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Cancer invasion and metastatic spread to secondary sites in the body are facilitated by a complex interplay
between cancer cells of different phenotypes and their microenvironment. A trade-off between the cancer
cells’ ability to invade the tissue and to metastasise, and their ability to proliferate has been observed.
This gives rise to the classification of cancer cells into those of mesenchymal and epithelial phenotype,
respectively. Additionally, mixed phenotypic states between these two extremes exist. Cancer cells
can transit between these states via epithelial-mesenchymal transition (EMT) and the reverse process,
mesenchymal-epithelial transition (MET). These processes are crucial both for the local tissue invasion
and the metastatic spread of cancer cells. To shed light on the role of these phenotypic states and the
transitions between them in the invasive and metastatic process, we extend our recently published multi-
grid, hybrid, individual-based mathematical metastasis framework (Franssen et al., 2019). In addition to
cancer cells of epithelial and of mesenchymal phenotype, we now also include those of an intermediate
partial-EMT phenotype. Furthermore, we allow for the switching between these phenotypic states via
EMT and MET at the biologically appropriate steps of the invasion-metastasis cascade. We also account
for the likelihood of spread of cancer cells to the various secondary sites and differentiate between the
tissues of the organs involved in our simulations. Finally, we consider the maladaptation of metastasised
cancer cells to the new tumour microenvironment at secondary sites as well as the immune response at
these sites by accounting for cancer cell dormancy and death. This way, we create a first mathematical
multi-organ model that explicitly accounts for EMT-processes occurring at the level of individual cancer
cells in the context of the invasion-metastasis cascade.

Keywords: Mathematical oncology; Epithelial-mesenchymal transition; Metastatic spread; Multi-organ
model; Tumour microenvironment; Individual-based model.
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1. Introduction

To elucidate the process by which a subset of cancer cells from a primary tumour invade the local tis-
sue and spread to distant sites in the body, which is also known as the invasion-metastasis cascade,
we proposed a first explicitly spatial mathematical modelling framework in Franssen et al. (2019). The
framework described the metastatic process by taking into account the spatiotemporal evolution of in-
dividual cancer cells. The motivation for developing such a model is the fact that over 90% of cancer-

c� The author 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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related deaths arise due to metastatic spread rather than as a consequence of tumour growth limited
to a primary site. Mathematical models can enhance our understanding of the mechanisms underlying
biological phenomena. However, with regards to existing models of the invasion-metastasis cascade,
we found the following common short-coming: Metastatic spread is an inherently spatial, cell-based
physiolo-gical process. Yet, previous mathematical models did not capture individual cell dynamics
during the invasion-metastasis cascade through a spatially explicit approach, e.g. Iwata et al. (2000);
Scott et al. (2013); Cisneros & Newman (2014); Margarit & Romanelli (2016); Iwata et al. (2000); Ben-
zekry et al. (2016); cf. literature review in Franssen et al. (2019). Biologically accurate computational
models of the invasion and the secondary metastatic spread of individual cancer cells could be used in a
clinical setting to enhance treatment through patient-specific disease predictions. This is because such
models allow to account for e.g. the phenotypic traits of the cells that a tumour consists of, the tumour
size and shape, and the tumour microenvironment in a specific patient through the initial conditions of
simulations. The in silico simulation results could therefore support clinicians in tailoring treatment to
each patient by predicting the individual’s disease evolution, and by testing and optimising treatments
in an ethical, time-effective approach.

To develop a model that will ultimately be used to inform clinicians with regards to cancer treat-
ment decisions, in the concluding section of Franssen et al. (2019) we proposed several features to en-
hance the base modelling framework developed therein. Inter alia, we concluded that—since epithelial-

mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are major factors in the
metastatic process—a first natural extension to the modelling framework would be their inclusion. This
is achieved in this paper by accounting for phenotypic switching to represent permanent and transient
transitions between the epithelial and the mesenchymal phenotypic state as well as a mixed epithe-
lial/mesenchymal state, as biologically observed during the invasion-metastasis cascade (Celià-Terrassa
et al., 2012). Thus, EMT-related features are introduced to the existing metastasis framework to ac-
curately represent their role in the invasion-metastasis cascade. We also account for differences in the
extracellular matrix (ECM) density of the tissue of the primary and secondary tumour growth sites
involved in our simulations. This way, we address another enhancement to the model suggested in
Franssen et al. (2019) by taking a further step towards developing a biologically accurate multi-organ
spatially explicit model. Finally, we include the immune response at secondary sites through the mod-
elling of dormancy and death of metastasised cancer cells.

The remainder of the paper is organised as follows. In Section 2, we introduce the biological
background of EMT, MET and of the cancer cell phenotypes involved in the context of the invasion-
metastasis cascade. In Section 3, we describe how EMT and MET—which we may for simplicity also
jointly refer to as the EMT process throughout this paper—are included in our general mathematical
modelling framework of metastatic spread. As part of this, we give an overview of previous models
concerned with EMT in cancer invasion at the beginning of this section. In Section 4, we outline how
the computational simulations are set up. In Section 5, we present the simulation results. Finally, in
Section 6, we discuss how the results fit in with current biological findings and hypotheses. We also
give an overview of future work.

2. Biological background

Mutations of key genes in only a few epithelial cells in the body can ultimately lead to the formation of
carcinomas, which are the group of solid tumours arising from epithelial tissues in the body. Abnormally
rapid proliferation caused by these mutations can result in the formation of an avascular tumour with a
diameter of up to approximately 0.1–0.2 cm (Folkman, 1990). Nutrient and oxygen supply to tumour
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Figure 1. Schematic overview of the invasion-metastasis cascade. Single mesenchymal-like and partial-EMT cancer cells as
well as heterogeneous clusters consisting of mesenchymal-like, partial-EMT and epithelial-like cancer cells break free from the
primary tumour and invade the surrounding tissue (top left). They can intravasate via active matrix-degrading enzyme (MDE)-
mediated and passive mechanisms (mid-left, along epithelium of the vessel). Once in the vasculature, circulating tumour cell

(CTC) clusters may disaggregate (centre) and CTCs may die. Surviving cells may extravasate through the walls of the microvas-
culature to various secondary sites in the body (bottom right). Successful colonisation there can result in either disseminated

tumour cells (DTCs) or in micrometastases, which have the potential to develop into full-blown metastases.
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cells in this early avascular stage occurs via diffusion from a vessel source only. The diffusion limit of
oxygen is 100–200 µm. Hence, vascular growth is restricted by the metabolic needs of the cells forming
the rapidly expanding tumour. It has been observed that, once the tumour growth limit of the avascular
phase is reached, a subset of cancer cells starts invading the tissue surrounding the tumour either as
individual cancer cells or as cancer cell clusters. These invading cells continue to perform random mo-
tion but additionally are driven away from the primary tumour mass by gradients in nutrients, oxygen
and in the extracellular matrix (ECM) density. Furthermore, the cancer cells secrete chemicals, collec-
tively known as tumour angiogenic factors (TAFs), which start recruiting new blood vessels (Folkman &
Klagsbrun, 1987)—a process known as (tumour-induced) angiogenesis. The resulting newly established
vasculature enables the transport of nutrients and oxygen required for further tumour growth. Also, can-
cer cells may now intravasate into the newly grown blood vessels, travel through the bloodstream and
extravasate at distant sites in the body where space and nutrients are less of a limiting factor to growth.
The successful relocation of cancer cells from a primary location to a secondary location in the body
via the described sequence of steps of the invasion-metastasis cascade is known as metastatic spread.
Successfully extravasated cancer cells occur either as single disseminated tumour cells (DTCs) or as
small clusters of cancer cells, called micrometastases. The majority of micrometastases and, even more
so, of DTCs die due to maladaptation to the new microenvironment as well as due to the local immune
response (Aceto et al., 2014). However, surviving cancer cells may proliferate, which can lead to the
formation of secondary tumours, called metastases, at sites in the body away from the primary tumour.
Other DTCs and micrometastases may remain dormant at first but have the potential to proliferate into
vascularised metastases at the secondary sites at some later point in time. The full process described
here is shown schematically in Figure 1. The corresponding biological background is further explained
in Franssen et al. (2019) by considering each of the steps in the invasion-metastasis cascade—i.e. cancer
cell invasion, intravasation, vascular travel, extravasation and regrowth at new sites in the body—in turn.

Cancer cells adapt to the environmental requirements of the various steps of the invasion-metastasis
cascade via changes in phenotype (Jolly et al., 2017a). EMT and MET are a canonical group of—at
least transiently—observed phenotypic changes that are assumed to be crucial for metastatic spread
(Guo et al., 2012; Ye et al., 2015; Krebs et al., 2017). Various combinations of so-called EMT-inducing

transcription factors (EMT-TFs) together with a number of extracellular molecules in the tumour mi-
croenvironment and related pathways are thought to trigger EMT (Jie et al., 2017). The cell-cell ad-
hesion between formerly epithelial-like cancer cells is typically reduced upon activation of EMT. At
the same time, the cancer cells tend to express more cell-matrix adhesion enhancing molecules like
N-cadherin (Micalizzi et al., 2010). As part of this combination of changes, the characteristic polygonal
cobblestone-like cell shape of epithelial cells is progressively replaced by a spindle-shaped morphology,
as shown on the right of Figure 2. Also, the motility and invasiveness of the cancer cells are enhanced
(Jie et al., 2017; Dongre & Weinberg, 2019). As another result of EMT, the cells become increasingly
potent at degrading the underlying basement membranes of organs and vessels as well as the ECM
via the expression of metalloproteases (MMPs) (Dongre & Weinberg, 2019). As a trade-off, they be-
come less proliferative. MET can reverse the phenotypic changes induced by EMT, thus—generally
speaking—causing the cells to become less motile and invasive while enhancing their proliferative po-
tential.

Traditionally, the EMT-process has been viewed to result in cells of epithelial and of mesenchymal
phenotype in a binary sense (Pastushenko & Blanpain, 2018; Dongre & Weinberg, 2019). Yet, more
recently, intermediate states—commonly referred to as hybrid, incomplete or partial-EMT states—on
the spectrum between the fully epithelial and fully mesenchymal state have been shown to exist in
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Figure 2. Typical EMT transition states in carcinoma progression and metastatic spread. During carcinoma invasion and
metastatic spread, the formerly epithelial phenotype of cancer cells (left) can—via the processes of partial or full EMT—evolve
to a partial-EMT (middle) or a mesenchymal (right) phenotype. Generally, the further to the right of the EMT spectrum a cell is
located, the less it attaches to other cells. The trade-off for this gain in motility is a decreased proliferative potential. MET is the
reverse process. It is indicated by the arrow along the bottom of the figure. Reproduced from Dongre & Weinberg (2019) with
permission from Nature Publishing Group.
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various cell lines of patient xenografts and of human primary cancers, such as breast, head and neck,
and pancreatic cancer (Pastushenko & Blanpain, 2018). Cancer cells in these intermediate phenotypic
states are assumed to show a variety of combinations of the above-mentioned phenotypic traits. The full
transition from an epithelial to a mesenchymal state, which had formerly been assumed to be the only
possible outcome of EMT, has recently been shown to actually be rare during carcinogenesis (Dongre
& Weinberg, 2019). Furthermore, cell cycle arrest may occur in fully mesenchymal cancer cells (Vega
et al., 2004; Lovisa et al., 2015), while partial-EMT cancer cells continue to be able to proliferate
(Handler et al., 2018).

In what follows, the roles of EMT and MET as well as of epithelial-like, partial-EMT and mesenchy-
mal-like cancer cells during the various steps of the invasion-metastasis cascade are elucidated in more
detail. The five steps of the invasion-metastasis cascade are printed in bold for better orientation. A more
in-depth description of the EMT-unrelated features of these steps of the invasion-metastasis cascade is
provided in Franssen et al. (2019).

