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Abstract— Over decades, mathematical models have been
applied successfully to the investigation of HIV dynamics.
However, few of these investigations are able to explain the
observation that host (CD4+ T) cell counts reduce, while viral
load increases as the infection progresses. Various clinical stud-
ies of HIV infection have suggested that high T-cell activation
levels are positively correlated with rapid disease development
in untreated patients. This activation might be a major reason
for the depletion of CD4+ T cells observed in most cases of
long term untreated HIV infection. In this paper, we use a
simple mathematical model to investigate immune activation
and its role in HIV infection. Under reasonable assumptions
relating to various HIV infection constants, we show that
enhanced activation and reduced reversion in the immune
system do result in depleted CD4+ T cell count. We further
show that this process is robust to parameter variations. An
extended model including viral dynamics illustrates the effects
of immune activation on viral persistence and immune response.
Simulations are given to verify the theoretical analysis.

I. INTRODUCTION

Although it is well-known that human immunodeficiency
virus (HIV) is the pathogen that causes acquired immunod-
eficiency syndrome (AIDS), the intricate mechanisms that
link HIV infection to the onset of immunodeficiency remain
unclear. Cytopathic effects cannot fully account for the
massive loss of CD4+ T cells, since productively infected
cells occupy a small fraction of total CD4+ T cells (typically
of the order of 0.02% to 0.2% [1]).

On the other hand, various clinical studies of HIV infection
have linked the massive depletion of CD4+ T cells to the
wide and persistent immune activation ([1], [2]), which
seemed to increase with duration of HIV-1 infection ([3]).
Rhesus macaques, which suffer progressive CD4+ T cell
depletion and develop to AIDS, have strong T cell activation,
compared with SIV-infected sooty mangabeys and African
green monkeys, the natural host of SIV, which maintain min-
imal T cell activation despite evident viral replication ([4]).
A study with a mouse model has also revealed that immune
activation is closely related to T cell immunodeficiency ([5]).
These observations motivate the present study of immune
activation in HIV infection.

In this paper, we use a simple two-compartmental model to
investigate immune activation and its role in HIV infection,
and show that enhanced activation and reduced reversion
would cause a downward shift of homeostasis if the death
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rate of the activated cells is sufficiently large, and this process
is quite robust with respect to parameter variations. The
model is then extended to a four-compartmental one includ-
ing viral dynamics. The extended model further illustrates
the relationships among immune activation, viral persistence,
and immune response. The theoretical results are verified by
numerical simulations. As for control of HIV dynamics, we
refer readers to [6] and references therein.

II. A BASIC TWO-COMPARTMENTAL MODEL

A. Model Description

We divide the whole CD4+ T cell pool into two compart-
ments: CD4+ resting T cells (R) and activated CD4+ T cells
(A) (Fig. 1). Newly generated CD4+ T cells from thymus,
bone marrows, or other sources enter the resting cell pool
with a constant rate λ. Resting cells are activated with rate
a, and activated cells revert to the resting pool with rate r.
Activated cells undergo a self-renewal (proliferation) with
rate p (A). Resting and activated cells die with rates dR and
dA, respectively. These processes can be described by the
following ordinary differential equations:{

Ṙ = λ+ rA− aR− dRR,
Ȧ = aR+ p (A)A− rA− dAA.

(1)

Here, the proliferation rate p (A) is a density dependent
function, which reflects the regulation of division signals.
Although the detailed regulation mechanisms have not been
fully understood, it is known that this process may involve
competition for homeostatic resources such as cytokines and
TCR-self-peptide/MHC interactions ([7], [8]). Higher density
usually means less chance to receive division signals, and
thus we make the following assumption on p (A)

Assumption 1: p (·) is a non-negative continuously differ-
entiable decreasing function on the positive reals.

It is noted that slightly modified linearized variants of (1)
have been used to fit data in D-Glucose and BrdU labeling
experiments ([9], [10]).

B. Equilibrium and Its Shift by Activation1

Regarding the existence of equilibrium, we have the fol-
lowing result.

