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Abstract. — In the nanometer resolution range, image formation in STM and AFM cannot be de-
scribed by a convolution process but is essentially governed by the geometrical interaction between
the specimen surface and the tip surface. This non-linear process can be simply described by a dila-
tion of the surface profile by a three-dimensional structuring element which has the shape of the tip.
Accordingly, the restoration procedure using these concepts consists in performing the erosion of the
image by the same structuring element. A preliminary investigation of a possible blind restoration
procedure (i.e. restoration without a very precise knowledge of the tip shape and without the need of
using a known test object) is performed.

1. Introduction.

Scanning Tunneling Microscopes (STM) and Atomic Force Microscopes (AFM) are able to pro-
vide images at very high resolution, in the subnanometer range. This is made possible by the
direct interaction of a probe and of the specimen surface, without the need of any intermediates
(lenses...). This direct interaction is also at the origin of the present time limitations of such mi-
croscopes: the shape, finite size and imperfections of the tip are responsible for imperfections of
images.

Images can be considered as a function of the tip and of the specimen surface. Improving
images necessitates a good knowledge of this imaging function and methods for performing the
reverse transformation.

In the case of highly corrugated surfaces, it is clear that the tip influences the resolution and
quality of images. Very often, this tip-specimen interaction which takes place during the imaging
process is called a convolution. However, this term has a very precise meaning, which is described
in many books concerning image formation. When an image-forming system is linear, the image
which is produced can be described as a convolution between the object function and the impulse
response of the system (the instrumental function).

In this paper, we would like to show that in STM and AFM, for resolution in the intermediate
range (1 — 100 nm), the imaging process is not linear, and thus, speaking of convolution is not
correct.
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This is not a question of formal language: if the imaging process was linear and could be de-
scribed by a convolution operation, it would be possible to restore a better image quality (i.e. with
a higher resolution) by performing one of the diverse deconvolution methods available. If, on
the contrary, the imaging process is not linear and cannot be described by a convolution product,
these deconvolution methods are not useful and another approach has to be found for performing
image restoration.

The fact that STM and AFM images of corrugated specimens in the 1 — 100 nm resolution
range are not produced according to a linear process but to a non-linear process was previously
described by a few authors [1-9]. Despite the fact that they use the term “convolution”, Reiss et
al. [1] describe the imaging process as a non-linear process and show some implications of this,
concerning the need to be very careful in the interpretation of images of corrugated specimens.
These authors consider that “the tip and the surface show parallel tangential planes at the point
of tunnelling contact”. Therefore, their algorithm consists of determining the point of contact
(where the local tangent to the tip is parallel to the local tangent to the specimen surface) and in
deducing the height of the tip when it is in contact with the specimen. They also suggest and test
one method for image restoration [2].

In the works of Butt ef al. [4] and of Putman ef al. [7], a qualitative description of the same
principle for image contrast is given in the case of rod-like structures, sine waves and spherical
particles.

Keller et al. [5, 8] describe the image formation and restoration in terms of an envelope func-
tion. We have shown [6] that the mathematical background of this approach is in fact identical
with the well known operations of mathematical morphology used in the field of digital image
processing: dilation and erosion.

In this paper, the mathematics of these dual operations and their potentialities for restoring
STM and AFM images are first recapitulated. Then, appropriate simulations and tests on a real
image of a grating are presented. Finally, a potential development of this approach is discussed,
i.e. a blind restoration procedure that does not need either the use of a known test object or a
very precise knowledge of the tip shape.

2. Image formation and restoration.

For understanding the following, let us first recall how to express mathematically the image forma-
tion process in the case of linear interactions. The experimental image function i(z, y) can then
be described as a convolution between the object function oz, y), (which in case of corrugated
surface is the local height of the specimen surface) and an instrumental function h(z, y):

z(w,y) =o(a:,y)*h(x,y) (1)

The instrumental function (impulse response) in the case of near-field microscopies would be
inversely proportional to the height of the tip surface point (z',y') relative to the front of the tip
(at z, y); (h is generally a monotonically decreasing function of z and y).

