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A mathematical theory of the topological vertex
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We have developed a mathematical theory of the topological vertex—a theory that was
originally proposed by M Aganagic, A Klemm, M Mariño and C Vafa on effectively
computing Gromov–Witten invariants of smooth toric Calabi–Yau threefolds derived
from duality between open string theory of smooth Calabi–Yau threefolds and Chern–
Simons theory on three-manifolds.

14N35, 53D45; 57M27

1 Introduction

In [1], M Aganagic, A Klemm, M Mariño and C Vafa proposed a theory on computing
Gromov–Witten invariants in all genera of any smooth toric Calabi–Yau threefold;
their theory is derived from duality between open string theory of smooth Calabi–Yau
threefolds and Chern–Simons theory on 3–manifolds. The following is a summary of
their theory:

(O1) There exist certain open Gromov–Witten invariants that count holomorphic
maps from bordered Riemann surfaces to C3 with boundaries mapped to three
specific Lagrangian submanifolds L1;L2 and L3 . Such invariants depend on
the topological type of the domain (classified by the genus and the number of
boundary circles), the topological type of the map and the “framing” ni 2 Z
of the Lagrangian submanifolds Li (i D 1; 2; 3). The topological type of the
map is described by a triple of partitions E�D .�1; �2; �3/ where �i consists
of the degrees (“winding numbers”) of the boundary circles in Li Š S1 �C .
The topological vertex

C E�.�In/

is a generating function of such invariants. Here we fix the winding numbers
E�D .�1; �2; �3/, the framings nD .n1; n2; n3/ and sum over the genus of the
domains.
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(O2) The Gromov–Witten invariants of any smooth toric Calabi–Yau threefold can be
expressed in terms of C E�.�In/ by explicit gluing algorithms.

(O3) By the duality between Chern–Simons theory and Gromov–Witten theory, the
topological vertex is given by

C E�.�In/D q
1
2
.
P3

iD1 ��i ni /W E�.q/; q D e
p
�1�;

where W E�.q/ is a combinatorial expression related to the Chern–Simons link
invariants (cf Section 2.1).

As was demonstrated in the work of many, for instance Peng [34] and Konishi [17;
16], this algorithm is extremely efficient in deriving the structure result of the Gromov–
Witten invariants of toric Calabi–Yau threefolds.

The purpose of this paper is to provide a mathematical theory for this algorithm. To
achieve this, we need to provide a mathematical definition of the open Gromov–Witten
invariants referred to in (O1), we need to establish the gluing algorithms (O2) and we
need to prove the duality (O3).

Based on relative Gromov–Witten theory (see Li and Rua [18], Ionel and Parker [12;
13] and Li [19; 20]), in this paper, we shall complete the first two steps as outlined.
The following is a summary of our theory:

(R1) We introduce the notion of formal toric Calabi–Yau (FTCY) graphs, which is
a refinement and generalization of the graph associated to a toric Calabi–Yau
threefold. Associated to an FTCY graph � , we construct a relative FTCY
threefold Y rel D . yY ; yD/.

(R2) We define formal relative Gromov–Witten invariants for relative FTCY three-
folds (Theorem 4.8). These invariants include as special cases Gromov–Witten
invariants of smooth toric Calabi–Yau threefolds.

(R3) We show that the formal relative Gromov–Witten invariants in (R2) satisfy the
degeneration formula of relative Gromov–Witten invariants of projective varieties
(Theorem 7.5).

(R4) Any smooth relative FTCY threefold can be degenerated to indecomposable ones.
By degeneration formula, the formal relative Gromov–Witten invariants in (R2)
can be expressed in terms of the generating function zC E�.�In/ of indecomposable
FTCY threefolds (Proposition 7.4). This degeneration formula coincides with
the gluing algorithms described in (O2).
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(R5) We evaluate zC E�.�In/ (Proposition 6.5, Theorem 8.1):

zC E�.�In/D q
1
2
.
P3

iD1 ��i ni / zW E�.q/

in terms of zW E�.q/, a combinatorial expression defined by (2-7) in Section 2.1.

In (R4), we shall define zC E�.�In/ as local relative Gromov–Witten invariants of a
formal Calabi–Yau . yZ; yD/ that is the infinitesimal neighborhood of a configuration
C1[C2[C3 of three P1 ’s meeting at a point p0 in a relative Calabi–Yau threefold
.Z;D/; the stable maps have ramification partition �i around the relative divisor D .
Since yZ is formal, we shall define the local invariants zC E� via localization formula; zC E�
can be expressed in terms of a generating function G�

E�
.�Iw/ of three-partition Hodge

integrals:

(1-1) zC E� D q
1
2

P3
iD1 ��i .ni�wiC1=wi/

X
j�i jDj�i j

G�
E�
.�Iw/

3Y
iD1

��i .�i/

(See Section 2 for precise definitions involved in the right hand side of (1-1); w D
.w1; w2; w3/ are equivariant parameters.) The most technical part of this paper is to
show that local invariants zC E� exist as topological invariants; namely zC E�D zC E�.�In/ is
independent of equivariant parameters w (Theorem 5.2, invariance of the topological
vertex). By the invariance of the topological vertex, to evaluate zC E� it suffices to
evaluate G�

E�
.�Iw/ at some w. It turns out that at wD .1; 1;�2/ we can reduce the

evaluation of G��1;�2;�3.1; 1;�2/ to the evaluation of two-partition Hodge integrals
G�∅;�C;��.1; 1;�2/ (the first partition is empty). We then use a formula of two-partition
Hodge integrals proved by the last three authors [23] to derive the combinatorial
expression zW E� in (R5). Inverting (1-1), we obtain a formula of three-partition Hodge
integrals (Theorem 8.2):

G�
E�
.�Iw/D

X
j�i jDj�i j

3Y
iD1

��i .�i/

z�i

q
1
2

�P3
iD1 ��iwiC1=wi

�
zWE�.q/:

This generalizes the formula of two-partition Hodge integrals proved in [23].