Proposition 1: (1), subject to Assumption 1, has at most
one equilibrium in the first orthant. If, in addition,

p (0) < dA +
dRr

aθ
, (2)

1All proofs in this section are available in Appendix I.
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Fig. 1: A basic two compartmental model of immune acti-
vation.

where θ , 1 + dR
a , then it has a unique equilibrium in the

first orthant.
If (2) is not satisfied, (1) has either an equilibrium or no

equilibrium in the first orthant, depending on the detailed
form of p (·). For the sake of simplicity, we will be mainly
concerned with the case that (2) is satisfied. The following
theorem shows the global stability of the equilibrium.

Theorem 1: If (2) holds, then the equilibrium
(
R̄, Ā

)
is re-

gional stable with the attraction set {(R,A) | R ≥ 0, A ≥ 0}.
The following theorem establishes the relationship be-

tween equilibrium shift and a (r).
Theorem 2: If (2) holds and

p
(
Ā
)
< dA − dR (3)

then R̄ + Ā is a decreasing (an increasing) function with
respect to a (r).

The theoretical results may provide a route to explain how
HIV infection results in the massive depletion of CD4+ T
cells. On one hand, HIV may destroy the infected CD4+
T cells by various direct or indirect ways, thus causing an
increase in the death rate of activated cells. For example, HIV
can induce direct apoptosis of infected CD4+ T cells and kills
them by a Fas-independent mechanism ([11]). In addition,
infected CD4+ T cells may be removed by CTL response
or antibody-dependent cell-mediated cytotoxicity induced by
HIV.

On the other hand, the activation levels of CD4+ T cells
may be enhanced in HIV infection through direct or indirect
pathways. It has been observed that the envelope protein
gp120 of HIV may induce activation of healthy CD4+ T
cells, even in absence of direct antigenic stimulation, through
binding to CD4 and related co-receptors ([12], [13]). The
accessory protein Nef may be also responsible for lympho-
cyte activation through various pathways ([14], [15]), even
including the indirect infection of macrophages ([16]). In
some labeling experiments, it is revealed that less activated
CD4+ T cells revert to the resting pool in HIV infection ([9]).
In addition, dendritic cells may facilitate the transmission of
HIV from tissue and blood to lymphnode, where most CD4+
T cells reside, resulting in further infection and activation.

Therefore, with these observations and the two theorems
mentioned above, we may infer that (3) would be satisfied
due to the enhancement of dA, and thus stronger activation
and weaker reversion may result in a downward shift of
homeostasis, which eventually leads to the massive depletion
of CD4+ T cells.

III. EXTENDED MODEL INCLUDING VIRAL
DYNAMICS

A. Model Description

We extend (1) to include viral dynamics in the following
equation:

Ṙ = λ+ rA− aR− dRR
Ȧ = aR+ p (A)A− rA− dAA− µV A
Ṫ ∗ = µV A− dT [1 + δ (R+A)]T ∗

V̇ = ρT ∗ − dV V

(4)

where T ∗ and V represent the concentration of productively
infected CD4+ T cells and virus, respectively. dV is the clear-
ance rate of free virus. ρ is the rate of virus production by
infected cells. In this model, it is assumed that productively
infected CD4+ T cells are mainly generated from infected
activated CD4+ T cells, described by the term µV A, and
latent infections to resting CD4+ T cells are not considered
here. The death rate of productively infected cells is assumed
to be helper-dependent, and has a form dT [1 + δ (R+A)],
where δ (·) is a density-dependent function with respect to
R+A. Here, we make the following assumption on δ (·).

Assumption 2: δ (·) is a non-negative continuously d-
ifferentiable increasing function, and satisfies the sector
bounded condition on an underlying interval: ηl |x− y| ≤
|δ (x)− δ (y)| ≤ ηr |x− y|, where ηl, ηr ≥ 0.

The biological justification for this helper-dependent
killing is that both generation and maintenance of effective
CTL response, which plays a major role in killing infected
cells, rely on the substantial help from CD4+ cells, and the
magnitude of CTL response is proportional to that of help
signals. In addition, we use a single parameter a to reflect the
whole activation effect, since there are various factors that
may contribute to the widespread immune activation in HIV
infection and modeling them explicitly would complicate the
analysis.

