimum number of evaluators or
test users is the number for which the marginal value of the

last evaluator or test user was higher than the marginal cost
of that evaluator or user, but where the marginal value of

one additional evaluator or user would be smaller than the
marginal cost of that evaluator or user. Table 3 shows these

optimal numbers. Table 4 then shows a cost–benefit analysis

for using the optimum number of heuristic evaluators, and

Table 5 shows a cost–benefit analysis for using the optimum

number of test users.

These optimum numbers of evaluators/test users are much

larger than obtained for our earlier “discount usability engi-
neering” recommendation of using about five heuristic eval-
uators or test users [12]. One reason for the discrepancy is

that discount usability engineering has as one of its goals to

let people apply usability engineering methods on projects

where budget or time constraints prevent them from using

optimal methods. A second, and more fundamentally impor-

tant, reason is that one would rarely evaluate a single user
interface design to the bitter end without applying iterative

design to fix usability problems found with the first few
evaluators or test users. The estimates of the benefits of

finding a usability problem assume that reasonable fixes

will be introduced to the design, but by changing the design,

one often introduces new usability problems. It is therefore

likely to be a better strategy to evaluate initial iterations of a

design less thoroughly.

Figure 3 shows the cost-benefit model for medium-large

projects under our assumptions. It can be seen that the bene-

fits are much larger than the costs both for user testing and
for heuristic evaluation. The highest ratio of benefits to
costs is achieved for 3.2 test users and for 4.4 heuristic eval-
uators. These numbers can be taken as one rough estimate

of the effort to be expended for usability evaluation for each
version of a user interface subjected to iterative design.

It seems reasonable to use our model also for iterative

design [19], even though we have only tested it with data

from single usability studies. Presumably, the usability

problems found in each iteration of an iterative design pro-

cess is a combination of previously unfound problems left
over from earlier iterations and new problems introduced in
the revised design. Given the Poisson assumption in our

model, the probability of finding the previously unfound
problems in the new iteration does not depend on how much
testing has been conducted on previous iterations, so the

model can be applied without modifications to the finding of

all the problems, no matter whether they are new or old.

A model of iterative design should also account for the cost

of producing the additional iterations. Unfortunately, such

software development costs are extremely difficult to esti-

mate. For the sake of argument, we will perform the calcu-

lations for a medium-large project, assuming that a new

iteration can be produced for $20,000. This cost estimate

might apply to a project that was still in an early stage and

was being developed with a prototyping tool making

212

lNTfRcHr93 24-29 April1993

changes reasonably easy to make. Taking $20,000as an
additional fixed cost for each usability study changes the

model to have the highest ratio of benefits to costs at 6.7 test

users and 7.9 heuristic evaluators. If iterations can be pro-

duced more cheaply, fewer users or evaluators should be

used, and if iterations are more costly, more elaborate

usability evaluations should be performed for each iteration.

CONCLUSIONS

We have established that a Poisson model describes quite
well the finding of usability problems in user testing and

heuristic evaluation. Such a model can therefore be used to

predict the eventual number of problems that will be found

by a usability study even as the study is in progress. Further
work remains to be done to assess the preciseness of these
predictions, but similar models have been successfully

applied to the related problem of determining when to stop

testing software for programming bugs [1] [2].

Acknowledgments

The authors would like to thank James Lewis of the IBM
Design Center/Human Factors, Robert Virzi of GTE Labo-
ratories, and Peter Wright and Andrew Monk of the Univer-
sity of York for providing us with the detailed raw data
underlying their published studies. We also thank Clare-
Marie Karat of IBM U.S. Marketing and Strategy for clari-
fying details regarding fixed costs in her published study.
The analyses of this data in this paper are solely the respon-
sibility of the authors of the present paper and should not be
taken as necessarily corresponding to the positions of these
other authors or their organizations. The authors would also
like to thank the anonymous INTERCHI’93 referees for
helpful comments on a previous version of this manuscript.

References

1.

2.

3.

4.

5.

6.

Dalal, S,R,, and Mallows, C.L. (1988). When should one
stop testing software? J. American Statistical Association
83,403 (September), 872–879.