Our results (R1)–(R5), together with a conjectural identity zW E�.q/DW E�.q/ (Conjec-
ture 8.3), will provide a complete mathematical theory of the topological vertex theory.
The conjecture holds when one of the partitions, say �3 , is empty (Corollary 8.8); it
also holds for all low degree cases we have checked.

An important class of toric Calabi–Yau threefolds consists of local toric surfaces in a
Calabi–Yau threefold. Such threefolds are the total spaces of the canonical line bundles
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of projective toric surfaces (eg OP2.�3/). For these threefolds, only zC�1;�2;∅.�In/ (or
two-partition Hodge integrals) are required to evaluate their Gromov–Witten invariants.
The algorithm in this case was described by Aganagic, Mariño and Vafa [2]; an explicit
formula was given by Iqbal [14] and derived by Zhou [37] by localization, using the
formula of two-partition Hodge integrals.

It is worth mentioning that, assuming the existence of C E�.�In/ and the validity of open
string virtual localization, Diaconescu and Florea related C E�.�I n1; n2; n3/ (at certain
fractional ni ) to three-partition Hodge integrals, and derived the gluing algorithms in
(O2) by localization [5].

Maulik, Nekrasov, Okounkov and Pandharipande conjectured a correspondence between
the Gromov–Witten and Donaldson-Thomas theories for any nonsingular projective
threefold [26; 27]. This correspondence can also be formulated for certain noncompact
threefolds in the presence of a torus action; the correspondence for toric Calabi–Yau
threefolds is equivalent to the validity of the topological vertex [26; 31]. For non–
Calabi–Yau toric threefolds the building block is the equivariant vertex (see Maulik,
Nekrasov, Okounkov and Pandharipande [26; 27] and Pandharipande and Thomas [33;
32] which depends on equivariant parameters. During the revision of this paper, Maulik,
Oblomkov, Okounkov and Pandharipande announced a proof of GW/DT correspondence
for all toric threefolds [28]. The results in [28] yield a proof of Conjecture 8.3.

The rest of this paper is organized as follows. In Section 2, we recall some definitions and
previous results, and introduce some generating functions. The item (R1) is carried out
in Section 3; the item (R2) is carried out in Section 4; it gives a mathematical definition
of topological vertex when the relative FTCY threefold is indecomposable. We will
prove the invariance, Theorem 5.2, in Section 5. In Section 6, we express the topological
vertex in terms of three-partition Hodge integrals and double Hurwitz numbers. In the
next two sections, we establish (R3) and (R4), and derive the combinatorial expression
in (R5). Some examples of the identity W E�.q/D zW E�.q/ are listed in Section 8.4. The
Appendix contains a list of notation in this paper.

Acknowledgments We wish to thank A Aganagic, A Klemm, M Mariño, and C Vafa
for their explanation of [1] in public lectures and private conversations. We also wish
to thank S Katz and E Diaconescu for helpful conversations. We thank A Klemm
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author is supported by NSF grant DMS-0200477 and DMS-0244550. The third
author is supported by the NSF and the Guggenheim foundation. The fourth au-
thor is supported by NSFC grants 10425101 and 10631050 and a 973 Project grant
NKBRPC(2006cB805905).
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2 Definitions and previous results

In this section, we will introduce some notation, recall some known results, and define
some generating functions. Generating functions in this paper are formal power series.

2.1 Partitions and representations of symmetric groups

We begin with the partitions and representations of symmetric groups. Recall that a
partition � of a nonnegative integer d , written as � ` d or j�j D d , is a sequence of
positive integers

�D .�1 � �2 � � � � � �h > 0/ such that d D �1C : : :C�h:

We call `.�/D h the length of the partition �. For convenience, we denote by ∅ the
empty partition; thus j∅j D `.∅/D 0. The order of Aut.�/, the group of permutations
of �1; �2; � � � that leave � fixed, is

jAut.�/j D
Y
j>0

mj .�/!; where mj .�/D #fi W �i D j g:

The transpose of � is the partition �t defined by mi.�
t /D �i ��iC1 . Note that

j�t
j D j�j; .�t /t D �; `.�t /D �1:

A partition � corresponds to a conjugacy class in Sd in the obvious way. Here Sd is
the permutation group of d D j�j elements. With this understanding, the cardinality
z� of the centralizer of any element in this conjugacy class is

z� D a�jAut.�/j; where a� D �1 � � ��`.�/:

We let P be the set of all partitions; P2 D P �P the product, and let

PC D P �f∅g; P2
C D P2

�f.∅;∅/g; P3
C D P3

�f.∅;∅;∅/g:

Given a triple of partitions E�D .�1; �2; �3/ 2 P3 , we define

`. E�/D

3X
iD1

`.�i/; Aut. E�/D
3Y

iD1

Aut.�i/:

For any partition � , we let �� denote the irreducible character of Sj�j indexed by � ,
and let ��.�/ be the value of �� on the conjugacy class determined by the partition
�. Recall that the Schur functions s� are related to the Newton functions pi.x/ D
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xi
1
Cxi

2
C � � � by

s�.x/D
X
�`j�j

��.�/

z�
p�.x/; x D .x1;x2; : : :/;

where p�.x/D p�1
.x/ � � �p�`.�/.x/:

The Littlewood–Richardson coefficients c
�
�� , which are nonnegative integers, and the

skew Schur functions s�=� are related by the rules

(2-1) s�s� D
X
�

c���s� and s�=� D
X
�

c���s�

where

(2-2) c��� D 0 unless j�j D j�jC j�j:

The ranges of summations in (2-1), and of all other summations involving Littlewood–
Richardson coefficients c

�
�� , are determined by (2-2).