Local cancer invasion Carcinomas are tumours that arise from epithelial tissue. However, cancer
cells have been found to either invade as single cells of partial-EMT or of mesenchymal phenotype or as
clusters, which often consist of cancer cells of heterogeneous phenotypes (Friedl & Wolf, 2003). Hence,
EMT of some degree—at least in a subset of the cancer cells—at the primary site is a prerequisite for
this first step of the invasion-metastasis cascade (Francart et al., 2018; Pastushenko & Blanpain, 2018).
Migrating cells usually employ their acquired mesenchymal traits, i.e. the decrease or loss in cell-cell
adhesion and increases in cell-ECM adhesion and in matrix-degrading enzyme (MDE)-expression, to
invade (Friedl & Wolf, 2003; Bill & Christofori, 2015). This hypothesis is, for example, supported
by reports suggesting that invading cancer cell clusters contain cells that have undergone partial EMT
in vivo (Tsai et al., 2012; Ocaña et al., 2012). Moreover, the occurrence of clusters highlights that
partial EMT allows for the cancer cells to maintain at least some aspects of the epithelial cell-cell
adhesion (Cheung & Ewald, 2016). Furthermore, the spatial location of cancer cells of partial-EMT
and of epithelial phenotype was investigated by Puram et al. (2017) in situ in oral cavity head and neck

squamous cell carcinomas (HNSCCs). Using immunohistochemistry to stain a collection of tumours,
they found that, while the core of the tumours contained malignant cells of epithelial phenotype, partial
EMT had occurred in the cancer cells at the leading tumour edge in the proximity of cancer-associated

fibroblasts (CAFs) in the tumour microenvironment. A corresponding explanation in the form of a
diagram and a stained tissue sample is shown in Figure 3.

Intravasation As explained in detail in Franssen et al. (2019), unless vessels are ruptured—for
instance due to the tumour microenvironment-modulating effects of EMT-TFs (Jolly et al., 2017b)—
and subsequently opportunistically entered by cancer cells, MDE-expressing cancer cells are required to
allow the intravasation of cancer cells into the vasculature. Therefore, epithelial-like cancer cells cannot
gain access to undamaged vessels, while partial-EMT and mesenchymal-like cancer cells can (Jolly
et al., 2018). Similarly, cancer cell clusters that consist at least partially of partial-EMT or mesenchymal-
like cancer cells can enter undamaged vessels using MDEs.

Travel through the vasculature The majority of circulating tumour cells (CTCs) and CTC clusters
in the vasculature were found to be of partial-EMT phenotype (Jolly et al., 2018). Moreover, Arm-
strong et al. (2011) found that in women with metastatic breast cancer and men with castration-resistant
prostate cancer more than 75% and 80% of CTCs, respectively, co-expressed epithelial and mesenchy-
mal markers. Similarly, studies by Thiery & Lim (2013) and by Yu et al. (2013) reported that a signifi-
cant proportion of CTCs was of partial-EMT or mesenchymal-like phenotype in patients with metastatic
breast cancer. CTCs of partial-EMT phenotypes have further been observed in the blood of patients with
cancer of the liver, prostate and lungs as well as in patients with colorectal, nasopharyngeal and gas-
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Epithelial-like 

cancer cells

Partial-EMT 

cancer cells

CAFs in 

stroma

Epithelial-like cancer cells

Partial-EMT cancer cells

Figure 3. Partial EMT occurs at leading tumour edge in head and neck squamous cell carcinoma (HNSCC). In situ spatial
location of cancer cells expressing a partial EMT programme versus those of epithelial phenotype within HNSCC tumours, both
schematically (left) and in human tissue (right). On the right, immunohistochemistry was used to stain the tumour for PDPN, one
of the top genes in the partial-EMT programme, as well as for SPRR1B, an epithelial differentiation marker. Partial-EMT cancer
cells were located at the leading edge of tumours in proximity to cancer-associated fibroblasts (CAFs) in the surrounding stroma,
epithelial-like cancer cells at the core of tumours. Reproduced from Puram et al. (2017) with permission from Elsevier.

tric cancer. In these types of cancer, the partial-EMT phenotype correlates with poor clinical prognosis
when compared to the occurrence of cancer cells of purely epithelial or purely mesenchymal phenotype
(Pastushenko & Blanpain, 2018). The prominence of partial-EMT cancer cells at the tumour edge as
well as their ability to intravasate into the vasculature using MDEs offer potential explanations for these
findings. An additional explanation is that at least a subset of partial-EMT CTCs is more resistant to
anoikis, i.e. to apoptosis induced by lack of correct cell-ECM attachment (Huang et al., 2013). However,
independent of phenotype, both single CTCs and CTC clusters are exposed to physical stresses and to
attacks by natural killer cells in the vasculature. One consequence is that only a small number of cancer
cells shed from the primary tumour actually reach the microvasculature at metastatic sites. Another
effect of this is the (partial) disaggregation of cancer cell clusters, as shown in the centre of Figure 1.
This leads to smaller CTC clusters and to an increased number of single CTCs.

Extravasation For the subset of CTCs and CTC clusters that do reach the microvessels at distant
organs, extravasation, i.e. the translocation from the vasculature to the tissue at a secondary site, is the
next step. During extravasation, the phenotype of the cancer cells is believed to play a tangential role at
most—CTCs of all phenotypes appear to be able to extravasate (Banyard & Bielenberg, 2015) with the
aid of mechanisms explained further in Lambert et al. (2017); Franssen et al. (2019).

Colonisation and metastatic growth Cancer cell phenotypes are, once again, of crucial importance
when it comes to the colonisation and metastatic growth of cancer cells at the secondary sites. Also,
EMT alone fails to explain this last step of the invasion-metastasis cascade, given that macrometas-
tases in humans often present similar histopathological traits to the primary tumours they originate
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from. These traits include a mainly epithelial-like morphology (Pastushenko & Blanpain, 2018) with
a relatively small subset of cancer cells with phenotypes further along the EMT spectrum (Dongre
& Weinberg, 2019)—despite the above-described evidence of the abundance of partial-EMT CTCs in
the vasculature. Consequently, this suggests that some degree of MET is needed for macrometastatic
growth. A murine prostate cancer model by Ruscetti et al. (2015) delivers insight into this. Cancer
cells in macrometastases that had spread to the lungs were found to have mainly epithelial markers
and few mesenchymal markers; the inverse constitution was found in dormant micrometastatic lesions.
Coherently, in a study by Ocaña et al. (2012), it was proposed that the constant overexpression of the
EMT-inducer PRRX1 in human breast tumour cell lines, which were injected intravenously into chick
embryos, may lock cancer cells in a mesenchymal-like phenotypic state. This was suggested to inhibit
the cells from performing MET, which, in turn, failed to give rise to lung metastases. Similarly, Kröger
et al. (2019) concluded from several studies that a stable mesenchymal-like phenotype without any MET
potential cannot succeed in metastatic re-seeding.

Finally, as elaborated in Franssen et al. (2019), it is noteworthy that experimental evidence sug-
gests that less than 0.07% of all initially intravasated single CTCs form micrometastases and less than
0.018%± 0.017% form macrometastases 13 days after intravasation (Luzzi et al., 1998; Valastyan &
Weinberg, 2011). Maladaptation to the new tumour microenvironment, with the consequence that only
a few cells are able to proliferate, is regarded to be a main contributor to the poor survival at secondary
sites (Dongre & Weinberg, 2019). Compared to single CTCs, CTC clusters were described to have 23 to
50 times the metastatic potential (Aceto et al., 2014). One explaining factor for this is that heterogeneity
in the cell phenotype, as often found in such clusters, can be advantageous during colonisation (Jolly
et al., 2018).

3. The EMT/MET multi-organ extension of the metastasis modelling framework

In this section, the inclusion of EMT-related processes into the recently introduced mathematical frame-
work for the modelling of the metastatic spread of cancer by Franssen et al. (2019) is outlined. Only
new EMT-related features will be established here—the reader is referred to Appendix A to consult the
existing underlying metastasis modelling framework, onto which we impose the alterations described
in this section. Further, we introduce changes to the existing framework that allow us to differenti-
ate between the cell behaviour on the various organs as well as to account for dormancy and death of
metastasised cancer cells as a result of the potential immune response at and maladaptation to secondary
sites. We begin by giving an overview of existing mathematical models that include, in the wider sense,
EMT-related features in the context of spatially explicit cancer invasion. A review of such mathematical
models of the EMT-process in the context of metastasis will be omitted as, to our knowledge, this paper
is the first metastasis model to include the roles of EMT and MET, and of the corresponding phenotypes
of individual cancer cells in a spatially explicit manner.

Andasari et al. (2011) extended and analysed a system of equations initially proposed in Chaplain
& Lolas (2005) to represent the interaction between cancer cells, the MDE urokinase-type plasminogen

activator (uPA), uPA inhibitors of type PAI-1, the ECM-cleaving and MMP-activating enzyme plasmin,
and the ECM component vitronectin. They allowed for cancer cells to mutate into a phenotype that
diffuses, migrates and proliferates more rapidly, which was modelled using a Heaviside function. While
the current biological evidence on EMT-related phenotypic changes somewhat contradicts the notion
of such a ‘go-and-grow’ mutation, the proposed model was an important step towards the inclusion of
mutations in cell phenotype in spatial cancer invasion models. Gerisch & Chaplain (2008) modified the
local haptotaxis-based partial differential equation (PDE) model proposed in Anderson et al. (2000) to
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include cell proliferation and ECM remodelling as well as cell-matrix and cell-cell adhesion. This was
achieved using an integro-differential PDE model, which incorporated cell-cell adhesion using integral
terms. Domschke et al. (2014) extended this model further. In particular, they introduced a subpopula-
tion of cancer cells that arose from the initial cell population by mutation, again by using a Heaviside
function. The mutation resulted in a decrease in self-adhesion of the cancer cells and an increase in
cell-matrix adhesion, which caused the mutated cancer cells to spread more rapidly into the surrounding
tissue. This is coherent with the current biological understanding that EMT causes more invasive pheno-
types. In order to include physiological mechanisms that lead to EMT, Hellmann et al. (2016) modelled
EMT from differentiated cancer cells to cancer stem cells (CSCs), which have biological properties
comparable to the epithelial-like and the mesenchymal-like cancer cells in our model, respectively. In
this approach, EMT was triggered by epidermal growth factors (EGFs) in the ECM. Subsequently, an
advection-reaction-diffusion system of Keller-Segel taxis type was used to study the invasion of both
types of cancer cells into the ECM. Numerical simulations were proposed as a proof of concept to show
that combining the two systems can account for EMT in a biologically accurate manner. Sfakianakis
et al. (2017) developed this model of EGF-driven EMT further. In the corresponding simulations, the
detachment of CSCs from the main tumour body of differentiated cancer cells—due to their ability to
invade the tissue comparatively more rapidly—was reproduced qualitatively. More recently, Sfakianakis
et al. (2018) introduced a coupled two-dimensional hybrid system that governed the spatiotemporal evo-
lution of individual mesenchymal cancer cells by a system of stochastic differential equations (SDEs),
while the collectively moving epithelial cancer cells, the ECM and the MMPs evolved according to
PDEs. This novel modelling technique considered the effects of EMT and MET on cancer invasion us-
ing phase transition operators. As a result, the in silico invasion assays simulated using the Sfakianakis
et al. (2018) approach presented ‘islands’ of invading cancer cells ahead of the expanding initial main
cancer cell mass, which had arisen from EMT and subsequent MET. These ‘islands’ away from the tu-
mour mass are frequently observed in vivo but do not typically present themselves in solely macroscopic
or atomistic cancer invasion models.