B. Equilibrium and Its Shift by Activation2

The following proposition gives the existence of equilib-
rium of (4).

Proposition 2: (4), subject to Assumptions 1 and 2,
has two possible non-negative equilibrium if (2) hold-
s and R > Rc, where R , ρµ

dT dV
and Rc ,

ηr

[
1 + max

{
r
aθ ,

r+dA−p(Ā)
a

}]
:

1) (Uninfected equilibrium) R̄0 = λ+rĀ
aθ , Ā0 =

λ

[r+dA−p(Ā0)]θ−r
, T̄ ∗0 = V̄0 = 0.

2) (Infected equilibrium)

R̄ =
λ+ rĀ

aθ
, Ā =

1 + δ
(
R̄+ Ā

)
R

, T̄ ∗ =
dV
ρ
V̄ ,

(5)

V̄ =
1

µ

[
1

θ

(
λ

Ā
+ r

)
+ p

(
Ā
)
− r − dA

]
. (6)

2All proofs in this section are available in Appendix II.
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Parameter Value Taken From
λ 0.46 [17]
ρ 2000 [18]
µ 2.4× 10−4 [19] (Slightly Modified)
dA 0.057 [9]
dR 0.00014 [20]
dT 0.057 [9]
dV 3.1 [21]
δ0 16.8 Fitted
K 300 –
n Varied –
p0 0.065 Estimated

Amax 1000 –
r0 0.201 Estimated
a0 0.002 [9]
br Varied –
ba Varied –

TABLE I: Parameter values for simulation

where θ , 1 + dR
a .

Before we investigate the equilibrium shift by activation,
let us first establish stability properties of these two possible
equilibrium.

Theorem 3: If (2) holds and R < Rc0, where Rc0 ,

ηl

(
1 +

r+dA−p(Ā0)
a

)
then the uninfected equilibrium is

locally stable. If (2) holds and R > Rc, then the infected
equilibrium is locally stable.

Global stability may no longer hold generally for this
model, but this would not change the result significantly,
since for practical initial conditions the local stability holds.

Theorem 4: If (2) holds and R > Rc. then, Ā and R̄ are
decreasing (increasing) function with respect to a (r), and
T̄ ∗ is an increasing (decreasing) with respect to a (r).

From these two theorems we may infer that enhanced
(wide spectrum) activation would deplete the healthy CD4+
T cells, and increase viral load and productively infected T
cell counts. This gradual process would eventually lead to the
collapse of the whole immune systems and the onset of AID-
S. Apart from the effect on disease development, enhanced
activation also poses a severe problem to treatment. It can be

shown readily that if R <ηl

[
1 + max

{
r
aθ ,

r+dA−p(Ā)
a

}]
,

then there is no non-negative infected equilibrium. Since

1 + max

{
r
aθ ,

r+dA−p(Ā)
a

}
is a decreasing function in a,

enhanced activation, in order to remove virus, would require
a smaller R, which means a higher drug efficacy and
a stronger CTL response. This observation suggests that
blocking inappropriate T cell activation or decreasing the
manifestations of generalized cytokine might be beneficial
to ordinary antiviral treatments

IV. SIMULATIONS

To describe enhanced activation and reduced reversion in
HIV infection, r and a are chosen as slow time-varying
processes:

r = r0 − brt, a = a0 + bat,

where br � r0 and ba � a0. Resting cells are quite long-
lived, and thus dR is quite small. In our simulation, it is

assumed that dR = 0.00014 ([20]). The thymic output is
assumed to be λ = 0.46. It is shown that, using Ki67 as
the activation marker, 0.1% − 1% CD4+ cells are activated
in lymphoid tissue of HIV-negative individuals ([22]). Based
on this observation, the initial condition is taken as R (0) =
995/mm3, A (0) = 8/mm3, T (0) = 0/mm3, V (0) =
50/mm3. It is also assumed that dA = 0.057 and p (·) has a
logistic form: p (A) = p0

(
1− A

Amax

)
, where Amax = 1000.