In order to define the combinatorial expressions W E�.q/ and zW E�.q/ in (O3) and
(R5) in the introduction (Section 1), we need to introduce more notation. We define
Œm�D qm=2� q�m=2 , and define

(2-3) �� D

`.�/X
iD1

�i.�i � 2i C 1/:

Note that for transpose partitions, it satisfies ��t D��� .

We next define

(2-4) W�.q/D q��=4
Y

1�i<j�`.�/

Œ�i ��j C j � i �

Œj � i �

`.�/Y
iD1

�iY
vD1

1

Œv� i C `.�/�
:

Recall that any symmetric function f can be written as a polynomial f .e1; e2; : : :/ in
the elementary symmetric functions e1; e2; : : :. Let E.t/D 1C

P1
nD1 entn . We write

f .e1; e2; : : :/ as f .E.t//. With this notation, we define

(2-5) W�;�.q/D qj�j=2W�.q/ � s�.E�.q; t//;

where

E�.q; t/D
`.�/Y
jD1

1C q�j�j t

1C q�j t
�

�
1C

1X
nD1

tnQn
iD1.q

i � 1/

�
:
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We introduce
c
�1.�3/t

�1.�3/t
D

X
�

c
�1

��1c
.�3/t

�.�3/t
:

Definition 2.1 For E�D .�1; �2; �3/, we define

(2-6) W E�.q/D q
�
�2=2C��3=2

X
�1;�3

c
�1.�3/t

�1.�3/t

W.�2/t�1.q/W�2.�3/t .q/

W�2.q/
:

As a convention, we define the double of a partition � D .�1 � �2 � � � � / to be
2�D .2�1 � 2�2 � � � � /.

Definition 2.2 For E�D .�1; �2; �3/, we define

(2-7)

zWE�.q/D q
�.�

�1�2�
�2�

1
2
�
�3 /=2

X
�C;�1;�1;�3;�3

c�
C

.�1/t�2c
�1

.�1/t�1c
�3

�3.�3/t
�

� q.�2�
�C
�
�
�3

2
/=2W�C;�3.q/

X
�`j�1j

1

z�
��1.�/��3.2�/ :

W E� and zW E� are rational functions in q1=2 . We have the following identities (see
Zhou [36]):

W�;�;∅.q/DW∅;�;�.q/DW�;∅;�.q/D q��=2W�;.�/t .q/:

W�;�.q/DW�;�.q/; W�;∅.q/DW�.q/:

2.2 Double Hurwitz numbers

We now come to the generating function of double Hurwitz numbers. Let �C; �� be
partitions of d ; let H �

�;�C;��
be the weighted counts of Hurwitz covers of the sphere of

the type .�C; ��/ by possibly disconnected Riemann surfaces of Euler characteristic
�. We form the generating function

ˆ�
�C;��

.�/D
X
�22Z

���C`.�
C/C`.��/

H �
�;�C;��

.��C `.�C/C `.��//!
:

By Burnside formula,

(2-8) ˆ�
�C;��

.�/D
X
�`d

e���=2
��.�

C/

z�C

��.�
�/

z��
:
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Using the orthogonality of charactersX
�`d

��.�/��.�/

z�
D ı�� ;

it is straightforward to check that (2-8) implies the following two identities:

(2-9) ˆ�
�C;��

.�1C�2/D
X
�`d

ˆ�
�C;�

.�1/z�ˆ
�
�;��.�2/

and

(2-10) ˆ�
�C;��

.0/D
ı�C;��

z�C
:

Equation (2-9) is a sum formula for double Hurwitz numbers; Equation (2-10) gives
the initial values for the double Hurwitz numbers.

We now introduce a differential equation. It has the property that its unique solution
satisfying the initial condition (2-10) is a generating function of ˆ�

�C;��
. This equation

is similar to [9, Lemma 2.2] and [10, Lemma 3.1] (see also Goulden [8]).

We let p˙ D .p˙
1
;p˙

2
; : : :/ be formal variables, and for a partition � we let p˙� D

p˙�1
� � �p˙�`.�/ . We then define a generating function

ˆ�.�IpC;p�/D 1C

1X
dD1

X
j�˙jDd

ˆ�
�C;��

.�/pC
�C

p��� ;

and differential operators

C˙ D

1X
j ;kD1

.j C k/p˙j p˙k
@

@p˙
jCk

; J˙ D

1X
j ;kD1

j kp˙jCk

@2

@p˙j @p
˙
k

:

They form a cut-and-join equation for double Hurwitz numbers:

@ˆ�

@�
D

1

2
.CCCJC/ˆ� D

1

2
.C�CJ�/ˆ�:

The generating function ˆ�.�IpC;p�/ is the unique solution to this system satisfying
the initial value

ˆ�.0IpC;p�/D 1C
X
�2PC

pC� p��

z�
:
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2.3 Three-partition Hodge integrals

We shall introduce three-partition Hodge integrals in this subsection.

For the three-partition Hodge integrals we need to work with the Deligne–Mumford
moduli stack SMg;n of stable n–pointed nodal curves of genus g . Over this moduli
stack, we let � W SMg;nC1!

SMg;n be the universal curve; let si W
SMg;n!