From the literature review, we draw several conclusions. Firstly, as far as we know, no spatially
explicit model that describes the role of EMT and MET in metastatic spread—as opposed to their role
in invasion alone—exists. Consequently, none of the existing models capture the site- and location-
dependent occurrence of EMT and MET in all of the steps of the invasion-metastasis cascade—i.e. in
cancer cell invasion, intravasation, vascular travel, extravasation and during regrowth at new sites in the
body—in a spatial manner. Secondly, to our knowledge, the simulations from existing spatiotemporal
ECM invasion models that account both for epithelial from mesenchymal cancer cell populations as well
as for the transition between the phenotypic states, such as Domschke et al. (2017), lack the inclusion of
intermediate partial-EMT phenotypes. Yet, it has recently become evident that cancer cells of partial-
EMT phenotype are crucial to the EMT process, as explained in Section 2. With the aim of closing
the current gap in the literature, we propose an extension to the spatially explicit hybrid modelling
framework in Franssen et al. (2019). The resulting model describes the invasive growth dynamics both of
the primary tumour by—inter alia—accounting for EMT, as well as growth in the early avascular stages
at potential secondary metastatic sites by accounting for MET. Additionally, transport from primary to
secondary sites is modelled. In what follows, we introduce the ideas and assumptions that the EMT
extension of the metastasis framework builds on.

As Franssen et al. (2019), we use G+ 1 non-overlapping spatial domains—one to represent the
primary tumour site, Ω

P
⊂ R

2, and G ∈ N spatial domains representing the sites of potential sec-
ondary metastatic spread, Ω a

S
⊂ R

2, where a = 1,2, ...,G. As previously, we represent the MMP-2
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Movement , EMT & 
cell proliferation

Primary grid

Movement, MET & cell proliferation/dormancy/death

Secondary 

grid 1

Updated grid 
point grants 

vessel entry

Yes

No

Survival in 

vasculatureCell death
No

Yes

…Secondary 

grid 2
Secondary 

grid G

Local cancer cell invasion

Intravasation

Travel through the vasculature 

Metastatic growth

Extravasation

Figure 4. Flowchart of the extended invasion-metastasis hybrid model. At each time step, each cancer cell on the primary
grid may move, may perform EMT with some (location-dependent) probability and may proliferate as explained in detail in the
text. A cancer cell remains on the primary grid during the respective time step, unless it is placed on a grid point that represents
a blood vessel. In the latter case, single CTCs and CTC clusters may enter the vasculature. They spend a number of time
steps in the circulation and survive with a probability of P

S
= P

E
, P

M
or P

E/M
in the case of single CTCs of epithelial,

mesenchymal and partial-EMT phenotype, respectively, and with a probability of P
C

in the case of CTC clusters. Cancer cells
that do not survive are removed from the simulation. Surviving CTCs and CTC clusters are placed onto one of G secondary
grids with the respective probability E1,E2, ...,EG. Cancer cells on the secondary grids move and proliferate like cancer cells
on the primary grid (potentially with different parameter values to represent organ- and patient-specific differences in the local
tumour microenvironment). However, partial-EMT cells may now revert to cells of an epithelial phenotype via MET and there
furthermore exists a probability for cell death and dormancy. For better orientation, the red boxes with their labels on the left
correspond to the sections indicated in bold in Sections 2 and 3 of the text as well as in Appendix A.
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concentration and the ECM density at position ~x at time t in these spatial domains by the continuous
functions m(t,~x) and w(t,~x), respectively, while capturing the spatiotemporal evolution of epithelial,
partial-EMT and mesenchymal cancer cells as well as of the membrane-bound MT1-MMP in a discrete
approach, cf. Anderson & Chaplain (1998); Anderson et al. (2000); Franssen et al. (2019). Also analo-
gously to Franssen et al. (2019), we allow cancer cells to travel from primary to secondary sites via the
vasculature by designating locations in the primary spatial domain to function as entry points into blood
vessels and, similarly, we impose a spatial map of exit locations from the vasculature onto the secondary
metastatic domains.

The EMT-related features that are novel to the metastatic framework are explained according to
which key step of the invasion-metastasis cascade—i.e. cancer cell invasion, intravasation, vascular
travel, extravasation and metastatic growth—they belong to. To enhance the clarity of presentation, as
Franssen et al. (2019), we begin each paragraph by printing the description of corresponding the step
in bold. We also label the respective sections in the flowchart presented in Figure 4, which visually
describes the model, accordingly.

Local cancer cell invasion As explained in detail in Franssen et al. (2019), the evolution of the
MMP-2 concentration and of the ECM density are modelled in a continuum approach. To account for
the inclusion of partial-EMT cancer cells in our model, we extend equations (A.1) and (A.2) from the
former model slightly. Accordingly, the spatiotemporal evolution of the MMP-2 concentration m(t,~x)
is given by

∂m

∂ t
= Dm∇2m + Θ

M
c
M n

+Θ
E/M

c
E/M

q
− Λm , (3.1)

diffusion expression decay

along with zero-flux boundary conditions. Here, c
M n

, n = 0,1,2, ...,Q, and c
E/M

q
, q = 0,1,2, ...,Q,

with n + q 6 Q, denote the presence of c
M n

mesenchymal-like cancer cells and c
E/M

q
partial-EMT

cancer cells—totalling no more than the preferred carrying capacity Q—at a given position~x, following
the notation by Stéphanou et al. (2006) and McDougall et al. (2012). Dm > 0 is the MMP-2 diffusion
coefficient, and Θ

M
> 0 and Θ

E/M
> 0 are the rates of MMP-2 concentration provided by mesenchymal-

like cancer cells and the partial-EMT cancer cells, respectively. Consequently, Θ
M

c
M n

and Θ
E/M

c
E/M

q

represent the local expression of MMP-2 by the mesenchymal-like and the partial-EMT cancer cells,
respectively. Finally, Λ > 0 is the rate at which MMP-2 decays. Note that the mesenchymal-like
and partial-EMT cancer cells also express MT1-MMP. However, MT1-MMP acts only locally where
it is bound to the cancer cell membrane and its spatiotemporal evolution is hence congruent to that of
the mesenchymal-like and of the partial-EMT cancer cells. Therefore, we do not include a separate
equation.

Both the MT1-MMP expressed on the membranes of the mesenchymal-like and the partial-EMT
cancer cells and the diffusive MMP-2 that these cells secrete degrade the ECM. In the respective equa-
tion (3.2), this is expressed through the degradation rates Γ

M
> 0 and Γ

E/M
> 0 in the case of the

MT1-MMP bound to the membranes of partial-EMT and of mesenchymal-like cancer cells, respec-
tively, and for the diffusive MMP-2 by the degradation rate Γm > 0. Hence, given that we are disre-
garding ECM-remodelling for simplicity, the evolution of the ECM density w(t,~x) is governed by the
following PDE:
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∂w

∂ t
=−(Γ

M
c
M n

+Γ
E/M

c
E/M

q
+Γmm)w, (3.2)

degradation

along with no-flux boundary conditions.
For the cancer cell migration on the grid we adopt a discrete approach where the movement proba-

bilities of the cancer cells are given as follows:

P0 : P
n
i−1, j :=

∆ t

(∆x)2



Dk −
Φ

k

4

�

wn
i+1, j −wn

i−1, j

�

�

,

P1 : P
n
i+1, j :=

∆ t

(∆x)2



Dk +
Φ

k

4

�

wn
i+1, j −wn

i−1, j

�

�

,

P2 : P
n
i, j+1 :=

∆ t

(∆x)2



Dk +
Φ

k

4

�

wn
i, j+1 −wn

i, j−1

�

�

,

P3 : P
n
i, j−1 :=

∆ t

(∆x)2



Dk −
Φ

k

4

�

wn
i, j+1 −wn

i, j−1

�

�

,

P4 : P
n
i, j := 1−4Dk

∆ t

(∆x)2 , (3.3)

where k = E,E/M,M and, as throughout this paper, 0 < D
E
< D

E/M
< D

M
and 0 = Φ

E
< Φ

E/M
< Φ

M
.

P0,P1,P2,P3 and P4 correspond to the probabilities that, during the next time step, a cancer cell at
grid point (xi,y j) moves left, right, up, down, and not at all, respectively (Anderson & Chaplain, 1998;
Anderson et al., 2000; Franssen et al., 2019). Note that if any of the coefficients P0 to P3 become
negative, we set them to zero during that time step. Rules for proliferation and phenotypic transitions of
the cancer cells (as well as—on the secondary grids—for cell death and dormancy) are then included at
the discrete level, as described below.

The more proliferative cancer cells of epithelial phenotype perform mitosis after time interval T
E

and the less proliferative partial-EMT and mesenchymal-like cancer cells after time interval T
E/M

and
T
M

(with T
E
6 T

E/M
6 T

M
), respectively. As previously in Franssen et al. (2019), when proliferating,

the cancer cells pass on their location so that a proliferating cancer cell is replaced by two daughter
cells. Generally, during a proliferative step, cells are replaced by cells of their respective phenotype.
However, in accordance with the biological findings presented in Section 2, the extended model allows
for location-dependent full and partial EMT upon proliferation on the primary grid. As also explained
schematically on the left-hand side of Figure 5, the EMT mutations on the primary grid occur as follows:

• Cancer cells of epithelial phenotype may be replaced by a set of daughter cells consisting of one
cell of epithelial and one of partial-EMT phenotype with probability PE/M

EMT
> 0 when proliferat-

ing;

• If at least one neighbouring grid point of a cancer cell of epithelial phenotype is unoccupied,
the cell may be replaced by a set of daughter cells consisting of one of epithelial and one of
partial-EMT phenotype with an additional probability PE/M∗

EMT
;

• Cancer cells of epithelial and of partial-EMT phenotype may be replaced by a set of daughter
cells consisting of one cell of epithelial or of partial-EMT phenotype, respectively, and one of
mesenchymal phenotype with probability PM

EMT
< PE/M

EMT
when proliferating.

Page 89 of 117

http://mc.manuscriptcentral.com/imamat

Manuscripts submitted to (i)The IMA Journal of Applied Mathematics(/i)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

A MATHEMATICAL MODEL OF EMT IN CANCER METASTASIS 13 of 40

As before, to account for competition for space and resources, the cancer cells on the respective grid
point do not proliferate if there are already Q ∈N cancer cells on a grid point at the time of proliferation.
Thus, Q represents the preferred carrying capacity in our model. If proliferation is not possible due
to spatial constraints, the affected cell may proliferate again after another T

E
, T

E/M
or T

M
time steps,

respectively.

Intravasation As in Franssen et al. (2019), to represent the entry points into the blood vessels, a
number of U

P
∈ N0 normal blood vessels as well as V

P
∈ N0 ruptured blood vessels are distributed

throughout the primary grid. The normal blood vessels take the size of one grid point, while ruptured
vessels consist of a group of Ab

∈ N, where b = 1,2, ...,V
P

, adjacent grid points and can thus have
different shapes. The entry rules for cancer cells of epithelial and mesenchymal phenotype remain as
described in Franssen et al. (2019). Moreover, in this extended framework, the cancer cells of partial-
EMT phenotype are treated in the same way as those of mesenchymal phenotype in the sense that they
may intravasate into both ruptured vessels and—unlike epithelial-like cancer cells—normal vessels.
Also, they are able to carry epithelial-like cancer cells into the vasculature with them.