According to this description, many points of the tip would participate in the formation of the
image of a given specimen detail situated at coordinates (z',7'):

i(z,y) = L To(z,y) - hz -2,y —%) (2)
ml yl



N°4/5/6 IMAGE FORMATION AND RESTORATION IN STM AND AFM 479

In reality, in the case of highly corrugated surfaces, the characteristic signal results from a
localized contact point on the tip sides approaching adjacent regions of the specimen (see Fig. 1).
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Fig. 1. — a) Schematization of the image formation process in near-field microscopy for resolution above
one nanometer. The corrugated surface is represented by its height profile. The probing tip “tries” to follow
this profile and the output image forming signal is assumed to be proportional to the height of a reference
point on the tip. In situation A, the tip can stay in contact with the surface and the output signal gives precise
information concerning the height of the surface regions. In situation B, the lowest part of the tip cannot
be in contact with the corresponding point of the specimen, because another point of contact is reached. In
these situations, the images of holes have a smaller width than the holes themselves. In situation C, the tip
can never be in contact with the bottom of narrow holes, for the same reason. Therefore, not only the width,
but also the height of these holes are not correctly imaged. b) A detailed part of figure 1a, illustrating the
notations used in this paper. c) shape of h(x,y,2',y") = o(x,y) — s(z’ — z,y" — y), for the configuration
displayed in figure 1b. d) the surface profile of figure 1b (dotted curve: 1), the computed image profile (full
curve: 2) and the partially restored image profile (dashed curve: 3).

These considerations are not very new and are well-known by STM and AFM users who know
that images have to be interpreted with care (dips can be deeper than apparent on images). In this
case, the interactions cannot be considered as being linear and the convolution approach cannot
be appropriate to describe the image formation process.

According to the qualitative description given above, the useful signal for a tip in position (x, y)
is given by the height of the tip corresponding almost to a contact between tip and specimen (Fig.
1b). This can be described by:

i(z,y) = max [h(z,,0"9))] (3)
R

where h(z,y,z’,y') = o(z',y') — s(z' — z,y’ — y), s describes the three-dimensional shape of the
tip, R is the region of the specimen, around (z, y) which can be in contact with the tip.
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An illustration of the function h is given in figure 1c, for the one-dimensional geometry shown
in figure 1b. The resulting image profile is given in figure 1d for a step edge.

When the shape of the tip is known, this algorithm can be applied very easily and an image
can be simulated. In fact, this kind of non-linear operation is well known in the field of image
processing where it is called “dilation”. It belongs to the class of operations known as mathemat-
ical morphology (Coster and Chermant, [10]). It can be applied to grey level images as well as to
binary images. It is a non-linear operation which consists of computing the maximum value of the
original image in a given neighborhood around the pixel considered. This neighborhood is called
a structuring element and can have different shapes (bipoint, segment, disc...) according to the
aim of the morphological operation.

In the present situation, the structuring element is the tip itself. It is a three-dimensional struc-
turing element and the dilation (Eq. (3)) is performed over the specimen surface represented by
its height variations. The result is the image function i(z, y).

The formalisation of image formation given above leads us now to the problem of image resto-
ration. In mathematical morphology, the dual operation of dilation is erosion. It consists in com-
puting the minimal value of the original (binary or grey value) image over a neighborhood defined
by a structuring element. This results in the erosion of an object, the elimination of protuberances
or bright peaks of size smaller than that of the structuring element. (Note that the erosion and
dilation operations are not inverses: erosion - dilation is not equal to one).

In the present case, the restoration procedure according to an erosion by a three-dimensional
structuring element can be formalized as:

o(x,y) = min [h'(z,y,2',9)] (4)
R

where 6 stands for the estimated (restored) object function, h'(z,y,z',y’") = i(z',y') + s(z —
'y —y').

This operation can be easily implemented when the tip shape s(z, y) is known.

Of course, at the experimental level, the difficulty to restore an image is to know this exact
shape of the tip. We will later propose a method of circumventing this problem. But let us first
illustrate the previous considerations with some examples of simulation and restoration.