SMg;nC1 be
the section of the i –th marked points of the family, and let !� be the relative dualizing
sheaf. The commonly known � classes and the  –classes are defined using these
morphisms: the � class �j is the j –th Chern class �j D cj .E/ of the Hodge bundle
ED ��!� , and the  class  i is the first Chern class  i D c1.Li/ of the pull back
line bundle Li D s�i !� . A Hodge integral is then an integral of the formZ

SMg;n

 
j1

1
� � � jn

n �
k1

1
� � ��

kg

g :

We now introduce three-partition Hodge integrals. Let w1; w2; w3 be formal variables.
In this subsection, and in Sections 6, 7 and 8, we shall follow the convention:

(2-11) wD .w1; w2; w3/; w1Cw2Cw3 D 0; w4 D w1:

For E�D .�1; �2; �3/ 2 P3
C , we let

d1
E�
D 0; d2

E�
D `.�1/; d3

E�
D `.�1/C `.�2/:

We define the three-partition Hodge integral

Gg; E�.w/D
.�
p
�1/`. E�/

jAut. E�/j

3Y
iD1

`.�i /Y
jD1

Q�i
j
�1

aD1
.�i

jwiC1C awi/

.�i
j � 1/!w

�i
j
�1

i

Z
SMg;`.E�/

�

3Y
iD1

ƒ_g .wi/w
`. E�/�1
iQ`.�i /

jD1
.wi.wi ��

i
j d i

E�
Cj //

where ƒ_g .u/D ug ��1ug�1C � � �C .�1/g�g .

It is clear from the definition that Gg; E�.w/ obeys the cyclic symmetry:

(2-12) Gg;�1;�2;�3.w1; w2; w3/DGg;�2;�3;�1.w2; w3; w1/:

Since
p
�1

`. E�/
Gg; E�.w/ is a homogeneous degree 0 rational function in w1; w2; w3

with Q–coefficients (where degw1 D degw2 D degw3 D 2), we will substitute w by
wD .1; �;�� � 1/. For such weights, we will write

Gg; E�.�/DGg; E�.1; �;�� � 1/:
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Then (2-12) becomes

Gg;�1;�2;�3.�/DGg;�2;�3;�1

�
� 1�

1

�

�
DGg;�3;�1;�2

�
�1

� C 1

�
:

We let � and pi D .pi
1
;pi

2
; : : :/ be formal variables; given a partition � we define

pi
� D pi

1
� � �pi

`.�/
; (note pi

∅ D 1); for p1 , p2 and p3 , we abbreviate

pD .p1;p2;p3/ and p E� D p1
�1p2

�2p3
�3 :

We define the three-partition-Hodge-integral generating functions to be

G E�.�Iw/D
1X

gD0

�2g�2C`. E�/Gg; E�.w/ and G.�IpIw/D
X
E�2P3
C

G E�.�Iw/p E�I

we define the same generating functions for not necessarily connected domain curves
to be

G�.�IpIw/D exp.G.�IpIw//D 1C
X
E�2P3
C

G�
E�
.�Iw/p E�(2-13)

G�
E�
.�Iw/D

X
�22Z

���C`. E�/G�
�; E�
.w/I(2-14)

we define G E�.�I �/, G.�IpI �/, G�.�IpI �/ and G�
E�
.�I �/ similarly.

We will relate G�
E�
.�I �/ to zW E�.q/ in Theorem 8.2.

3 Relative formal toric Calabi–Yau threefolds

In this section, we will introduce formal toric Calabi–Yau (FTCY) graphs, and construct
their associated relative FTCY threefolds.

3.1 Toric Calabi–Yau threefolds

For a smooth toric Calabi–Yau threefold Y , we denote by Y 1 (resp. Y 0 ) the union of
all 1-dimensional (resp. 0–dimensional) .C�/3 orbit closures in Y . We assume that

Y 1 is connected and Y 0 is nonempty.

Under this condition, we will find a distinguished subtorus T � .C�/3 and use the
T –action to construct a planar trivalent graph �Y . The FTCY graphs that will be
defined in Section 3.3 are generalization of such graphs.
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We first describe the distinguished subtorus T . We pick a fixed point p 2 Y 0 and
look at the .C�/3 action on the tangent space TpY . Its induced action on the top
wedge ^3TpY corresponds to an irreducible character p̨ 2 Hom..C�/3;C�/; by the
Calabi–Yau condition and the connectedness of Y 1 , p̨ is independent of the choice
of p . We define

T
def
D Ker p̨ Š .C

�/2:

We next describe the planar trivalent graph �Y . We let ƒT be the group of irreducible
characters of T , ie,

ƒT
def
D Hom.T;C�/Š Z˚2:

We let TR Š U.1/2 be the maximal compact subgroup of T ; let tR and t_R be its
Lie algebra and its dual; let �W Y ! t_R be the moment map of the TR –action on Y .
Because of the canonical isomorphism t_RŠƒT˝ZR, the image of Y 1 under � forms
a planar trivalent graph �Y in Z˚2˝Z R. The graph �Y encodes the information
of Y in that its edges and vertices correspond to irreducible components of Y 1 and
fixed points Y 0 ; the slope of an edge determines the T –action on the corresponding
component of Y 1 .

C3 OP1.�1/˚OP1.�1/ OP2.�3/

Figure 1: Some examples of planar trivalent graphs

Let yY be the formal completion of Y along Y 1 ; yY is a smooth formal Calabi–Yau
scheme and inherits the T –action on Y . The formal Calabi–Yau scheme yY together
with the T –action can be reconstructed from the graph �Y (cf (a) in Section 3.2 below).
The construction of a relative FTCY threefold from a FTCY graph (given in Section
3.5) can be viewed as generalization of this reconstruction procedure.

3.2 Relative toric Calabi–Yau threefolds

A smooth relative toric Calabi–Yau threefold is a pair .Y;D/, where Y is a smooth
toric threefold and D is a possibly disconnected, smooth .C�/3 invariant divisor of Y ,
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that obeys the relative Calabi–Yau condition:

ƒ3�Y .log D/ŠOY :

A toric Calabi–Yau threefold can be viewed as a relative Calabi–Yau threefold with
D D∅.