Travel through the vasculature Cancer cells and cancer cell clusters remain in the vasculature
for some time interval of length T

V
∈ N, which biologically represents the average time the cancer cells

spend in the blood system. If a cell would have normally been due to proliferate while in the vasculature,
the proliferation is suppressed. It may proliferate again after another T

E
, T

E/M
or T

M
time steps, as

appropriate. Any cancer cells that enter a particular vessel at the same time are treated as one cluster
and hence as a single entity once they are located in the vasculature. However, each cancer cell that
is part of a cancer cell cluster disaggregates from its cluster with some probability Pd after spending

a time interval of
l

T
V
2

m

in the vasculature. After the time interval T
V

, the single cancer cells and the

remaining cancer cell clusters are removed from the simulation unless they are randomly determined
to survive. In accordance with the findings in Section 2, the survival probability is P

E
= P

M
> 0 for

single cancer cells of epithelial and mesenchymal phenotype, P
E/M

> P
E
,P

M
for single cancer cells

of partial-EMT phenotype, and P
C
> P

E/M
for cancer cell clusters.

Metastatic growth On the secondary grids Ω a
S

, where a = 1,2, ...,G, the same phenotypes of can-
cer cells are accounted for as on the primary grid. Also, the same movement probabilities from equa-
tions (3.3) are used to describe their movement. However, we allow for organ-specific adjustment of the

cell movement through differentiation of the respective diffusion and haptotactic coefficients, D
Ωa
S

k and

Φ
Ωa
S

k , k = E,E/M,M, a = 1,2, ...,G.
Moreover, at the primary site, we model the assumption of well-adaptedness of the cancer cells

to their tumour microenvironment of origin by considering proliferation every fixed time interval Tk,
k = E,E/M,M, if the preferred carrying capacity Q permits. At the secondary sites, the cancer cells
may not be as well-adapted to their new tumour microenvironment and may be exposed to the response
of the immune system upon arrival. Furthermore, how well the cancer cells are adapted may vary be-
tween secondary organ tissues, cf. Section 2. To account for this, we make several adjustments to the
proliferative step on the secondary grids, which are summarised schematically on the right-hand side

of Figure 5. Firstly, cancer cells may die with some grid-specific probability P
Ωa
S

D immediately prior
to each potential proliferation. Secondly, a cell may not proliferate with some grid-specific probability

P
Ωa
S

δ when proliferation is due to account for cancer cell dormancy. Besides this, if cancer cells do
proliferate during a time step, we account for MET at the secondary sites in accordance with the bio-
logical findings presented in Section 2. Hence, cancer cells of partial-EMT phenotype on the secondary
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Mutations at primary site Mutations, dormancy & death 
at secondary sites

Epithelial-like cancer cell 

Mesenchymal-like cancer cell 

Partial-EMT cancer cell 

Figure 5. Schematic representation of possible EMT mutations at the primary site (left) and of MET mutations, cell death

and dormancy at the secondary sites (right). Upon proliferation, each of the cells of the three phenotypes on the left of each
arrow may undergo one of three fates instead of the usual proliferation: (A) It may be replaced by one cancer cell of the same
and one of a different phenotype; (B) it may die (indicated by the red cross); or (C) it may remain dormant. (B) and (C) occur
at secondary sites only (shown on the right). The dashed line on the top left indicates that this additional probability PE/M∗

EMT
for

cancer cells to mutate only applies to cancer cells at the tumour edge (see text). Note that, for enhanced readability, the illustration
omits the representation of non-mutated proliferation, which results in the substitution of one parent cell by two daughter cells of
its phenotype. Also, if the carrying capacity is reached on a grid point prior to proliferation, proliferation—and thus mutations—do
not occur.
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Ω
P

Ω
S

Ω
S

Ω
S

3 

2 

1 

Figure 6. Primary and metastatic sites. To give an example of how the general modelling framework can be applied to a specific
clinical setting, we chose the primary site Ω

P
in our simulations to represent the breast (left). Potential secondary metastatic sites

Ω 1
S

, Ω 2
S

, Ω 3
S

were chosen to represent the bones, the lungs and the liver, respectively (right). Cancer cells can reach the secondary
sites by travelling through the blood system.

grids may be replaced by a set of daughter cells consisting of one cancer cell of epithelial and one of
partial-EMT phenotype with probability PE

MET
> 0 when proliferating. EMT does not occur on the

secondary grids. However, as before, proliferation is capped as soon as a maximum of Q cancer cells
per grid point is reached.

4. Setup of computational simulations and model calibration

To perform numerical simulations, we non-dimensionalised the system of equations (3.1)–(3.2) and the
movement probabilities (3.3), with k = E,E/M,M, as described in Appendix A. In accordance with
Anderson et al. (2000); Franssen et al. (2019), we chose to rescale distance with an appropriate length
scale L = 0.2cm (since 0.1–1cm is estimated to be the maximum invasion distance of cancer cells
at an early stage of cancer invasion) and time with an appropriate scaling parameter τ = L2

D
. Here,

D = 10−6 cm2s−1 is a reference chemical diffusion coefficient suggested by Bray (1992), such that
τ = 4×104 s, which corresponds to approximately 11h.

We considered spatial domains of size [0,1]× [0,1]. This corresponds to physical domains of size
[0,0.2]cm× [0,0.2]cm. In particular, we let the spatial domain Ω

P
represent the primary site and the

spatial domains Ω 1
S

, Ω 2
S

and Ω 3
S

describe three potential metastatic sites. These spatial domains could
represent any primary and secondary carcinoma sites. However, to give an example of a specific appli-
cation, we chose Ω

P
to represent the primary site of the breast, and Ω 1

S
, Ω 2

S
and Ω 3

S
to correspond to

the bones, lungs and liver, respectively, which are commonly observed metastatic sites in breast cancer,
cf. Figure 6.

The four spatial domains were discretised to contain 201× 201 grid points each. This corresponds
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to a non-dimensionalised space step of ∆x = ∆y = 5×10−3, which results in a dimensional space step
of 1× 10−3 cm, and thus roughly corresponds to the diameter of a breast cancer cell (Vajtai, 2013).
We then chose a time step of ∆ t = 1×10−3, corresponding to 40s. This ensures that the scheme com-
plies with the Courant-Friedrichs-Lewy (CFL) condition (Anderson et al., 2000), while still maintaining
appropriate computational efficiency.

We used an explicit forward-Euler in time, central-difference in space numerical scheme to solve the
PDEs of our system. The time step was chosen to satisfy the von Neumann stability condition for the 2D
diffusion equation (i.e. ∆ t 6 h2

4D
, h = ∆x = ∆y), thus ensuring stability while maintaining appropriate

computational efficiency and accuracy (cf. Anderson & Chaplain (1998); Anderson et al. (2000); Morton
& Mayers (2005)). Specifically, the four spatial domains were discretised to contain 201× 201 grid
points each. This corresponds to a non-dimensionalised space step of ∆x=∆y= 5×10−3, which results
in a dimensional space step of 1× 10−3 cm = 10 µm, and thus roughly corresponds to the diameter of
a breast cancer cell (Vajtai, 2013). We then chose a time step of ∆ t = 1×10−3, corresponding to 40s.
We ran the simulations for a time period corresponding to approximately 4 days.

On each secondary grid, we chose U1
S
= U2

S
= U3

S
= 10 distinct grid points, on which blood ves-

sels are located. For each grid, these blood vessels were placed randomly but at least two grid step
widths away from the respective grid’s boundary. The same applies to the primary grid Ω

P
but with

the additional condition that the U
P
= 8 single grid points, where normal blood vessels are located,

and the V
P
= 2 sets of five grid points, where ruptured blood vessels are placed, are located outside

a quasi-circular region containing the 200 centre-most grid points. While these 10 randomly placed
vessels are modelled to exist from the beginning, they represent those vessels that grow as a result of
tumour-induced angiogenesis in the vascular tumour growth phase—hence they are placed away from
the initial avascular epithelial tumour mass.

To represent a two-dimensional cross-section of a small avascular primary tumour, we placed a
nodule that consisted of 288 randomly distributed epithelial-like cancer cells in the quasi-circular region
of the 97 centre-most grid points of the primary grid. To account for competition for space, we allowed
for no more than Q = 4 cancer cells on any grid point. This preferred carrying capacity of Q = 4 was
applied throughout the simulation. The described initial condition ensured that the cancer cells were
placed away from any pre-existing vessels to match the biology of an avascular tumour in epithelial
tissue. The counters for the cell age and proliferation were initially set to zero for all cancer cells.
Figure 7 gives an example of a typical initial cancer cell placement and vessel distribution on the primary
grid.

In accordance with the ranges provided in Table A.1, we set the epithelial-like cancer cell diffusion
coefficient to D

E
= 1×10−4, the partial-EMT cancer cell diffusion coefficient to D

E/M
= 2.5×10−4 and

the mesenchymal-like cancer cell diffusion coefficient to D
M
= 5× 10−4. Furthermore, the epithelial,

partial-EMT and mesenchymal haptotactic sensitivity coefficients were chosen to be Φ
E
= 5× 10−5,

Φ
E/M

= 1×10−3, and Φ
M
= 2×10−3, respectively.

Taking into consideration the qualitative and quantitative biological findings in Section 2, we further
assumed that, once in the vasculature, single CTCs of epithelial and mesenchymal phenotypes had a
survival probability of P

E
=P

M
= 2×10−4, while those of partial-EMT phenotype survived the travel

through the vasculature with probability P
E/M

= 6× 10−4. The survival probability of CTC clusters

was set to P
C
= 2.5× 10−2

≈ 42×P
E/M

, in accordance with the finding by Aceto et al. (2014) that
the survival probability of CTC clusters is between 23 and 50 times higher than that of single CTCs.
Surviving single CTCs and CTC clusters exited onto the secondary grids after spending a time period of
T

V
= 0.18 in the blood system, which corresponds to 2h and hence to the breast cancer-specific clinical
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Ruptured vessel

Standard vessel

0 1 2 3 4

Figure 7. Vessel distribution and initial condition of cancer cells. The plot shows (in red) ten randomly distributed blood
vessels on the primary grid, two of which are so-called ruptured vessels that consist of five rather than one grid point. In the centre
of the grid, the initial distribution of epithelial-like cancer cells is shown. There are between 0 (white) and 4 (black) cancer cells
on a grid point. As the initial distribution of cancer cells represents a 2D section through an avascular tumour, the blood vessels
are placed at some distance away from the initial nodule of cancer cells. The scale bar denotes 0.02 cm.

results in Meng et al. (2004).
Further, we assumed a uniform initial MMP-2 concentration of m(0,~x) = 0 across all the spatial do-

mains. We varied the initial ECM density according to the organ each grid represents using clinical mea-
surements of ECM densities in organs from ICRP (2009). These are presented in Table A.1. For this, we
took w(0,~x) = 1,~x ∈ Ω

P
, on the primary grid that represents the breast as our reference density. We then

rescaled the initial ECM densities on the secondary grids relative to this initial density. For the bones,
lungs and liver, respectively, this yielded w(0,~x)≈ 0.9608 for~x ∈ Ω 1

S
, w(0,~x)≈ 1.0392 for~x ∈ Ω 2

S
, and

w(0,~x)≈ 1.0294 for~x ∈ Ω 3
S

. We assumed that epithelial-like cancer cells divide by mitosis every inter-
val T

E
= 2, the partial-EMT cancer cells every interval T

E/M
= 3, and the mesenchymal-like cancer cells

every T
E
= 6. This corresponds to approximately 22 hours, 33 hours and 67 hours, respectively, which

is consistent with the average doubling times found in breast cancer cell lines (Hughes et al., 2008; Milo
et al., 2009; NCI, 2015). Moreover, we assumed that on the primary site, upon proliferation of a cancer
cell of epithelial or partial-EMT phenotype, one of the daughter cells mutates into a mesenchymal-like
cancer cell with probability PM

EMT
= 1×10−2. Similarly, one daughter cell of each epithelial-like cancer

cell may mutate into a partial-EMT cancer cell with probability PE/M
EMT

= 2×10−2 throughout the grid.
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Moreover, there is an additional probability for partial EMT of PE/M∗