As an object model, we have chosen to take a two-dimensional grating whose periodicity is
100 nm. These kinds of objects are really produced as tests objects for near-field microscopes.
They are made by electron microlithography. If the fabrication process was perfect, the grating
obtained would consist of square studs (50 x 50 nm?) separated by 50 nm and have a height
of approximately 30 nm. In fact, a scanning electron micrograph of this object reveals that the
studs are approximately hemispherical. Figure 2a shows the object model used for the simulation:
the half-period is equal to the diameter of the hemispherical studs: 20 pixels. Figure 2b is the
result of a simulation according to a convolution process. The impulse response was built with
a value inversely proportional to the distance to the apex of the tip, with a value unity at the
apex. Figure 2c displays the image obtained by AFM with a nanotip (Digital Instruments). The
characteristics given by the manufacturer are such that the shape looks like a paraboloid with a
radius of approximately 10 nm. The obtained AFM image presents elliptical studs revealing either
an imperfect tip (elliptical instead of circular section) or a tip with its axis tilted with respect to
the surface normal. Figure 2d is the result of applying the dilation process with the tip shape as
the structuring element. The tip shape is parabolic:

s(w,y)=a-i2+b-j2,

where (3, j) are the coordinates of a tip surface point (z,y) after rotation by an angle ¢.
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Fig. 2. — Simulation of image formation in near-field microscopy. a) Simulated object (height is coded as
grey levels: white hemispheres represent studs); b) image simulated according to a convolution procedure.
The instrumental function (impulse response) is the inverse of the height of a parabolic tip surface; c) an
experimental image of such an object, recorded with an A.FM. and a nanotip (theoretical radius » = 10
nm); d) image simulated by a dilation procedure (parabolic tip); ¢) restoration of the experimental image
(c) by an erosion procedure; f) restoration of the simulated image (d) by an erosion procedure.

The parameters (a = 0.08; b = 0.2; ¢ = 50°) were chosen in order to get a simulated image
close to the experimental one (Fig. 2c).

One can see directly that the effect of a dilation is much more drastic than the effect of a
convolution, which does not strongly affect the size of the studs, but results mainly in a loss of
fine details (smoothing). The results obtained by the dilation process (Fig. 2d) are much closer
to the images obtained experimentally (Fig. 2c). This comparison of the two processing methods
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with the experimental image shows without any doubt that the image formation is certainly not a
linear process and thus not governed by a convolution.

Figure 2f shows the result of applying an erosion process (with the same structuring element
as described above) to the dilated image (2d). One can see that the restored image is very close
to the original object function (2a). This is an indication that useful restoration results can be
obtained by this procedure.

Figure 2e is the result of applying the same erosion procedure (with the same structuring el-
ement) to the experimental image (2c). The results are not as good as with simulations, may be
because some spurious effects (like the misorientation of the tip axis or saturation effects) are not
taken into account. However, the improvement is still noticeable.

Fig. 3. — Simulation of image restoration in near-field microscopy of a highly corrugated surface. a) Simu-
lated object (brighter structures represent higher parts of an object made of randomly dispersed rectangles of
different sizes and heights); b) simulated image obtained by the dilation procedure with a tip of paraboloidal
shape (¢ = b = 1.5, ¢ = 0), c) restored object function obtained by an erosion procedure with the same
structuring element.

Another example concerns the simulation of rectangular objects of different sizes and spacings
(chosen at random). The “object” is displayed in figure 3a. The image simulated by the dilation
procedure (parabolic shape with a = b = 1.5, ¢ = 0) is shown in figure 3b while the restored
image obtained by the erosion procedure (with the same structuring element) is shown in figure
3c. One can see that a strong improvement of the image characteristics and quality has been db-
tained. Edges are sharper. The size of the top-squares (i.e. which have a height greater than their
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surroundings) is much closer to the true one than the one they had in the simulated image. How-
ever, one cannot expect miracles from this restoration method: the bottom of deep and narrow
holes is not restored. This can be easily understood since the information concerning these parts
of the objects was definitely lost during the non-linear imaging process (they were not “seen” by
the tip which was not able to go down within these small holes; see Fig. 1).