We now describe in details three examples of relative toric Calabi–Yau threefolds
and their associated graphs, as they are the building blocks of the definitions and
constructions in the rest of Section 3:

(a) Y is the total space of OP1.�1C n/˚OP1.�1� n/.

(b) Y is the total space of OP1.n/˚OP1.�1Cn/; D is its fiber over q1D Œ1; 0� 2

P1 .

(c) Y is the total space of OP1.n/˚OP1.�n/; D is the union of its fibers over
q0 D Œ0; 1� and q1 D Œ1; 0� in P1 .

w1 w1

w1

�w1 �w1

�w1

w2 w2 w2

�w2�w1�w2 �w1�w2

w2C .1� n/w1

�w2C nw1

w2� nw1 w2� nw1

�w2C nw1 �w2C nw1

v0 v0 v0v1 v1 v1

(a) OP1.�1C n/˚OP1.�1� n/ (b) OP1.n/˚OP1.�1� n/ (c) OP1.n/˚OP1.�n/

Figure 2: Three basic examples of relative toric Calabi–Yau threefolds

In Figure 2, the edge connecting the two vertices v0 and v1 corresponds to the zero
section P1 ; it is a 1-dimensional .C�/3 orbit closure in Y . The vertices v0 and v1

correspond to the .C�/3 fixed points q0 and q1 2 P1 , respectively.

In Case (a), for Y is a toric Calabi–Yau threefold, we may specify a subtorus T

as in Section 3.1. The weights of the T –action on the fibers of the bundles T P1 ,
OP1.�1Cn/ and OP1.�1�n/ at the T –fixed point q0 2 P1 , respectively, are given
by w1; w2; w3 2 ƒT Š Z˚2 ; the weights of the same action on the fibers of these
bundles at the other fixed point q1 2 P1 are given by �w1 , w2 C .1 � n/w1 and
w3C.1Cn/w1D�w2Cnw1 , respectively. Here we have w1Cw2Cw3D 0 because
T acts on ^3Tq0

Y trivially. Also, from the graph in Figure 2(a) one can read off the
T –action on Y and the degrees of the two summands of the normal bundle NP1=Y .
Therefore, Y together with the T –action can be reconstructed from the graph.
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Similarly, from the graph in Figure 2(b) and (c), one can reconstruct the pair .Y;D/ in
(b) and (c) together with the T –action; the weights of the T –action at fixed points can
be read off from the graph as follows:

(b) T P1 OP1.n/ OP1.�1� n/ (c) T P1 OP1.n/ OP1.�n/

q0 w1 w2 w3 D�w1�w2 q0 w1 w2 �w2

q1 �w1 w2� nw1
w3C .1C n/w1

D�w2C nw1
q1 �w1 w2� nw1 �w2C nw1

3.3 FTCY graphs

We now introduce formal toric Calabi–Yau (FTCY) graphs, which are graphs together
with local embeddings into the R2 endowed with the standard orientation and the
integral lattice Z˚2 �R2 .

As will be clear later, assigning a slope to an edge depends on the orientation of the
edge. For book keeping purpose, we shall associate to each edge two (oppositely)
oriented edges; for an oriented edge we can talk about its initial and terminal vertices.
To recover the graph, we simply identify the two physically identical but oppositely
oriented edges as one (unoriented) edge. This leads to the following definition.

Definition 3.1 (Graphs) A graph � consists of a set of oriented edges Eo.�/, a set
of vertices V .�/, an orientation reversing map revW Eo.�/!Eo.�/, an initial vertex
map v0W E

o.�/! V .�/ and a terminal vertex map v1W E
o.�/! V .�/. Together

they satisfy the property that rev is a fixed point free involution; that both v0 and v1

are surjective and v1 D v0 ı rev. We say � is weakly trivalent if jv�1
0
.v/j � 3 for

v 2 V .�/.

For simplicity, we will abbreviate rev.e/ to �e . Then the equivalence classes E.�/D

Eo.�/=f˙1g is the set of edges of � in the ordinary sense. In case � is weakly
trivalent, we shall denote by V1.�/, V2.�/ and V3.�/ the sets of univalent, bivalent,
and trivalent vertices of � ; we shall also define

Ef.�/D fe 2Eo.�/ j v1.e/ 2 V1.�/[V2.�/gI

it is the set of oriented edges whose terminal edges are not trivalent. Finally, we fix a
standard basis fu1;u2g of Z˚2 such that the ordered basis .u1;u2/ determines the
orientation on R2 .

Definition 3.2 (FTCY graphs) A formal toric Calabi–Yau (FTCY) graph is a weakly
trivalent graph � together with a position map

pW Eo.�/ �! Z˚2
�f0g
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and a framing map
fW Ef.�/ �! Z˚2

�f0g;

such that (see Figure 3)

(T1) p is antisymmetric: p.�e/D�p.e/.

(T2) p and f are balanced:
� For a bivalent vertex v 2 V2.�/ with v�1

1
.v/D fe1; e2g, p.e1/Cp.e2/D 0

and f.e1/C f.e2/D 0.
� For a trivalent v 2 V3.�/ with v�1

0
.v/D fe1; e2; e3g and p.e1/C p.e2/C

p.e3/D 0.

(T3) p and f are primitive:
� For a trivalent vertex v 2V3.�/ with v�1

0
.v/Dfe1; e2; e3g, any two vectors

in fp.e1/; p.e2/; p.e3/g form an integral basis of Z˚2

� For e 2Ef.�/, p.e/^ f.e/D u1 ^u2 .

v�1
1
.v/D feg v�1

1
.v/D fe1; e2g v�1

0
.v/D fe1; e2; e3g

v
v v

p.e/
p.e1/

p.e1/

p.e2/ p.e2/

p.e3/

e1 e2e

f.e1/

f.e2/

f.e/

Figure 3: The position map p and the framing map f

We say � is a regular FTCY graph if it has no bivalent vertex.