EMT
= 0.15 if the epithelial-like can-

cer cell is located at the edge of the tumour. Instead of representing the adaptation to each grid through
these parameter settings, we determined the relative likelihood of metastasis-formation at the three sec-
ondary sites by consulting data on the transition probabilities of primary breast cancer to the metastatic
sites of the bones, lungs and liver, respectively. As in Franssen et al. (2019), we used data gathered
in a study of 4181 breast cancer patients (Kuhn Laboratory, 2017). As shown in Figure 4 of Franssen
et al. (2019), the one-step transition probability from the breast to the bones was 23.1%, to the lungs
was 15.3% and to the liver was 11.0%. Since we focus solely on the spread to these three metastatic
sites and the spread to other organs is included in the terms accounting for vascular death, we obtain the
relative likelihoods of spread to the bones, lungs and liver, which are P1

S
≈ 0.5461,P2

S
≈ 0.2553 and

P3
S
≈ 0.1986, respectively.
At the secondary sites, cancer cells of partial-EMT phenotype were replaced by a set of daughter

cells, consisting of one cell of epithelial and one of partial-EMT phenotype, with probability PE

MET
= 0.5

during proliferation. Due to a lack of organ-specific data on differences in the tumour microenvi-
ronments that could affect the diffusion and haptotactic coefficients of the cancer cells of various
phenotypes—as well as their dormancy and death probabilities—at the time of writing, we restricted
the differentiation between organs to their local initial ECM density at this stage. Accordingly, we—as

for the primary grid—set D
Ωa
S

k = Dk and Φ
Ωa
S

k = Φk, where k = E,E/M,M and for a = 1,2,3, on all
secondary grids in the model. Similarly, the dormancy and death probabilities on all secondary grids

were P
Ωa
S

δ = 0.5 and P
Ωa
S

D = 0.05, a = 1,2,3. An overview of the parameter values mentioned herein
can be found in Table A.1.

5. Computational simulation results

To verify that the modelling framework is able to capture the key steps of the invasion-metastasis cas-
cade, we ran simulations with the parameters shown in Table A.1. All simulations were run on a standard
desktop computer. The average computational run time for a simulation was approximately 45 minutes.
We provide sample results showing the primary and the three secondary grids at various times in the
range of 0 to 24 days during one sample simulation in Figure 8 and Figures 9–11, respectively. We
chose results on the primary grid to show the spatiotemporal dynamics on day 0, 11 and 22 so that
they can be contrasted to those in Franssen et al. (2019). For the secondary sites, we chose to present
sample results for times that best give evidence of the various mechanisms related to metastatic spread,
MET and the consequences of the immune response at secondary sites that are described through this
modelling framework. However, this does not imply that these phenomena are limited to the times and
locations depicted in Figures 8–11 in that particular or in other simulations.

As described in Section 4, we started the simulations with a small nodule of epithelial-like cancer
cells of diameter ∼1.5× 10−2 cm (cf. Figure 7). These were located on the primary grid represent-
ing the breast, which had an ECM of uniform density and contained no partial-EMT cancer cells, no
mesenchymal-like cancer cells and no MMP-2, as shown in the left-most column of Figure 8. As the
middle column of Figure 8 shows, after 11 days, the epithelial-like cancer cells had invaded the local
tissue, covering a nearly circular area of approximately 0.1 cm diameter. Moreover, some partial-EMT
and mesenchymal-like cancer cells could be observed on the primary grid. Their occurrence arose from
cancer cells of previously epithelial-like phenotype via (partial) EMT. Both of these cell types occurred
sparsely within a quasi-circular region with an approximate diameter of 0.18 cm. Additionally, the
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Figure 8. Simulation results on the primary grid. Primary tumour dynamics at 0 days, ∼11 days and ∼22 days. For each
time step, the distribution of epithelial-like, partial-EMT and mesenchymal-like cancer cells (first to third row) is shown, with the
discrete number of cancer cells per grid point ranging from 0 (white) to 4 (black) on each of the panels. The MMP-2 concentration
(fourth row) continuously varies between 0 (white) and 2.6602 (black), and the ECM density (bottom row) between 0 and 1. Red
dots represent blood vessels. There are 8 normal blood vessels of the size of one grid point as well as 2 ruptured blood vessels,
which extend over 5 grid points each. If cancer cells are moved to these grid points, they may enter the vasculature and can
potentially extravasate at a secondary site (cf. Figures 9–11). The scale bar denotes 0.02 cm and applies to all of the panels.
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Extravasated PCC-MCC cluster Dormant MCC

Partial-EMT

cancer cells 

(PCCs) 

Mesenchymal-like

cancer cells 

(MCCs) 

21.1 days 24.1 days

Figure 9. Cluster extravasation and dormancy on secondary grid representing the bones. Distribution of partial-EMT cancer
cells (upper panels) and mesenchymal-like cancer cells (lower panels) at the secondary site representing the bones is shown after
∼21 days (left) and ∼24 days (right). The number of cancer cells per grid point varies between 0 (white) and 1 (black). Around
day 21, a cluster consisting of two partial-EMT and one mesenchymal-like cancer cell extravasates onto the grid of the bones
(yellow). Moreover, over the 3 day period between the panels on the left and on the right, the mesenchymal-like cancer cell,
which normally has a doubling-time of ∼2.78 days, remains dormant (green). The scale bar denotes 0.02 cm.
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Extravasated ECC-PCC cluster

Epithelial-like 
cancer cells (ECCs) 

Partial-EMT
cancer cells (PCCs) 

16.3 days 23.1 days

Figure 10. Cluster extravasation and largest metastatic lesion on secondary grid representing the lungs. Distribution of
epithelial-like cancer cells (upper panels) and partial-EMT cancer cells (lower panels) at the secondary site representing the lungs
is shown after ∼16 days (left) and ∼23 days (right). The number of cancer cells per grid point varies between 0 (white) and 2
(black). Around day 16, a cluster consisting of six epithelial-like and one partial-EMT cancer cell extravasates onto the grid of the
lungs (yellow). This early extravasation of a relatively large cluster of epithelial-like cancer cells results in the largest metastatic
growth that can be observed during the time period of this simulation in the panels on the right. The scale bar denotes 0.02 cm.
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Extravasated single ECC ECCs via MET Dormant ECC

PCC will die PCC has died Extravasated single PCC

20.7 days 23.1 days22 days

Epithelial-like 

cancer cells (ECCs) 

Partial-EMT 

cancer cells (PCCs) 

Figure 11. Single cell extravasations, MET, dormancy and cell death on secondary grid representing the liver. Distribution
of epithelial-like cancer cells (upper panels) and partial-EMT cancer cells (lower panels) at the secondary site representing the
liver is shown after ∼21 days, ∼22 days and ∼23 days (left to right). The number of cancer cells per grid point varies between 0
(white) and 1 (black). On day 20 and 23, a single epithelial-like and a single partial-EMT cancer cell extravasate onto the grid of
the liver (yellow). No extravasations took place during the presented time period. Hence, the three epithelial-like cancer cells that
occurred in the period between 20.7 days and 22 days in the upper middle panel (pink) are a result of MET of the partial-EMT
cancer cells presented in the bottom row of panels. During the same time period, a partial-EMT cancer cell dies (red). Moreover,
over the 1.1 day period between the panels in the middle and on the right, an epithelial-like cancer cell, which normally has a
doubling-time of ∼0.93 days, remains dormant (green). The scale bar denotes 0.02 cm.

partial-EMT cancer cells populated a ring-shaped area at the edge of the tumour more densely. The
MMP-2 concentration broadly followed the distribution of the partial-EMT cells and ranged from 0 to
0.38. Moreover, the ECM had been degraded in the centre of the grid and a density gradient could be
observed at the edge of this near-circular region. After 22 days, the area occupied by the epithelial-
like cancer cells in the centre of the tumour had expanded further. Also, the ring-like area populated
with partial-EMT cancer cells at the tumour edge had grown and become more densely populated. The
mesenchymal-like cancer cells were now sparsely spread throughout the whole grid. In general, we
observed that areas on the grid near vessels were sparsely occupied, if at all. The distribution of the
MMP-2 concentration still broadly followed the evolution of the partial-EMT cancer cells, now ranging
from 0.76 to 2.66. The ECM on the domain that we considered had now been fully degraded.

In addition to the cancer cell invasion on the primary grid, we also observed metastatic spread to the
grids representing the secondary sites. In Franssen et al. (2019), we showed all of the secondary grids
at the same time instances as the primary grid, so after approximately 11 and 22 days. Moreover, we
included the spatiotemporal dynamics of the ECM density and of the MMP-2 concentration for each of
the grids at these times. For these results, we hence refer the interested reader to this previous work. In
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Figure 12. Phenotype-specific cell load over time on secondary grids. Plots of total number of epithelial-like (ECC; blue),
partial-EMT (PCC; red) and mesenchymal-like (MCC; yellow) cancer cells on the grids of the bones, lungs and liver (top to
bottom) in the period between 14.6 and 24.1 days. On each grid, the initial growth arises from an extravasation of cells. The
stepwise, mostly non-negative growth pattern thereafter largely occurs from—often synchronous within the phenotypic group—
proliferation of cells in combination with further extravasations. For ECCs, part of the growth also results from PCCs that undergo
MET. As MET during PCC proliferation results in one PCC and one ECC, MET typically causes the PCC growth to slow down.
Negative growth, as e.g. observed in the PCC population on the top ‘bones’ grid after day 18, on the middle ‘lungs’ grid at day
21, and on the bottom ‘liver’ grid after day 17 and 22, is always a result of cell death. Throughout, MCCs on the secondary grids
remain rare.
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Figure 13. Trends in phenotype-specific cell load on secondary grids overall. Left: Combined total cell load on the secondary
grids of cancer cells of epithelial-like (ECC; blue), partial-EMT (PCC; red) and mesenchymal-like (MCC; yellow) phenotype
between the period of 14.6 and 24.1 days. The number of ECCs grows most rapidly over time—their growth is caused by
extravasations, MET and proliferation. PCCs grow steadily but less rapidly. Their growth is slower due to their larger proliferation
interval but also due to a subset of PCCs undergoing MET during proliferation. Only 1 MCC is observed over the time period.
Right: Plot of the ratio of ECCs to PCCs over the same time period (green). Throughout, there are more ECCs than PCCs.

this paper, we focus on the presentation of the additional phenomena captured through the extension of
the model instead. As the newly introduced features are connected to the cells of various phenotypes
that are included in the model, at the secondary sites we only show their evolution, while omitting the
presentation of the MMP-2 and ECM dynamics. To give examples of how the various mechanisms
that this model describes are instantiated in the simulations, we show the grids of the bones (Figure 9),
the lungs (Figure 10) and the liver (Figure 11) at various times ranging from 16.3 to 24.1 days. The
particular times differ between the secondary grids as they were chosen in order to best present how the
phenomena occur in the simulations. Yet, within each grid, the time instances shown are such that the
cell phenotypes depicted in the corresponding panels are at least the length of a cell doubling interval
apart to allow all cells in the respective grid to have proliferated, if applicable, at least once.

We proceed by describing the results at the secondary sites grouped by the mechanisms that we aim
to highlight (Figures 9–11) rather than grid-by-grid, as these mechanisms typically occur on all sec-
ondary grids. Furthermore, we present the dynamics of the cell-phenotype evolution of the population
sizes on the secondary grids in Figures 12 and 13. Finally, we show trends in phenotype-specific cell
load on the secondary grids overall in Figure 14.