3. Possible extension of the approach towards blind restoration.

Besides the fact that the above procedure is easy to implement, it can be hoped that these concepts
will allow the limitations attained in the restoration procedure to be overcome. In this section, we
would like to discuss such a possible extension, as a preliminary prospect.

One question that we have not discussed so far is: how can we estimate the tip shape function
which is necessary for simulating an image from an object model as well as for restoring an object
function from an experimental image?

Two answers to this question come immediately to mind:

- the first one is to observe the tip shape by electron microscopy, either scanning electron mi-
croscopy or better, transmission electron microscopy to get a high resolution image of the tip
extremity. From this observation, the geometrical parameters of the tip (curvature radius, cone
angle...) can be deduced. Let us point out that in order to get a complete knowledge of the
three-dimensional tip shape, one needs to use a goniometer stage (keeping in mind the lim-
itation that goniometer stages for electron microscopes offer, at best, the possibility of +60°
tilt).
the second solution is to use a test object and to observe it with the tip that was used to record
the image one wants to restore. Provided the test object is very accurately known, the near-field
microscopy image of this test object can be compared to the “true” object function and the tip
shape can be deduced from this comparison. This procedure has been performed by Reiss et
al. [1] with an object whose profile has been precisely determined a posteriori by observing its
cross-section in TEM. This very laborious procedure is still not satisfying because it only gives
access to the tip profile in one direction. To get the 3D geometry, a 2D test object must be used
and actually, the difficulty consists of fabricating 2D gratings presenting very sharp edges with
heights known precisely.

Taking into account all the experimental difficulties related to the above solution, let us see
whether there is a third possible solution that does not involve a well-known test object and needs
only minimum knowledge on the tip shape.

It is clear that the experimental image contains not only information concerning the object
but also information concerning the tip. The problem is to know how to split the information
contained in the experimental image into information concerning the specimen and information
related to the imaging instrument. This is a key point which has received full attention but which is
only partially solved, even when a linear image formation process can be assumed (the terminology
used is then: blind deconvolution [11, 12]).

This key point has received even fewer solutions when one is concerned with a non-linear imag-
ing process, and we do not pretend to solve it completely within the framework of this paper.
However, we believe that the dilation/erosion formalism (which is called a closing procedure in
the terminology of mathematical morphology) described in the previous sections can help in find-
ing ways to obtain some information concerning the tip from the image itself. These approaches
rely on the concept of idempotence, which some operations of mathematical morphology process:
for these, the second application of the operator does not change the result obtained after the first
application (Coster and Chermant [10]).
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Let us suppose, in order to simplify the explanation, that we have a “spherical” tip, the radius of
which (r) is unknown. With this tip, we have obtained an image. Then we try to restore the object
function by assuming that the tip radius is 71. The result of this restoration is an estimated object
function 61. Now, we perform a dilation of the restored object with the same structuring element
of radius r1. This gives an estimated image 1. Let us now compare the experimental image ¢ with
the computed image 1. Two situations have to be considered: either r1 < 7 or r1 > r and the
corresponding results are schematized in figure 4.

If r1 < r, the erosion/dilation procedure (which is called an opening procedure in the termi-
nology of mathematical morphology) restores the original experimental image (f1 = ¢) (Fig. 4a).
If 1 > r, the opening procedure does not restore the experimental image everywhere because
two many structures are irremediably destroyed at the erosion stage and cannot be recovered at
the dilation stage (Fig. 4b).

a b

Fig. 4. — Schematization of the opening procedure with a structuring element of variable size. 1: object
profile. 2: image profile. 3: eroded image profile. 4: open image profile. a) The structuring element has a
size smaller than the “true” structuring element which produced the experimental image. In this case, the
open image is identical to the original image; b) the structuring element has a size larger than the “true”
structuring element. In this case, the narrowest structures of the image are destroyed during the erosion
step and cannot be restored during the dilation step: the distance between the open image and the original
one increases as the expected structuring element deviates from the true one.