To each edge e in a FTCY graph we shall construct a relative Calabi–Yau threefold
.Y e;De/. Intuitively, such Y e resembles the examples (a), (b) or (c) in Figure 2 (if
we add vectors f�f.e/ j v1.e/ 2 V1.E/g). The threefold Y e will be the total space of
the direct sum of two line bundles over P1 , one Le and the other L�e . We define
the weights l0.e/ and l1.e/ of the T –action on Le

q0
and Le

q1
as follows: like in

Figure 2(a), (b) or in (c), if we arrange so that p.e/D w1 is pointing to the right, and
v0 and v1 are the initial and the terminal vertices of e , then we define l0.e/ and l1.e/

be that given by the upward vectors at v0 and v1 .

Definition 3.3 Let � be an FTCY graph. We define l0; l1W E
o.�/�!Z˚2 as follows:

l0.e/D

(
�f.�e/; v0.e/ … V3.�/;

p.e01/; v0.e/ 2 V3.�/:
l1.e/D

(
f.e/; v1.e/ … V3.�/;

p.e11/; v1.e/ 2 V3.�/:
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Here ei1 is the unique oriented edge such that v0.ei1/D vi.e/ and p.e/^ p.ei1/D

u1 ^u2 .

p.e/ p.e/

p.e/

p.�e/ p.�e/

p.�e/

l0.e/ l0.e/ l0.e/

l1.�e/ l1.�e/ l1.�e/

l1.e/ l1.e/ l1.e/

l0.�e/

l0.�e/ l0.�e/

(a) (b) (c)

Figure 4: l0; l1W E
o.�/! Z˚2 . (a) v0.e/; v1.e/ 2 V3.�/ (b) v0.e/ 2

V3.�/ , v1.e/ 2 V1.�/[V2.�/ (c) v0.e/; v1.e/ 2 V1.�/[V2.�/

The degree of the line bundle Le determines an integer ne :

ne
D

(
deg LeC 1; v1 2 V3.�/;

deg Le; v1 … V3.�/:

This motivates the following definition.

Definition 3.4 We define EnW Eo.�/! Z by

l1.e/� l0.e/D

(
.1� En.e//p.e/; v1.e/ 2 V3.�/;

�En.e/p.e/; v1.e/ … V3.�/:

We write ne for En.e/.

Note that n�e D�ne .

3.4 Operations on FTCY graphs

In this subsection, we define four operations on FTCY graphs: smoothing, degeneration,
normalization, and gluing. These operations extend natural operations on toric Calabi–
Yau threefolds.

The first operation is the smoothing of a bivalent vertex v 2 V2.�/. This operation
eliminates the vertex v and combines the two edges attached to v .

Definition 3.5 (Smoothing) The smoothing of � along a bivalent vertex v 2V2.�/ is
a graph �v that has vertices V .�/�fvg, oriented edges Eo.�/=� with the equivalence
˙e1��e2 for fe1; e2gDv�1

1
.v/. The maps v0 , v1 , p and f descend to corresponding

maps on �v , making it a FTCY graph. (See Figure 5: �3 is the smoothing of �2

along v .)
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The reverse of the above construction is called a degeneration.

Definition 3.6 (Degeneration) Let � be a FTCY graph and let e 2Eo.�/ be an edge.
We pick a lattice point f0 2Z˚2 so that p.e/^ f0D u1^u2 . The degeneration of � at
e with framing f0 is a graph �e;fo whose edges are .Eo.�/�f˙eg/[f˙e1;˙e2g and
whose vertices are V .�/[fv0g; its initial vertices zv0 , terminal vertices zv1 , position
map zp and framing map zf are identical to those of � except

zv0.e1/D v0.e/; zv1.e1/D zv1.e2/D v0; zv0.e2/D v1.e/;

zp.e1/D�zp.e2/D p.e/; zf.e1/Dzf.e2/D f0:

.See Figure 5: �2 is the degeneration of �3 at e with framing f0 ./

The normalization is to separate a graph along a bivalent vertex and the gluing is its
inverse.

Definition 3.7 (Normalization) Let � be a FTCY graph and let v 2 V2.�/ be a
bivalent vertex. The normalization of � at v is a graph �v whose edges are the same
as that of � and whose vertices are .V .�/�fvg/[fv1; v2g; its associated maps zv0 ,
zv1 , zp and zf are identical to that of � except for fe1; e2g D v�1

1
.v/, zv1.e1/D v1 and

zv1.e2/D v2 . .See Figure 5: �1 is the normalization of �2 at v ./

Definition 3.8 (Gluing) Let � be a FTCY graph and let v1; v2 2 V1.�/ be two
univalent vertices of � . Let fiD f.ei/, where feigDv�1

1
.vi/. Suppose p.e1/D�p.e2/

and f1D�f2 . We then identify v1 and v2 to form a single vertex, and keep the framing
f.ei/D fi . The resulting graph �v1;v2 is called the gluing of � at v1 and v2 . .See
Figure 5: �2 is the gluing of �1 at v1 and v2 ./

vv1
v2

ee1 e1e2 e2

f0

�f0

f1

�f1 f2

�f2

�2 D .�1/
v1;v2 D .�3/f0;e�1 D .�2/

v �3 D .�2/v

Figure 5: Operations on FTCY graphs

It is straightforward to generalize smoothing and normalization to subset A of V2.�/.
Given A� V2.�/, let �A denote the smoothing of � along A, and let �A denote the
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normalization of � along A. There are surjective maps

�AW E.�/!E.�A/; �A
W V .�A/! V .�/:

3.5 Relative FTCY threefolds

In this subsection we will introduce relative formal toric Calabi–Yau (FTCY) threefolds.