Extravasations

We observed extravasations of single cancer cells of various phenotypes, as well as of homogeneous
and heterogeneous cancer cell clusters. Examples of a selection of these extravasations are highlighted
in yellow on the grids representing the various secondary organs. Figure 11 shows samples of recently
extravasated single cancer cells of epithelial and of partial-EMT phenotype on the grid representing
the liver. Figures 9 and 10 show examples of extravasated cancer cell clusters consisting of mixed
phenotypes. These consist of two partial-EMT and one mesenchymal-like cancer cell on the grid that
represents the bones, and of six epithelial-like and one partial-EMT cancer cell in the case of the grid
representing the lungs.
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Figure 14. Trends in phenotype-specific cell load on secondary grids overall—showing the mean (line) and standard deriva-

tion (whiskers) from 20 simulations. All 20 simulations were run with the same conditions as the sample simulation in Figure 13
apart from that the 288 initial epithelial-like cancer cells were newly distributed randomly in the central 97 grid points and that
different seeds for the random number generator were used for each simulation. Top left: Mean combined total load of cancer
cells of epithelial-like (ECC; blue) phenotype on the secondary grids between the period of 9 and 24.1 days. The number of ECCs
grows most rapidly over time—their growth is caused by extravasations, MET and proliferation. Top right: Mean combined total
load of cancer cells of partial-EMT (PCC; red) and mesenchymal-like (MCC; yellow) phenotype on the secondary grids between
the period of 1 and 24.1 days. Generally, PCCs grow steadily but less rapidly than ECCs. Their growth is slower due to their
longer proliferation interval but also because a subset of PCCs undergoes MET during proliferation. MCCs also tend to grow in
number over time, yet very slowly. This is due to their long doubling time. Bottom: Plot of the mean ratio of ECCs to PCCs
between the period of 2 and 24.1 days (green). Throughout, there are on average more ECCs than PCCs and the mean ratio
increases with time. The best linear fit line (pink) highlights this trend.
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During the 22 day period over which the simulation on the primary grid was run, we observed
6 extravasations of single cells, as well as 11 extravasations by clusters consisting of two cells, 6 by
clusters consisting of three cells and 1 extravasation each by clusters consisting of six and of seven cells.
Another general observation was that during the simulated 24 day period, only one mesenchymal-like
cancer cell successfully extravasated onto a secondary grid. All other extravasations were performed by
single cancer cells as well as by homo- and heterogeneous cancer cell clusters, which were mainly of
partial-EMT phenotype but also of epithelial-like phenotype. The highest number of extravasations of
either a cancer cell or a cancer cell cluster was observed onto the grid of the bones.

We ran an additional 19 simulations with the same conditions—including the vessel locations on
all grids—as the sample simulation, apart from that the 288 initial epithelial-like cancer cells were
newly distributed randomly in the central 97 grid points each time. Also, different seeds for the random
number generator were used for each simulation, which affects various processes such as the movement
and mutations of the cancer cells. Taking into consideration these 20 simulations, we observed the
earliest extravasations to secondary grids by mesenchymal-like cancer cells after 9.3 days, by partial-
EMT cancer cells after 2 days and by epithelial-like cancer cells after 1.4 days, cf. Figure 14. In other
simulations, there were no extravasations by epithelial-like or mesenchymal-like cancer cells during the
24.1 days that we ran the simulations for.

MET

On the grid representing the liver, no extravasations took place during the time period between 20.7 and
23.1 days, i.e. during the period shown in Figure 11. Hence, the three epithelial-like cancer cells that
occurred during the period between 20.7 and 22 days, which are highlighted in pink in the upper row of
panels, are a result of MET of the partial-EMT cancer cells presented in the bottom row of panels. If
MET occurred during a proliferative step, the respective partial-EMT cancer cell was replaced by one
cancer cell of its own phenotype as well as one of epithelial-like phenotype. Overall, the phenomenon
of MET caused the growth rate of epithelial-like cancer cells to increase while slowing the growth rate
of partial-EMT cancer cells at secondary sites. This trend is captured in the plots in Figure 13.

While any partial-EMT cancer cell can potentially undergo MET, the mesenchymal-like cancer cells
cannot change phenotype. The sole mesenchymal-like cancer cell in Figure 9 is an example of such a
phenotypically stable cell.

Metastatic growth

The by far largest micrometastatic lesion during the simulation period presented itself on the grid of
the lungs, shown in Figure 10. It resulted from a cluster consisting of six epithelial-like cancer cells
and one partial-EMT cancer cell that extravasated relatively early—after approximately 16 days. All
other lesions remained comparatively small during the same 23 day period, consisting of less than 20
cancer cells of almost exclusively epithelial-like and partial-EMT phenotypes. This is also reflected in
the evolution of the total cell number on the three grids represented through the plots in Figure 12. As
time progressed, a tendency towards a higher percentage of epithelial-like cancer cells at secondary sites
was observed, as Figure 13 shows.

In the 20 simulations that we ran to examine the mean numbers of cells of the various phenotypes
on secondary grids, cf. Figure 14, we observed a comparatively large standard deviation with respect
to the mean number of epithelial-like cancer cells on the secondary grids. This is likely caused by the
large variation in the time of the first extravasation by epithelial-like cancer cells, which occurred after as
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little as 1.4 days during one of the 20 simulations, while no epithelial-like cancer cells at all extravasated
during another. Due to the exponential growth observed in the early stages of secondary spread when
space is not yet a significantly limiting factor, large metastases can form if the extravasation occurred
early on. The same applies to a lesser extent to the cells of the other two phenotypes. The standard
deviation for the number of cells on the secondary grids over time is lower for these cell types. One
reason is that cells of these phenotypes need to come into existence via mutations on the primary grid
before they are able to spread. Also, they are less proliferative and, in the case of partial-EMT cancer
cells, subject to MET on the secondary grids.

Dormancy

Given that we have chosen the periods between the time instances presented through the panels in
Figures 9 to 11 to be such that there exists at least one opportunity for each cancer cell to reproduce,
these figures show examples of dormant cancer cells at the secondary site of the bones and the liver,
respectively. Due to their dormancy, the respective mesenchymal-like and epithelial-like cancer cells do
not proliferate while other cells on the grids may. The two examples of dormant cells discussed in this
section are highlighted in green in the respective Figures 9 and 11.

Death due to maladaptation & immune response

Figure 11 shows an example of a partial-EMT cancer cell that dies in the period between 20.7 and
22 days. Other examples of cell death on secondary sites become evident when examining the cell
population growth plots for the partial-EMT cells on each of the secondary sites shown in Figure 12.
Negative growth, as e.g. observed in the partial-EMT population on the top ‘bones’ grid after day 18, on
the middle ‘lungs’ grid at day 21, and on the bottom ‘liver’ grid after day 17 and 22, is always a result
of cell death. The fact that we only observe cell death in the partial-EMT population through these
plots does not imply that cell death does cannot occur in the cell populations of other phenotypes. The
epithelial-like cancer cells in the model tend to proliferate mostly synchronously. Hence, rare potential
cell deaths are likely to be overshadowed in the plots in Figure 12 by an even larger positive cell growth
at the same time instance. The same applies to potential other partial-EMT cell deaths.

6. Discussion and perspective

In this paper, we have extended the mathematical framework for the metastatic spread of cancer orig-
inally proposed in Franssen et al. (2019) to include EMT and MET. As a result, the framework now
additionally accounts for transitions of cancer cells between an epithelial, a newly introduced partial-
EMT and a mesenchymal phenotypic state. This is achieved in a location-dependent fashion—both with
respect to the steps of the invasion-metastasis cascade and with respect to the intra-tumoural location
of the cancer cells. This way, the modelling framework captures the phenomena of EMT and MET in
their physiological context. Furthermore, we include organ-specific differences in the local tissue of the
secondary sites involved in our model by accounting for their ECM density in accordance with biolog-
ical findings in ICRP (2009). Finally, the extended framework now also takes into account cancer cell
dormancy and death as a result of maladaptation to the new tumour microenvironments at the secondary
sites as well as due to the local immune response.

As mentioned in Section 1, over 90% of cancer-related deaths are the result of metastatic spread
rather than the primary tumour’s growth alone. A predictive framework of the metastatic process has the
potential to improve clinical outcomes. If a primary tumour is detected at an early stage, a predictive tool
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like the one presented here can simulate whether or not a primary tumour is likely to metastasise and, if
so, over which timescale and to which secondary location(s). This consequently allows clinicians to use
adjuvant therapy at appropriate secondary sites even before metastatic spread becomes clinically visible.
Similarly, if cancer is detected at a late stage either at the primary or a secondary site, likely other sites
of spread can be inferred. The most probable sites for cancerous growth can then be investigated in the
clinic and treated appropriately. Here, the short running time of our model is a further advantage since
time—expressed through disease progression—heavily impacts the treatment success. Furthermore,
factors accounted for in the simulations such as the initial phenotypic detail, dimensions and shape
of a carcinoma can be determined for each patient individually. This provides individualised initial
conditions and thus simulation results. To ensure an accurate representation of the mechanistic process
underlying the invasion-metastasis cascade, models of metastatic spread should account for EMT and
MET. With regards to the effort of developing a predictive in silico tool, another compelling reason to
include EMT processes is the major contribution of EMT to treatment resistance (Roche, 2018).

Through computational simulations, we found that the extended metastasis modelling framework
provides biologically realistic outcomes and gives further insight into the above-described mechanisms
that underpin the invasion-metastasis cascade at the cellular scale. Tumour shape and metastatic distri-
bution at the primary site were predicted to appear as one would expect in a cancer patient who has not
yet received treatment. In particular, we found that the partial-EMT cancer cells formed a ring-shaped
leading front along the tumour edge, which was also seen in experiments (Nurmenniemi et al., 2009) as
well as in human tissue, as shown in Figure 3 from Puram et al. (2017).

Nurmenniemi et al. (2009) further observed an average maximum invasion depth—measured as
the distance from the centre of the grid to the cell furthest away from the centre—of 5.47× 10−2 cm
over 14 days when culturing HSC-3 cancer cells, a human oral squamous carcinoma cell line with
high metastatic potential, on top of myoma tissue. This translates into an average maximum invasion
speed of approximately 4.52×10−8 cm s−1. It suggests that our observed maximum invasion depth of
∼9×10−2 cm in 11 days by partial-EMT and mesenchymal-like cancer cells, which remained roughly
the same during the 20 simulations that we ran, and the resulting estimated average for the maximum
invasion speed of approximately 9.38× 10−8 cm s−1 are realistic results—especially if we take into
account that migration speed varies between cancer cell lines and that the displacement of the cancer
cells in the simulation is likely a result of a combination of migration and proliferation.

To our knowledge, there are currently no data available that claim to deliver an accurate estimation
of the typical metastatic load from primary breast cancer to secondary sites over a specified time frame.
However, we believe that our results are biologically appropriate with regards to their timings. They are
in correspondence with the conclusion reached by Obenauf & Massagué (2015) in their review of the
metastatic traits that allow cancer cells to colonise various secondary sites, suggesting that CTCs and
metastatic spread can be detected soon after vascularisation of the primary tumour, as in our simulations.

The types of extravasations that we observed through the simulations of our model coincide with
the biological evidence presented in Section 2 that CTCs of all phenotypes appear to be able to ex-
travasate (Banyard & Bielenberg, 2015). Furthermore, only a low proportion of extravasations included
mesenchymal-like cancer cells—the bulk of extravasating cells were of partial-EMT phenotype and
others of epithelial phenotype.