With these data and formula, r and p0 can be estimated. As
for δ (·), we choose

δ (R+A) = δ0
(R+A)

n

(R+A)
n

+Kn
,

where δ0 is the maximum value of δ (·) and is fitted such
that the viral load during the asymptotic period is around
102 − 103, K is half-saturation coefficient, and n is the
Hill coefficient that determines the steepness of the response.
Detailed parameter values are listed in Table I.
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Fig. 2: Time course of HIV infection. Red dashed line: n = 2
and no enhanced activation and reduced reversion, i.e., br =
ba = 0; Black solid line: n = 2, br = ba = 10−6; Blue
dashdot line: n = 3, br = ba = 10−6.

Time evolution of (4) is depicted in Fig. 2. After around
three weeks transient process, HIV infected patients would
experience an asymptotic period, which lasts for nearly 2500
days. During this time, viral load and the number of infected
cells and activated cells are maintained at a relatively narrow
range, while resting cells deplete gradually due to enhanced
activation and reduced reversion. After this time, the patients
would undergo a rapid growth in viral load and infected
cells, since the low CD4+ level cannot maintain an effective
immune response, and finally progress to AIDS. Fig. 3
gives the time evolution of infection fraction and activation
fraction. During the asymptotic period, the infection fraction
is around 0.1%, which is consistent with the observation in
[1], and the activation fraction varies from 1%− 2%, which
is also consistent with the observation in [22].

3684



0 500 1000 1500 2000 2500 3000 3500 4000

10
−4

10
−3

10
−2

10
−1

10
0

Time (days)

T* /(
R

+
A

+
T

* )

0 500 1000 1500 2000 2500 3000 3500 4000
10

−3

10
−2

10
−1

Time (days)

(T
* +

A
)/

(R
+

A
+

T* )

Fig. 3: Time course of activation fraction and infection
fraction. Red dashed line: n = 2 and no enhanced activation
and reduced reversion, i.e., br = ba = 0; Black solid line:
n = 2, br = ba = 10−6; Blue dashdot line: n = 3,
br = ba = 10−6.

V. CONCLUSIONS

Immune activation and its role in HIV infection have been
studied by using mathematical models. It is revealed with
a two-compartmental model that enhanced activation and
reduced reversion would deplete the CD4+ T cell pool if
the death rate of activated cells is sufficiently large, which
is very likely to be true in HIV infection, and the depletion
process is quite robust to parameter variations. An extended
model further elucidates the relationship among immune
activation, viral persistence, and immune response. Strong
activation and weak reversion cause an increase in viral
load and a downward shift of healthy CD4+ T cell count,
which impairs the antiviral immune responses. This process
leads to the final onset of AIDS. Simulations have verified
the theoretical analysis. Further investigations would include
detailed modeling on immune activation, and implications to
development of new immunological therapies.

APPENDIX I
PROOFS OF THE RESULTS IN SECTION II

Proof: [Proof of Proposition 1] Setting the left side
of (1) to zero yields that R = λ+rA

a+dR
and aR =

[(r + dA)− p (A)]A. With this two equations, we have that
(1) has an equilibrium in the first orthant if and only if the
equation fl (A) = fr (A) has a non-negative solution, where
fl (A) = aλ

a+dR
1
A and fr (A) = (r + dA) − p (A) − ar

a+dR
.

fl (A) > 0 and fr (A) are decreasing and increasing function
in A, respectively. Therefore, the only possible solutions are
where fr (A) is non-negative and finite. If (2) holds, we have
fr (0) > 0 and fl (A) and fr (A) have a unique intersection
point in the first orthant. If p (0) ≥ dA+ dRr

a+dR
, we have two

cases.

1) limA→∞p (A) ≥ dA + dRr
a+dR

. Then, fr (A) ≤ 0, and
fl (A) = fr (A) has no non-negative solution.

2) limA→∞p (A) < dA+ dRr
a+dR

. Then, there exists a ξ > 0
such that fr (A) > 0, and fl (A) = fr (A) has a unique
non-negative solution.