Given a FTCY graph � , we will construct a pair yY rel D . yY ; yD/, where yY is a formal
threefold, possibly with normal crossing singularities, yD � yY is a relative divisor, so
that yY rel D . yY ; yD/ is a formal relative Calabi–Yau threefold:

^
3� yY .log yD/ŠO yY :

The pair . yY ; yD/ admits a T –action so that the action on ^3Tp
yY is trivial for any fixed

point p .

To motivate our construction to be followed momentarily, we remark that for Y a
smooth toric Calabi–Yau threefold, with Y 1 the union of closures of 1-dimensional
orbits, the formal completion yY of Y along Y 1 will be examples of our formal toric
Calabi–Yau threefolds to be introduced. Note that the set of closed points of yY is Y 1 ,
which is a union of P1 or A1 . However, due to the formal scheme structure of yY
along Y 1 , dim yY D 3.

The pair . yY ; yD/ has similar properties. The set of closed points of yY is a union of
P1 ’s, each associated to an edge of � . Two P1 intersect exactly when their associated
edges share a common vertex. The normal bundle to each P1 in yY and the T –action
on yY are dictated by the data encoded in the graph � . A T –invariant divisor yL� yD
will be specified according to the data of framings.

In the following construction, we will use the notation introduced in Section 3.3.

3.5.1 Edges Let e 2 Eo.�/ with v0 and v1 its initial and terminal vertices. We
first define †.e/D P1 with homogeneous coordinates Œxe

0
; 1�. By viewing p.e/ as an

element in ƒT D Hom.T;C�/, we define a T –action on †.e/ by

t � Œxe
0; 1�D Œp.e/.t/x

e
0; 1�; t 2 T:

We denote the two fixed points by q0 D Œ0; 1� and q1 D Œ1; 1�D Œ1; 0�. Next we let
Le!†.e/ be the line bundle of degree

deg Le
D

(
ne � 1; v1 2 V3.�/;

ne; v1 … V3.�/;
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where ne D En.e/ is defined in Definition 3.4. We then assign the T –actions on Le
q0

and Le
q1

to be l0.e/ and l1.e/, respectively.

For the opposite edge �e , we have similarly defined †.�e/ Š P1 and the T –line
bundle L�e on †.�e/. Because of our construction, the isomorphism �eW †.e/ Š

†.�e/ induced by xe
0
D .x�e

0
/�1 is a T –isomorphism. Under this isomorphism, the

line bundles Le and L�e are line bundles over †.e/ and †.�e/.

With the line bundles Le and L�e on †.e/, we define yY .e/ to be the formal completion
of the total space of Le˚L�e along its zero section. The T –actions on Le and L�e

induce a T –action on yY .e/.

Clearly, the isomorphism �eW †.e/ Š †.�e/ and the isomorphism ��e L˙e Š L˙e

extend to a tautological isomorphism

yY .e/Š yY .�e/:

Let pW yY .e/!†.e/D P1 be the projection and let c D #.fv0; v1g\V3.�//� 2. It
is clear that

(3-1) ^
3� yY .e/ Š p�OP1.c/:

For the construction we are about to perform, it will be handy to have a local coordinate
of †.e/ at q0 . Derived from the homogeneous coordinate Œxe

0
; 1� of †.e/, the xe

0

forms an affine coordinate of †.e/0 D†.e/� q1 D A1 . We then fix T –equivariant
trivializations

Le
j†.e/0 Š Spec CŒxe

0;x
e
1� and L�e

j†.e/0 Š Spec CŒxe
0;x

e
�1�:

3.5.2 Near trivalent vertices Let v 2 V3.�/ be a trivalent vertex; let v�1
0
.v/ D

fe1; e2; e3g be so indexed that p.e1/; p.e2/; p.e3/ is in counter-clockwise order. We
first show how to construct a neighborhood of v in the intended FTCY.

For this purpose, we form the total space (denoted by Y .ek/
0 ):

(3-2) Y .ek/
0
D .Lek ˚L�ek /j†.ek/0

D Spec CŒxek

0
;x

ek

1
;x

ek

�1
�;

using the explicit coordinates introduced in (3-2). We define gluing homomorphism
 ek

be
 ek
W CŒy1;y2;y3� �!CŒxek

0
;x

ek

1
;x

ek

�1
�; yjCk.3/ 7! x

ek

j :

(Here j C k.3/ is j C k modulo 3.) Note that under this arrangement, the directions
Tq0

†.e1/
0 , L�e2 jq0

and Le3 jq0
are all mapped to the same direction.

We then define yY .v/ be the formal completion of Spec CŒy1;y2;y3� along the union
of the three y –axes. Using  ek

, yY .v/ is also the formal completion of Y .ek/
0 along

the three axes, and under these identification, the yk –axis is exactly the line †.ek/
0 .
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3.5.3 Near bivalent and univalent vertices Next we look at a bivalent vertex v . Let
e1 and e2 be the two edges so that fe1; e2g D v�1

0
.v/. Let †.ek/

0 and Y .ek/
0 be as

before. We then form the ring CŒy1;y2;u1;u2�=.y1y2/ and the gluing homomorphisms

 ek
W CŒy1;y2;u1;u2�=.y1y2/ �!CŒxek

0
;x

ek

1
;x

ek

�1
�

by the rule: the homomorphism  e1
maps u1 7! x

e1

1
, u2 7! x

e1

�1
, y1 7! x

e1

0
and

y2 7! 0; the homomorphism  e2
maps u1 7! x

e2

�1
, u2 7! x

e2

1
, y1 7! 0 and y2 7! x

e2

0
.

We define yY .v/ to be the formal completion of Spec CŒy1;y2;u1;u2�=.y1y2/ along
the union of the y1 and y2 axes; it is singular along a divisor yDv Š Spec CŒŒu1;u2��.