The highest number of extravasations was observed onto the grid representing the bones. Yet, as
Figure 10 indicates, the largest micrometastasis, which resulted from the early metastatic spread of a
large cluster consisting predominantly of epithelial-like cancer cells, occurred at the site of the lungs,
where only two extravasations were observed over the total time period that we considered. This em-
phasises that cancerous spread is highly complex and difficult to predict, a feature represented through
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the stochasticity involved in multiple processes of our model. Examples of such processes are (partial)
EMT at the primary site, the survival of CTCs and the potential partial or full dissemination of CTC
clusters in the vasculature, the determination of the secondary site of extravasation, as well as MET,
dormancy and cell death at secondary sites. Furthermore, the fact that the largest growth stemmed from
a cluster consisting of predominantly epithelial-like cancer cells highlights that this cell type with its
distinguishing feature of rapid proliferation is generally the one best adapted to growth in the tumour
microenvironment at secondary sites. This observation and our observation that—as time progresses—
increasing numbers of partial-EMT cancer cells transit to an epithelial-like phenotype, cf. Figure 14,
coincide with two of the biological findings discussed in Section 2. The first such finding is that the
bulk of cancer cells at secondary sites are of epithelial-like phenotype (Pastushenko & Blanpain, 2018),
as well as some of partial-EMT phenotype (Dongre & Weinberg, 2019). The second finding in agree-
ment with our results is the observation by Ruscetti et al. (2015) that macrometastases at the secondary
site of the lungs consisted mainly of epithelial-like cancer cells while smaller lesions presented few
epithelial-like cancer cells and thus mainly cells with some degree of mesenchymal-traits. Finally, our
model accounts for the biological evidence presented in Ocaña et al. (2012); Kröger et al. (2019) that
cancer cells of a stable mesenchymal-like phenotype are unable to transform via MET and hence fail to
give rise to metastatic growth at secondary sites.

In the current modelling approach, we account for the fact that EMT and MET have been observed
to occur in specific steps of the invasion-metastasis cascade as well as in specific locations within the
primary tumour. For instance, partial EMT appears to be triggered predominantly at the primary site
and towards the tumour boundary, as observed in situ—see Figure 3 and Puram et al. (2017). Also,
in the early stages of colonisation at a secondary site, MET is the predominant mutation. It would
be desirable to additionally include a physiological motivation for the mutations that we model, like
e.g. developed in Sfakianakis et al. (2017). In particular, we aim to incorporate the physiological mo-
tivation by accounting for the role of hypoxia as a trigger for EMT and MET in the following sense.
While the full spectrum of mechanisms underlying the induction of EMT remains elusive to date (Wang
et al., 2016), it is assumed that tumour-induced hypoxia plays an important role in the process (Imai
et al., 2003; Yang et al., 2008; Wang et al., 2016; Petrova et al., 2018). The hypoxic environment in the
tumour activates its main effector hypoxia-inducible factor-1 (HIF-1) (Petrova et al., 2018), which in
turn activates EMT-TFs like Snail and Twist (Imai et al., 2003; Yang et al., 2008), thus promoting EMT
and metastatic phenotypes. A biological model that connects the occurrence of tumour-induced hypoxia
with EMT and with angiogenesis via CAFs has recently been proposed in Petrova et al. (2018). The
hypothesis is made that rapid tumour growth, which reduces the oxygen concentration in tumour and
stroma regions far away from vessels since the diffusion of oxygen is limited to 100–200 µm, creates
hypoxic regions. Epithelial-like cancer cells in these hypoxic regions produce signalling molecules that
transform normal fibroblasts as well as other healthy cells in the stroma to CAFs (Zeisberg et al., 2007;
Petrova et al., 2018). These CAFs have been shown to produce stiffly aligned ECM. This differently
organised ECM is, in turn, hypothesised to induce EMT in premalignant epithelial cells and to support
cell migration in breast cancer (Dumont et al., 2013). CAFs have further been shown to promote angio-
genesis via the production of vascular endothelial growth factor-C (VEGF), C-X-C motif chemokine 12
(CXCL 12) and basic fibroblast growth factor (FGF-2) (Pietras & Östman, 2010), making hypoxia an
angiogenic stimulus (Carmeliet & Jain, 2000). Our individual-based spatial modelling framework meets
the prerequisites for an extension that includes the above-described biological phenomena. Therefore,
we will connect the EMT features currently included in the metastasis framework with the prevalence
of tumour-induced acutely and chronically hypoxic regions as well as with angiogenesis in future work.

To create an organ-specific model, we have taken into account differences in the local tumour mi-
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croenvironment of primary and secondary organs in the body in two ways. Firstly, we aligned the relative
likelihood of successful secondary spread to the organs in our model to the metastatic transition proba-
bilities of breast cancer from large patient studies (Kuhn Laboratory, 2017). Secondly, we distinguished
between the relative differences in ECM density between the organs according to biological measure-
ments in ICRP (2009). We are aware that the variations in ECM density have a minimal influence on
the cell movement at the moment, given that their movement is dependent on the ECM gradient rather
than the absolute ECM density. However, we are looking to include biomechanical properties such as
the ECM stiffness in the model, which has been shown to influence cell behaviour through the activa-
tion of intracellular signalling pathways (Kalli & Stylianopoulos, 2018). At this point, organ-specific
and intra-organic differences in ECM will have a larger impact. Also, accounting for organ-specific
differences in these two ways is, of course, a simplification of the actual physiology in many ways. For
instance, in reality, differences between organs are not limited to the relative densities of their ECM.
As explained in detail in Barney et al. (2016), the tissue-specific differences in the tumour microenvi-
ronment found in the organs are manifold and only marginally established. They include, for instance,
the genetic markers associated with tissue-specific metastasis, the healthy cells typically found in these
tissues, the ECM stiffness and its protein composition, and the tissue dimensionality. Also, the tumour
microenvironments have been shown to evolve with time, resulting in e.g. pre-metastatic niche forma-
tion that has been observed both in mouse models and clinical studies (McAllister & Weinberg, 2014).
Further, these and other features will not only differ between organs but also when considering the same
organ in any number of patients. For this reason, it is our goal to include the metastatic programmes of
the various organs in our model, once more is known about them. Until then, we will continue using
the transition probabilities from large studies as Disibio & French (2008); Kuhn Laboratory (2017) to
differentiate between the relative success of metastatic spread to the various organs.

In Franssen et al. (2019), we investigated the effect of varying the parameters that directly affect the
concentration of MT1-MMP and MMP-2 in the system, the haptotactic and diffusive cell movement, the
survival probability of cancer cells, and the number of blood vessels at the primary site. In future work,
we plan a more in-depth parameter study to identify potential resulting emergent behaviour or significant
changes in qualitative results. This way, we aim to extract valuable treatment-related information from
the invasion-metastasis model. Additional plans to further develop this modelling framework are elab-
orated in Franssen et al. (2019). These include extending the model to a third spatial dimension as well
as accounting for biomechanical properties, re-seeding, pre-metastatic niche formation, and immune
system activation. Moreover, once the modelling framework to account for the mechanistic processed
that underlie the invasion-metastasis cascade is sufficiently established and validated, treatment regimes
could be modelled. One example is the inclusion of chemotherapy in the framework, especially once
we account for angiogenesis, in a similar way to Powathil et al. (2012, 2013). Other approaches to mod-
elling chemo-, radio-, nano- and immunotherapy, as well as targeted, hormone and combination therapy,
some of which could function as a basis to modelling treatment approaches using this framework, have
recently been reviewed by Chamseddine & Rejniak (2019).
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Appendices

A. Previously established metastasis modelling framework

The general spatial modelling framework of the metastatic spread of cancer developed in Franssen et al.
(2019) is appended here for ease of accessibility. This previous modelling framework underlies the
changes to the model introduced in the main body of this paper in Section 3. These changes have
the purpose of including EMT, MET as well as the third partial-EMT cancer cell phenotype into the
existing framework. Further changes are the differentiation of organ tissue via an organ-specific initial
ECM density as well as the inclusion of cell death and dormancy at secondary sites in the body.

To account for cancer cell metastasis in a spatially explicit manner, we consider G+ 1 spatial do-
mains. These consist of the spatial domain representing the primary tumour site, Ω

P
⊂ R

2, as well as
the G ∈ N spatial domains representing the sites of potential secondary metastatic spread, Ω a

S
⊂ R

2,
where a = 1,2, ...,G. In these spatial domains, we represent the MMP-2 concentration and the ECM
density at positions~x at time t by the continuous functions m(t,~x) and w(t,~x), respectively, while captur-
ing the spatiotemporal evolution of epithelial-like and mesenchymal-like cancer cells individually. We
model the local cancer cell invasion by expanding the modelling approach used in Anderson & Chap-
lain (1998); Anderson et al. (2000) to our specific biological problem. However, we include a second
cancer cell phenotype and also additionally consider MT1-MMP, which is taken to be bound to the
membranes of the mesenchymal-like cancer cells and thus follows their discrete spatiotemporal dynam-
ics. We designate locations in the primary spatial domain to function as entry points into the vasculature
and, similarly, impose a spatial map of exit locations from the vasculature onto the secondary metastatic
domains. This allows cancer cells to travel from the primary tumour site to secondary sites via blood
vessels.

We next consider one key step of the invasion-metastasis cascade after the other. To make the key
steps more recognisable, we begin each paragraph by printing the description of the corresponding step
in the invasion-metastasis cascade (cf. Section 2 in Franssen et al. (2019)) in bold. Further, the same
step descriptions can be found on the left of the flowchart in Figure 4 in Franssen et al. (2019). This
highlights which parts of our model correspond to which sections in the text.

Local cancer cell invasion We adopt a discrete cell approach where the movement of cancer
cells from grid point to grid point is accounted for by movement probabilities consisting of an unbi-
ased component (cf. random motion) and a biased component proportional to gradients in the ECM
(cf. haptotaxis). This way, we obtain the movement probabilities of the individual epithelial-like and
mesenchymal-like cancer cells in equation (3.3) with k = E,M. Modelling the cancer cells individually
allows us to track the evolution of single epithelial-like and mesenchymal-like cancer cells with different
phenotypes, as well as their evolution.

The model we have described so far accounts for the movement of the cancer cells only. We thus
need to additionally account for the proliferation of cancer cells in our model. The two cancer cell types
included in our model proliferate at different frequencies. The more proliferative epithelial-like cancer
cells perform mitosis after time interval T

E
, the less proliferative mesenchymal-like cell types after T

M

(with T
M
> T

E
). When proliferating, the cancer cells pass on their respective phenotype as well as their

location so that a proliferating cancer cell is replaced by two daughter cells after the proliferative step
has been performed. However, to account for competition for space and resources, the cancer cells on
the respective grid point do not proliferate if there are Q ∈ N cancer cells on a grid point at the time of
proliferation.

With reference to the flowchart shown in Figure 4 in Franssen et al. (2019), the part of our approach

Page 112 of 117

http://mc.manuscriptcentral.com/imamat

Manuscripts submitted to (i)The IMA Journal of Applied Mathematics(/i)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

36 of 40

described so far corresponds to Movement, EMT & cell proliferation, depicted in the upper region of the
flowchart.

The mesenchymal-like cancer cells in our model have the ability to express diffusible MMP-2. The
MMP-2 concentration m(t,~x) hence develops according to the equation:

∂m

∂ t
= Dm∇2m + Θc

M n
− Λm , (A.1)

diffusion expression decay

along with zero-flux boundary conditions. Here, c
M n

, n= 0,1,2, ...,Q, indicates the presence of up to Q

mesenchymal-like cancer cells at a given position (cf. Stéphanou et al. (2006); McDougall et al. (2012)).
Dm > 0 is the constant MMP-2 diffusion coefficient, Θ > 0 is the constant rate of MMP-2 concentration
provided by mesenchymal-like cancer cells, and Λ > 0 is the constant rate at which MMP-2 decays.
Consequently, Θc

M n
represents the local expression of MMP-2 by the c

M n
mesenchymal-like cancer

cells. Note that the mesenchymal-like cancer cells also express MT1-MMP. However, MT1-MMP acts
locally only where it is bound to the cancer cell membrane and its spatiotemporal evolution is hence
congruent to that of the mesenchymal-like cancer cells. Therefore, we do not include a separate equa-
tion.