Proof: [Proof of Theorem 1] Shifting the equilibrium to
zero by defining Re , R− R̄ and Ae , A− Ā yields that

Ṙe = rAe − aRe − dRRe,
Ȧe = aRe + p

(
Ae + Ā

)
Ae − rAe − dAAe

+
[
p
(
Ae + Ā

)
− p(Ā)

]
Ā.

It is easy to show that a forward-invariant set of this system
is
{

(Re, Ae) | Re ≥ −R̄, Ae ≥ −Ā
}

, and hence R (0) ≥ 0
and T (0) ≥ 0 ensure that Re (t) ≥ −R̄ and Ae (t) ≥ −Ā
for all t > 0. Construct a Lyapunov function as W ,
1
2

(
aR2

e + rA2
e

)
. Then, the derivative is evaluated as

Ẇ = aRe (rAe − aRe − dRRe)
+rAe

[
αRe + p

(
Ae + Ā

)
Ae − rAe − dAAe

]
+rAe

[
p
(
Ae + Ā

)
− p(Ā)

]
Ā.

Noting that

p
(
Ae + Ā

)
− p(Ā) ≤ 0, Ae ≥ 0,

p
(
Ae + Ā

)
− p(Ā) > 0, − Ā ≤ Ae < 0,

we have that Ẇ ≤ aRe (rAe − aRe − dRRe) +
rAe

[
aRe + p

(
Ae + Ā

)
Ae − rAe − dAAe

]
= xTMx,

where x =
[
Re Ae

]T
and

M =

[
−a (a+ dR) ar

ar −r
(
r + dA − p

(
Ae + Ā

))] .
On on hand, with (2) and Assumption 1, it is easy to verify
that −r

(
r + dA − p

(
Ae + Ā

))
< 0. On the other hand,

(a+ dR)
(
r + dA − p

(
Ae + Ā

))
− ar

= (a+ dR)

[
dA +

dRr

aθ
− p

(
Ae + Ā

)]
> 0

which implies that the Schur complement −a (a+ dR) +
(ar)2

r(r+dA−p(Ae+Ā))
is negative. Therefore, M is negative

definite, and the regional stability follows from the Lyapunov
theory.

Proof: [Proof of Theorem 2] Define c , r + dA −
p
(
Ā
)
. It is easy to verify that c > 0 and R̄ + Ā = λ

aθ +(
r
aθ + 1

)
λ

cθ−r . We first show dĀ
da > 0. Define F

(
Ā, a

)
=

λ

[r+dA−p(Ā)]θ−r
− Ā = λ

cθ−r − Ā. Then, simple calculations

give ∂F
∂a = − λcθ̇a

(cθ−r)2 , ∂F
∂Ā

= −λθ(−ṗ(Ā))
(cθ−r)2 −1, and thus dĀ

da =

−
∂F
∂a
∂F
∂a

= λcdR/a
2

λθ(−ṗ(Ā))+(cθ−r)2 > 0, where Assumption 1 is

used. With this, the derivative of R̄ + Ā with respect to a
can be evaluated as
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d
(
R̄+ Ā

)
da

=
−λ (cθ − r)2 − λr (cθ − r) + aθ [r + aθ]

(
−λcθ̇a

)
(aθ)

2
(cθ − r)2

+
( r
aθ

+ 1
) λṗ

(
Ā
)

(cθ − r)2

dĀ

da

= −λc (c− dR − r)
a2 (cθ − r)2 +

( r
aθ

+ 1
) λṗ

(
Ā
)

(cθ − r)2

dĀ

da

= −λc
dA − p

(
Ā
)
− dR

a2 (cθ − r)2 +
( r
aθ

+ 1
) λṗ

(
Ā
)

(cθ − r)2

dĀ

da

< 0

Similarly, we can show dĀ
dr < 0, and thus

d
(
R̄+ Ā

)
dr

= λ

[
dA − dR − p

(
Ā
)]

+ (r + aθ) ṗ
(
Ā
)

dĀ
dr

a (cθ − r)2

> 0.