Dalal, S.R., and Mallows, C.L. (1990), Some graphical
aids for deciding when to stop testing software. IEEE J.
Selected Areas in Communication 8, 2 (February), 169–
175.

Erhan, S. (1975). Introduction to Stochastic Processes.
Prentice Hall, Englewood Cliffs, NJ. p. 87.

Gray, W. D., John, B. E., and Atwood, M.E. (1992). The
precis of project Emestine, or, an overview of a validation
of GOMS. Proc. ACM CHI’92 (Monterey, CA, 3–7 May),
307–312.

Jeffries, R., Miller, J.R., Wharton, C., and Uyeda, K.M.
(1991). User interface evaluation in the real world A com-
parison of four techniques. Proc. ACM CHI’91 (New
Orleans, LA, 27 April–2 May), 119–124.

J@gensen, A.H. (1989). Using the thinking-aloud method
in system development. In Salvendy, G., and Smith, M.J.
(Eds.), Designing and Using Human-Computer Interfaces

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

and Knowledge Based Systems. Amsterdam: Elsevier
Science Publishers, 743–750.

Karat, C., Campbell, R., Fiegel, T. (1992). Comparisons of
empirical testing and walkthrough methods in user inter-
face evaluation. Proc. ACM CHI’92 (Monterey, CA, 3–7
May), 397-404.

Lewis, C. (1982). Using the ‘thinking-aloud method in
cognitive interface design. Research Report RC-9265,
IBM T.J. Watson Research Center, Yorktown Heights, NY

Lewis, J.R., Henry, S.C., and Mack, R.L. (1990). Inte-
grated office software benchmarks: A case study. Proc.
INTERACT’90 3rd IFIP Conf. Human-Computer Interac-
tion (Cambridge, U. K., 27–3 1 August 1990), 337–343.

Mantei, M.M., and Teorey, T.J. (1988). Cost/benefit analy-
sis for incorporating human factors in the software lifecy -
cle. Communications of the ACM 31,4 (April), 428-439.

Molich, R., and Nielsen, J. (1990). Improving a human-
computer dialogue. Communications of the ACM 33, 3
(March), 338-348.

Nielsen, J. (1989). Usability engineering at a discount. In
Salvendy, G., and Smith, M.J. (Eds.), Designing and
Using Human–Computer Interfaces and Knowledge
Based Systems, Elsevier Science Publishers, Amsterdam.
394-401.

Nielsen, J. (1990). Big paybacks from ‘discount’ usability
engineering. IEEE Software 7, 3 (May), 107–108.

Nielsen, J. (1992). Evaluating the thinking aloud tech-
nique for use by computer scientists. In Hartson, H.R., and
Hix, D. (Eds.), Advances in Human-Computer Interaction
Vol. 3, Ablex. 69–82.

Nielsen, J. (1992). Finding usability problems through
heuristic evaluation. Proc. ACM CHI’92 (Monterey, CA,
3–7 May), 373–380.

Nielsen, J. (1992). The usability engineering lifecycle.
IEEE Computer 25,3 (March), 12–22.

Nielsen, J. (1993). Estimating the number of subjects
needed for a thinking aloud test. Intl. J. Man–Machine
Studies in press.

Nielsen, J. (1993). Usability Engineering, Academic
Press, San Diego, CA.

Nielsen, J. (1993). Iterative design of user interfaces.
IEEE Computer 26 (to appear, probably in the July issue).

Nielsen, J. (1993). Heuristic evaluation. In Nielsen, J., and
Mack, R.L. (Eds.), Usability Inspection Methods. Book in
preparation.

Nielsen, J., and Molich, R. (1990). Heuristic evaluation of
user interfaces. Proc. ACM CHI’90 (Seattle, WA, 1-5
April), 249–256. .

Virzi, R.A. (1990). Streamlining the design process:
Running fewer subjects. Proceedings of the Human
Factors Society 34th Annual Meeting (Orlando, FL, 8–12
October), 291–294.

Virzi, R,A, (1992). Refining the test phase of usability
evaluation: How many subjects are enough? Human
Factors 34,4 (August), 457-468.

Wright, P.C., and Monk, A.F. (1991). A cost-effective
evaluation method for use by designers. Intl. J. Man–
Machine Studies 35,6 (December), 891–912.

213

