
MAROVAC, N. (1973). The organisation of the data-display structure and the structure of NEDLAN (NEtwork Defining LANguage), to be
published.

MAROVAC, N. (1973a). The syntax of NEDLAN (NEtwork Defining LANguage), to be published.
MAROVAC, N. (1973b). A single-data display structure: a new view on interactive computer graphics in CAD. The Computer Journal,

Vol. 16, No. 2, May 1973, pp. 152-156.
RULLY, A. D. (1968). A subroutine package for FORTRAN, IBM Syst. J. Nos. 3 and 4, 1968.
SCHWINN, P. M. (1967). A problem-oriented graphic language, Proc. 22nd Nat. Conf. ACM, 1967.
SHEARING, G. (1970). VISPLAY. The CSIRO graphical FORTRAN system, International Symposium, Computer Graphics '70, Brunei,

England.

Book reviews
A Mathematical Theory of Global Program Optimization, by M.

Schaefer, 1973; 198 pages. (Prentice-Hall International, £500.)

The term 'software engineering' is often used to describe the field of
software system development, to emphasise that the construction
of a compiler or an operating system is not an art but is a process to
which the well-known techniques of engineering design can usefully
be applied. Engineering is usually based on a sub-structure of science,
and this book is a noteworthy contribution to the scientific sub-
structure of compiler writing. It is also noteworthy in that it must be
the first book about compiling techniques for which '. . . previous
exposure to computer programming is helpful but not necessary'.

The designer of a compiler may try to optimise the generated code
at two levels. There is 'within-statement' optimisation that endeav-
ours to exploit the architecture of the target machine in the code
generated for individual statements, e.g. making best use of the
available registers for intermediate results. Much more difficult is
global optimisation which aims to improve efficiency by removing
non-varying quantities from loops, recognising patterns in the array
elements, and reordering the statements of the program to avoid
redundant re-computation of sub-expressions. The gains to be
obtained are considerable: the IBM H-level FORTRAN compiler is
reported to have produced object programs occupying 25% less
space and using 40 % less processor time than the programs produced
from the same source by the non-optimising G-level compiler.
However, the dangers are equally great: after it was released to
users, it was discovered that the ICL optimising FORTRAN
compiler sometimes generated incorrect code. Thus the designer of
an optimising compiler needs to be sure that his transformations
retain the meaning of the program, and it is here that science comes
in, giving the engineer the assurance that his artefacts will perform as
expected.

The book under review provides such a foundation for global
optimisation. Since such optimisation involves a detailed analysis of
the flow of control in a program, the approach is to express the
structure of the program as a directed graph. The transformations
required for optimisation are now transformations on the graph, and
the mathematics of graph theory can be used to give a rigorous proof
of the validity of these transformations. The first seven chapters of
the book are devoted to establishing the necessary (and considerable)
body of mathematical background: there then follow a series of
chapters each dealing with a particular class of optimising trans-
formations. Although these transformations are expressed in abstract
mathematical form, each chapter begins with a number of concrete
examples to give the reader a feel for what is to be achieved. Finally
three appendices cover optimising algorithms (written in APL/360),
an overview of the phases of an optimising compiler, and a discussion
of the influence of partial recompilation ('incremental compiling') on
the global optimising process.
The book is a most valuable contribution to the literature of

compilers, though the mathematical standard will make it inacces-

sible to many workers in the field. Those with the necessary degree
of mathematical sophistication to cope will find it hard work, but
exceedingly rewarding. For the rest it is a portent of the shape of
things to come, and a valuable counter-example to the proposition
that the computer scientist need have no mathematical ability.

D. w. BARRON (Southampton)

Problems of Heuristics, edited by V. N. Pushkin, translated from
Russian by D. Louvish, 1973; 202 pages. (Israel program for
Scientific Translations; England, John Wiley, £8-45.)

Problems of Heuristics is a translation of a collection of papers
published in the USSR in 1969. It contains four sections: Theoretical
Problems of Heuristics, Experimental Studies of Heuristic Processes,
Programming of Components of Human Thought and Investigation
of Reflexive Processes.
As well as editing the collection, Pushkin is either an author or has

his work referred to in rather more than half of the nineteen papers.
A heuristic process is seen as one which constructs a new action

aimed at the achievement of some goal in a situation which is new to
the system performing the process. Thus by heuristics is meant the
science which studies the laws governing the design of new actions
in new situations. In 'Toward a definition of heuristics', Pospelov,
Pushkin and Sadovskii deny that a computer program can be
heuristic. It is clear that this view is strongly held but they fail to
make an adequate case to support it. They argue, for example, that
a potential infinity of languages for the formation of a model is
needed by a system that is to be heuristic, but it is not obvious to the
reviewer that this must be so in a sense that makes it impossible in a
computer system.
The main thesis of the book, insofar as there is one, is that the

simple maze view of heuristic search is not adequate and that we
must look at systems which can both construct internal models and
can also radically revise them in the course of problem solving. This
leads to the most important achievement of the book, its insistance
on a close relationship between theory and psychological fact. For
example, one paper puts forward the view that complex tasks can be
automated most successfully by first conducting a psychological
study of the human methods of solution.
By far the longest of the four sections is Experimental Studies of

Heuristic Processes. This contains studies of human problem solving,
mostly using protocol analysis, but in one interesting case, by using
recordings of the eye movements of chess players whilst they decide
upon a move.
The book ends with a short section on reflexive control, i.e. on

attempts to win in human and man-machine conflict situations.
Problems of Heuristics is a lively collection containing within it a

range of differing, and at times contradictory, views. An editorial
guide to those various attitudes would have been a useful addition to
this interesting book.

E. A. EDMONDS (Leicester)

336 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/336/443690 by guest on 21 August 2022