This completes the proof.

APPENDIX II
PROOFS OF THE RESULTS IN SECTION III

Proof: [Proof of Proposition 2] The proof for uninfected
equilibrium is similar to that of Proposition 1, and thus
omitted here. As for infected equilibrium, it is easy to show
that R > Rc implies the positivity of V̄ provided that
Ā ≥ 0. Hence, it suffices to prove that Ā exists and is
non-negative. To this end, consider the equation y (A) ,
1+δ(λ+rA

aθ +A)
R − A = 0. From R > Rc, it follows that

ηr
R < aθ

r+aθ . With this and δ̇ ≤ ηr (Assumption 2), we
have that dy(A)

dA < 0. In addition, y (0) = 1+δ(λ/aθ)
R > 0.

Therefore, y (A) = 0 has a unique non-negative solution Ā.
This completes the proof.

Proof: [Proof of Theorem 3] Computing the Jacobian
matrix at uninfected equilibrium yields that

J0 =

[
J01 ∗
0 J02

]
,

where J01 =

[
−a− dR r

a p
(
Ā0

)
− r − dA + ṗ

(
Ā0

)
Ā0

]
,

J02 =

[
−dT

[
1 + δ

(
R̄0 + Ā0

)]
µAĀ0

ρ −dV

]
, and ∗ is unre-

lated to stability. If (2) holds, it is easy to show by using
Routh-criterion that J01 is Hurwitz. As for block J02, simple
algebraic manipulations together with Routh criterion yields
that it is Hurwitz if and only if

dT δ
(
R̄0 + Ā0

)
+ dV > 0, (7)

dT
[
1 + δ

(
R̄0 + Ā0

)]
dV − ρµĀ0 > 0. (8)

(7) is always true. (8) holds if R < Rc0. This can be shown

by noting Ā0 = λ

(r+dA−p(Ā0))θ−r
and

1+δ(R̄0+Ā0)
Ā0

>

ηl

(
1 + R̄0

Ā0

)
= ηl

(
1 + λ

aθĀ0
+ r

aθ

)
= Rc0. To probe the

stability of infected equilibrium, we define some variables
for later use.

c , r + dA − p
(
Ā
)
− ṗ

(
Ā
)
Ā,

m ,

(
1− 1

θ

)
r + dA − p

(
Ā
)
− ṗ

(
Ā
)
Ā,

f , −ṗ
(
Ā
)
Ā+

λ

θĀ
, d̄T , dT

[
1 + δ

(
R̄+ Ā

)]
,

kf , f +
r

θ
+ aθ, km , m+

r

θ
+ aθ,

q , aθ (R− δd)− rδd, δd , δ̇
(
R̄+ Ā

)
.

If (2) holds, these variables are all positive. Then, the
characteristic polynomial at the equilibrium can be computed
as

|J | =

∣∣∣∣∣∣∣∣∣
ε+ a+ dR −r 0 0

−a ε+ c+ µV̄ 0 µĀ

dT δdT̄
∗ −µV̄ + dT δdT̄

∗ ε+ d̄T −µĀ
0 0 −ρ ε+ dV

∣∣∣∣∣∣∣∣∣
= b4ε

4 + b3ε
3 + b2ε

2 + b1ε
1 + b0,

where b4 = 1, b3 = d̄T + dV + c + µV̄ + a + dR, b2 =(
d̄T + dV

) (
c+ µV̄

)
+ (a+ dR)

(
d̄T + dV + c+ µV̄

)
−

ar, b1 = µV̄
(
d̄T − δddT Ā

)
dV − ar

(
d̄T + dV

)
+

(a+ dR)
(
c+ µV̄

) (
d̄T + dV

)
, b0 = µV̄ dT dV qĀ. Applying

Routh criterion yields that the equilibrium is stable if and
only if

1) b0 > 0, b1 > 0, b2 > 0, b3 > 0, b4 > 0.
2) b2b3 − b1b4 > 0.
3) b1 (b2b3 − b1b4)− b0b23 > 0.