The diffusible MMP-2 degrades the ECM with a degradation rate of Γ2 > 0. The MT1-MMP ex-
pressed on the membrane of the mesenchymal-like cancer cells also degrades the ECM, which is ex-
pressed through the degradation rate Γ1 > 0. Hence, given that we are disregarding ECM-remodelling
for simplicity, the evolution of the ECM density w(t,~x) is governed by the following PDE:

∂w

∂ t
=−(Γ1c

M n
+Γ2m)w, (A.2)

degradation

along with zero-flux boundary conditions. As before, c
M n

, n = 0,1,2, ...,Q, indicates the presence of
up to Q mesenchymal-like cancer cells at a given position (cf. Stéphanou et al. (2006); McDougall et al.
(2012)).

Since the continuous evolution of the MMP-2 concentration and of the ECM density is governed
by equations (A.1) and (A.2), while the spatiotemporal evolution of the cancer cells (and, intrinsically,
of the membrane-bound MT1-MMP) is captured by an individual-based model, cf. equation (3.3), we
model cancer cell invasion in a hybrid-discrete continuum approach of the kind pioneered by Anderson
& Chaplain (1998) in their tumour-angiogenesis model. This approach was subsequently also used to
model tissue invasion by cancer cells (Anderson et al., 2000; Anderson, 2005) and spatial evolutionary
games (Burgess et al., 2016, 2017).

Intravasation With the model setup we have described so far, the cancer cells can invade the tissue
locally in the primary spatial domain but cannot reach the spatially separated secondary domains. To al-
low for metastatic spread, we account for the connection of the primary spatial domain to the secondary
spatial domains by incorporating blood vessels in our modelling framework. Examples of primary and
secondary domains are presented in Figure 6. To represent the entry points into the blood vessels, a
number of U

P
∈ N0 normal blood vessels as well as V

P
∈ N0 ruptured blood vessels are distributed on

the primary grid. The normal blood vessels take the size of one grid point, while ruptured vessels consist
of a group of Ab

∈N, where b= 1,2, ...,V
P

, adjacent grid points and can thus have different shapes. Each
secondary grid Ω a

S
also has, respectively, Ua

S
∈ N normal blood vessels, where a = 1,2, ...,G as before,
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that take the form of a single grid point each. On the primary grid, the grid points where the vessels are
located allow the cancer cells to intravasate, while the respective grid points on the secondary grid allow
for extravasation.

If, by the movement submodel described in Appendix B of Franssen et al. (2019), a cancer cell
on the primary grid is placed on a grid point that represents a blood vessel, it may leave the grid and
enter the vasculature. Whether or not a cancer cell can successfully intravasate depends both on its own
phenotype and on the type of vessel it is placed on.

Whenever a mesenchymal-like cancer cell is moved to a grid point (xi,y j)∈Ω
P

1, on which a normal

single blood vessel is located, it will successfully enter the vasculature. Further, to represent collective
invasion in the form of co-presence of mesenchymal-like and epithelial-like cancer cells, cancer cells
of any type on the four neighbouring primary grid points (xi+1,y j),(xi−1,y j),(xi,y j+1) and (xi,y j−1)
are forced into the vasculature together with the mesenchymal-like cancer cell on (xi,y j). Hence, a
mesenchymal-like cancer cell moving to a grid point on which a normal blood vessel is located re-
sults in either a single mesenchymal-like cancer cell or a cluster consisting of up to 5Q cancer cells
of any phenotype intravasating. However, if an epithelial-like cancer cell is moved to a grid point
(xi,y j) ∈ Ω

P
where a normal single vessel is located without a mesenchymal-like cell being present

there, the epithelial-like cancer cell will not intravasate and the grid point (xi,y j) will be treated like any
other grid point. This is to model the fact that epithelial-like cancer cells have been shown to be unable
to actively intravasate on their own.

Further, a cancer cell on the primary grid can move to one of the grid points where a ruptured vessel
is located. Contrary to the above-described scenario of entering a normal vessel, a cancer cell of any
type, which is placed on a grid point representing part of a ruptured vessel, can enter the circulation. The
respective cancer cell takes with it any other cancer cells residing both on the grid points representing the
ruptured blood vessel and on the regular grid points bordering the ruptured vessel. Biologically, the fact
that cancer cells of any phenotype can intravasate mirrors that these blood vessels are already ruptured
due to trauma or pressure applied by the expanding tumour, making the requirement of MDE-mediated
degradation of the vessel wall redundant. The fact that other cancer cells on bordering grid points will
enter the circulation together with cancer cells placed on grid points representing blood vessels captures
some degree of the cell-cell adhesion found in collectively invading cancer cell clusters.

Travel through the vasculature If a cancer cell of either phenotype or a cluster of cancer cells
successfully enters the vasculature either through a ruptured or a normal vessel, it will be removed
from the primary grid and moved to the vasculature. Cancer cells and cancer cell clusters remain in
the vasculature for some time T

V
∈ N, which biologically represents the average time the cancer cells

spend in the blood system. Any cancer cells that enter a particular vessel at the same time are treated as
one cluster and hence as a single entity once they are located in the vasculature. However, each cancer
cell that is part of a cancer cell cluster disaggregates from its cluster with some probability Pd after
l

T
V
2

m

time steps. At the end of the time period T
V

, the single cancer cells and the remaining cancer cell

clusters are removed from the simulation unless they are randomly determined to survive. The survival
probability is P

S
for single cancer cells and P

C
for cancer cell clusters.

Extravasation Any surviving cancer cells and cancer cell clusters are placed on one of the G sec-
ondary grids Ω a

S
with probability E1,E2, ...,EG, where ∑

G
a=1 Ea = 1. Also, on each specific secondary

grid, the cancer cells extravasate through one of the randomly chosen Ua
S

grid points that represent a
blood vessel with equal probability. If the respective grid point cannot accommodate all of the en-

1The notation (xi,y j) ∈ Ω
P

is a result of the discretisation of the grids in our model, as described in detail in Appendix B of
Franssen et al. (2019).
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tering cancer cells without violating the preferred carrying capacity Q, the remaining cancer cells are
randomly distributed onto the four non-diagonally neighbouring grid points until these are filled to the
preferred carrying capacity Q. If there are further cancer cells to be placed onto the respective grid
point at this instance, such cancer cells are killed to capture the influence of competition for space in
combination with vascular flow dynamics.

Metastatic growth If and when cancer cells reach a secondary grid, they behave (i.e. replicate,
move, produce MDEs etc.) there according to the same rules as on the primary grid, as indicated on the
bottom of the flowchart in Figure 4 of Franssen et al. (2019).
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B. Parameter settings used in the simulations

Table A.1: Parameter settings used in the simulations. In the first column, non-dimensional parameters are indicated by upper-case notation. Corre-
sponding dimensional parameters are stated in brackets using lower-case notation. In the fourth column, we reference other mathematical modelling papers
in brackets and biological papers without brackets. Epithelial-like, partial-EMT and mesenchymal-like cancer cells are represented by the acronyms ECC,
PCC and MCC, respectively.

Description Non-dimen- Biological reference Original value

sional value (Modelling reference) from cited source

∆ t Time step 1×10−3 40s

∆x, Space step 5×10−3 Breast cell diameter in 1×10−3 cm

∆y Vajtai (2013)

D
E

ECC diffusion coefficient 1×10−4 Bray (1992) 1×10−10 cm2s−1

(d
E
) (Anderson & Chaplain (1998))

(Deakin & Chaplain (2013))

D
E/M

PCC diffusion coefficient 2.5×10−4 Bray (1992) 1×10−10 cm2s−1

(d
E/M

) (Anderson & Chaplain (1998))

(Deakin & Chaplain (2013))

D
M

MCC diffusion coefficient 5×10−4 Bray (1992) 1×10−10 cm2s−1

(d
M
) (Anderson & Chaplain (1998))

(Deakin & Chaplain (2013))

Φ
E

ECC haptotactic 5×10−5 Stokes et al. (1990) 2.6×103 cm2M−1s−1

(φ
E
) sensitivity coefficient (Anderson & Chaplain (1998))

Φ
E/M

PCC haptotactic 1×10−3 Stokes et al. (1990) 2.6×103 cm2M−1s−1

(φ
E/M

) sensitivity coefficient (Anderson & Chaplain (1998))

Φ
M

MCC haptotactic 2×10−3 Stokes et al. (1990) 2.6×103 cm2M−1s−1

(φ
M
) sensitivity coefficient (Anderson & Chaplain (1998))

Dm MMP-2 diffusion 1×10−3 Collier et al. (2011) 1×10−9 cm2s−1

(dm ) coefficient

Θ
E

MMP-2 production rate 0 Estimated

(θ
E
) by ECCs

Θ
E/M

MMP-2 production rate 0.1 Estimated

(θ
E/M

) by PCCs

Θ
M

MMP-2 production rate 0.195 Estimated

(θ
M
) by MCCs

Λ MMP-2 decay rate 0.1 Estimated in 2.5×10−6 s−1

(λ ) (Deakin & Chaplain, 2013)

Γ1 ECM degradation 1 Based on 1×10−4 s−1

(γ1 ) rate by MT1-MMP (Deakin & Chaplain, 2013)

Γ2 ECM degradation 1 Based on 1×10−4 M−1s−1

(γ2 ) rate by MMP-2 (Anderson et al., 2000)
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T
V

Time CTCs spend in the 0.18 Meng et al. (2004) 7.2×103 s

vasculature

T
E

ECC doubling time 2 Milo et al. (2009); NCI (2015) 8×104 s

T
E/M

PCC doubling time 3 Milo et al. (2009); NCI (2015) 1.2×105 s

T
M

MCC doubling time 6 Milo et al. (2009); NCI (2015) 2.4×105 s

Hughes et al. (2008)

P
Ω

1,2,3
S

δ Probability no cell proliferation 0.5 Estimated

when due on Ω 1,2,3
S

P
Ω

1,2,3
S

D Probability cell death before 0.05 Estimated

proliferation on Ω 1,2,3
S

P
E
= P

M
Epithelial/mesenchymal 2×10−4 Luzzi et al. (1998)

CTC survival probability

P
E/M

Partial-EMT CTC 6×10−4 Luzzi et al. (1998)

survival probability

P
C

CTC cluster survival 2.5×10−2 Luzzi et al. (1998)

probability Aceto et al. (2014)

P1
S

Probability for surviving cells ∼0.5461 Kuhn Laboratory (2017) ∼0.5461

to extravasate to bones

P2
S

Probability for surviving cells ∼0.2553 Kuhn Laboratory (2017) ∼0.2553

to extravasate to lungs

P3
S

Probability for surviving cells ∼0.1986 Kuhn Laboratory (2017) ∼0.1986

to extravasate to liver

PM

EMT
Probability for full EMT on ΩP 1×10−2 Estimated

PE/M
EMT

Probability for partial EMT 2×10−2 Estimated

on ΩP

PE/M∗

EMT
Additional probability for partial 0.15 Estimated

EMT on ΩP at tumour edge

PE

MET
Probability for partial MET 0.5 Estimated

on Ω 1,2,3
S

w(0,~x),~x ∈ Ω
P

Breast initial ECM density 1 ICRP (2009) 1.020 g cm−3

w(0,~x),~x ∈ Ω 1
S

Bone initial ECM density 0.9608 ICRP (2009) 0.980 g cm−3

w(0,~x),~x ∈ Ω 2
S

Lung initial ECM density 1.0392 ICRP (2009) 1.060 g cm−3

w(0,~x),~x ∈ Ω 3
S

Liver initial ECM density 1.0294 ICRP (2009) 1.050 g cm−3
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