The difference between the experimental image 7 and the open image 7 can be quantified by a
“distance” function:
d= % S |i(z,9) - i(z,y)l &)
Ty
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Thus, trying several restoration/degradation (i.e. erosion/dilation) procedures with several val-
ues of the tip radius, and evaluating the “distance” between images ¢ and 7, allows an upper limit
for the effective tip radius to be fixed.

A simulation of this procedure is given in figure 5. The simulated image of figure 5a was ob-
tained from the “object” in figure 3a and from a 3D structuring element composed of a rod-like
(cylindrical) tip terminated by an hemispherical extremity. The radius of the rod and of the ex-
tremity was set to 4 pixels. The simulated image is then eroded/dilated with a structuring element
of the same shape, with a radius varying from 1 to 8 pixels. The computed images f are displayed
in figures 5b-d for radii of 3, 4 and 6 pixels respectively. The distances to the simulated experi-
mental image are displayed in figure 6a as a function of the expected tip radius. One can see that
an increase of the distance function occurs near the true tip radius (r = 4 pixels).

Fig. 5. — Illustration of the opening procedure schematized in figure 4. a) Simulated image computed from
the object in figure 3a and a “spherical” tip (r = 4 pixels). Note that for such a highly corrugated surface,
it is the lateral extension of the tip which governs image formation, rather than the shape of the extremity.
Therefore, despite the fact that the radius of curvature at the tip extremity is greater than that of the parabolic
tip, the effect of the “spherical” tip (which behaves like a rod-like tip) is less important -see figure 3- due to a
smaller lateral extension. b, ¢, d) Open images obtained from a) and a spherical tip with r = 3, 4 and 6 pixels
respectively. While figures b) and c) are close to the original image (a), figure d) is deteriorated, indicating
that the assumed value of r = 6 pixels is higher than the true value (r = 4).

Of course, realistic models of the tip have to be more sophisticated and must include several
parameters. The search procedure has to be implemented in a multidimensional space. An exam-
ple is given in figure 6b where a paraboloid model was assumed. Figure 6b displays the distance
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function in the (a, b) space (¢ = 0 was assumed in order to stay in a two-dimensional space). A
decrease of the distance function is observed near the “true” value (¢ = b = 1.5).

Though the real experiments will lead to more complicated situations, we consider that the
results obtained with the simple models described here are encouraging and that the investigation
has to be pursued in this way.
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Fig. 6. — a) Plot of the “distance” (per pixel) between open images and the original image (Fig. 5a), as a
function of the structuring element size (expected tip radius). b) 2D representation of the “distance” for a
paraboloid tip, (with two parameters a and b; ¢ is assumed to be zero here, but could also be estimated) as
a function of parameters e (horizontal axis) and b (vertical axis). A step of the distance function is obtained
for a = b = 1.5, which were the tip parameters used for simulating the “experimental” image (Fig. 3b).

4. Conclusion.

The tip effects in STM and AFM strongly affect the quality of the images. In the range of reso-
lutions larger than one nanometre (corrugated surfaces), these effects are essentially non-linear
and cannot be described by a convolution in the usual sense of this word. At first approxima-
tion, they can be described by a non-linear operation well-known in the field of image processing
(mathematical morphology): the dilation by a structuring element.

The dual operation (also originating from the field of mathematical morphology) is the ero-
sion. It provides a simple implementation for the process of image restoration. Of course, the
restoration procedure is also non-linear. Therefore, there is no chance of restoring the object
perfectly, even in the absence of noise, except if some a priori knowledge concerning the object
can be incorporated.

Simulated images compared to an experimental image clearly demonstrate this non-linearity
and that the erosion process allows to restore an image.

The dilation/erosion concepts open up the possibility of image restoration without a priori
knowledge concerning the object one is looking at, and without the need to use an intermediate
test object. The principle consists of using the property of idempotence for estimating parameters
which characterize the tip size. An example of blind restoration on a simulated image is given.
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This approach by non-linear processes may open up the way to efficient restoration procedures
which anyway do not suppress, but attenuate some tip-related effects observed in STM and AFM.
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