Let us now verify whether these conditions are satisfied.
Before proceeding, we need to establish several relationships:

c+ µV̄ = f +
r

θ
,

(a+ dR)
(
c+ µV̄

)
− ar = aθf,

µV̄ = f −m > 0,

d̄T − δddT Ā = (R− δd) ĀdT > 0,

q > 0,

where Assumption 2 is employed.

1) b4 > 0, b3 = d̄T +dV +kf > 0, b2 =
(
d̄T + dV

)
kf +

aθf > 0, b1 = (f −m) (R− δd) ĀdT dV +
aθf

(
d̄T + dV

)
> 0, b0 > 0.

2)

b2b3 − b1b4 =
(
d̄T + dV

)2
kf +

(
d̄T + dV

)
k2
f

+ aθfkf − (f −m) (R− δd) ĀdT dV
=
(
d̄2
T + d2

V + d̄T dV
)
kf +

(
d̄T + dV

)
k2
f

+ aθfkf + d̄T dV

(r
θ

+ aθ
)

+m (R− δd) ĀdT dV + δddT dV fĀ

> 0.
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3) On one hand,

b0b
2
3 = qĀ (f −m) dT dV

(
d̄T + dV

)2
+ qĀ (f −m) dT dV k

2
f

+ 2qĀ (f −m) dT dV
(
d̄T + dV

)
kf

≤ h1 + h2 + h3,

where

h1 = 2qĀfdT dV
(
d̄T + dV

)
kf ,

h2 = qĀfdT dV k
2
f ,

h3 = qĀ (f −m) dT dV
(
d̄T + dV

)2
.

On the other hand,

b1 (b2b3 − b1b4) = g1 + g2 + g3 + g4 + ∗,

where ∗ > 0 represents an irrelevant term. and

g1 = aθf
(
d̄T + dV

) (
d̄2
T + d2

V + d̄T dV
)
kf ,

g2 = aθf
(
d̄T + dV

)2
k2
f ,

g3 = (f −m) (R− δd) Ā
×dT dV

(
d̄2
T + d2

V + dT dV
)
kf ,

g4 = (f −m) (R− δd) Ā
×dT dV

(
d̄T dV

)
km.

Noting that aθR > q, aθ (R− δd) > q, and kf >
km > aθ, we have that

g1 > 2aθRĀdT dV f
(
d̄T + dV

)
kf > h1,

g2 > aθRĀfdT dV k2
f > h2,

and

g3 + g4

> (f −m) (R− δd) ĀdT dV
(
d̄2
T + d2

V + dT dV
)
km

+ (f −m) (R− δd) ĀdT dV
(
d̄T dV

)
km

= (f −m) (R− δd) ĀdT dV
(
d̄T + dV

)2
km

> aθ (R− δd) Ā (f −m) dT dV
(
d̄T + dV

)2
> h3,

and thus b1 (b2b3 − b1b4)− b0b23 > 0.

Therefore, the result follows immediately.
Proof: [Proof of Theorem 4] Define δd , δ̇

(
R̄+ Ā

)
and F

(
Ā
)

=
1+δ(R̄+Ā)

R − Ā. Then, following a similar
line as used in the proof of Theorem 2, we have that
dĀ
da = −

∂F
∂a
∂F
∂Ā

=
δd(λ+rĀ)/[δd( r

aθ+1)−R]
a2θ2 . From R > Rc and

Assumption 2 it follows that 0 ≤ δd ≤ ηr < R/
(
r
aθ + 1

)
,

and thus dĀ
da ≤ 0. Since R̄ =

(
λ+ rĀ

)
/ (a+ dR), dR̄

da ≤ 0.
Similarly, dT̄∗

da = dv
ρ

dV̄
da ≥ 0, which can be proved by noting

that d 1
θ

(
λ
Ā

+ r
)
/da ≥ 0 and ṗ

(
Ā
)

dĀ
da ≥ 0. Likewise, we

can show that dĀ
dr ≥ 0, dR

dr ≥ 0, and dT̄∗

dr = dv
ρ

dV̄
dr ≤ 0.
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