Lastly, consider v 2V1.�/ with e D v�1
0
.v/. We define Y .e/0 D Spec CŒxe

0
;xe

1
;xe
�1
�;

we define yY .v/ to be the formal completion of Y .e/0 along the xe
0

axis; we define
yDv to be the divisor defined by xe

0
D 0, and consider it as part of the relative divisor

of the formal Calabi–Yau scheme yY rel we are constructing. We also introduce another
divisor yLv in yDv :

yLv D .xe
�1 D xe

0 D 0/� yDv
D .xe

0 D 0/:

3.5.4 Gluing the pieces At last, we will glue all yY .v/ to form a formal scheme yY .
To do this, we first form the disjoint union

(3-3)
a

v2V .�/

yY .v/:

To glue, we need to introduce equivalence relations. Let e be an edge and let v1 be its
initial vertex and v2 be its terminal vertex. By our construction of yY .v1/, the scheme

yY .e/0 D yY .�e/0 D Spec CŒxe
0; .x

e
0/
�1�ŒŒxe

1;x
e
�1��

is canonically an open subscheme of yY .v1/. Note that as a set it is the part

Spec CŒxe
0; .x

e
0/
�1�� yY .v1/:

Similarly, since v2 is the initial vertex of �e , it is also an open subset of yY .v2/. Hence
we can use the open embeddings

yY .e/0 � yY .v1/ and yY .e/0 � yY .v2/

to glue yY .v1/ and yY .v2/ along yY .e/0 .

By gluing yY .v1/ and yY .v2/ in (3-3) for all pairs of adjacent vertices in � we obtain a
formal threefold yY . The T –actions on yY .v/’s descend to a T –action on yY . Finally,
for each univalent vertex v , we let yDv � yY .v/ be the divisor defined in Section 3.5.3.
The (disjoint) union of all such yDv form a divisor yD that is the relative divisor of yY .
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Since yD is invariant under T , the pair yY rel D . yY ; yD/ is a T –equivariant formal
scheme. Because of (3-1), we have

^
3� yY .log yD/ŠO yY I

hence yY rel D . yY ; yD/ is a formal toric Calabi–Yau scheme.

Following the construction, the scheme yY has only normal crossing singularities along
yDv for all bivalent vertices v :

yYsing D
a

v2V2.�/

yDv:

Therefore yY is smooth when V2.�/ is empty. The relative divisor yD is the disjoint
union of smooth divisors yDv indexed by univalent vertices v :

(3-4) yD D
a

v2V1.�/

yDv:

Within each divisor yDv in (3-4) there is a divisor yLv � yDv defined as in Section 3.5.3.

From the construction, the scheme yY rel depends on the graph � . Often we will omit
the � in the notation if there is no confusion. However, in case we need to emphasize
such dependence, we shall use yY rel

�
in place of yY rel .

For later convenience, we introduce some notation. Let xe be the equivalence class
fe;�eg in E.�/; let C xe be the projective line †.e/D†.�e/� yY . For v 2 V1.�/,
we let zv be the closed point in yDv that is the T –invariant point q0 in †.e/0 for
v0.e/D v .

4 Definition of formal relative Gromov–Witten invariants

In this section, we will define relative Gromov–Witten invariants of relative FTCY
threefolds; the case of indecomposable relative FTCY threefolds gives the mathematical
definition of topological vertex.

4.1 Moduli spaces of relative stable morphisms

Let � be an FTCY graph and let yY rel D . yY ; yD/ be its associated scheme. We first
clarify the degrees and the ramification patterns of relative stable morphisms to yY rel .

Definition 4.1 (Effective class) Let � be a FTCY graph. An effective class of � is
a pair of functions Ed W E.�/! Z�0 and E�W V1.�/! P that satisfy
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(1) j E�.v/j D Ed.xe/ if v 2 V1.�/ and v1.e/D v ;

(2) Ed.xe1/D Ed.xe2/ if v 2 V2.�/ and v�1
0
.v/D fe1; e2g.

We write �v for E�.v/, and dxe for Ed.xe/.

To show that an effective class does characterize a relative stable morphism, a quick
review of its definition is in order. An ordinary relative morphism u to . yY ; yD/ consists
of

� a possibly disconnected nodal curve X ;

� distinct smooth points fqvj j v 2 V1.�/; 1 � j � `.�v/g in X such that each
connected component of X contains at least one of these points;

� a morphism uW X ! yY

satisfying the properties:

� For each v 2 V1.�/, u�1. yDv/D
P`.�v/

jD1
�vj qvj for some positive integers �vj ;

� u is predeformable along the singular loci
`
v2V2.�/

yDv of yY rel , i.e, if v2V2.�/

and v�1
0
.v/ D fe1; e2g , then u�1. yDv/ consists of nodes of X , and for each

y 2 u�1. yDv/, uju�1.†.e1//
and uju�1.†.e2//

have the same contact order to yDv

at y ;

� u coupled with the marked points qvi is a stable morphism in the ordinary sense.

Unless otherwise specified, all the stable morphisms in this paper are with not necessarily
connected domains.

Since
H2. yY IZ/D

M
xe2E.�/

ZŒC xe �;

the morphism u defines a map Ed W E.�/! Z via

(4-1) u�.ŒX �/D
X
xe2E.�/

Ed.xe/ŒC xe �:

The integers �vj form a partition

�v D .�v1; � � � ; �
v
`.�v//

and the map E�W V1.�/! P is
E�.v/D �v:
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With this definition, the requirement (1) in Definition 4.1 follows from (4-1) and (2)
since u is predeformable.

To define relative stable morphisms to yY rel , we need to work with the expanded schemes
of yY rel introduced by the first author [19]. In the case studied, they are the associated
formal schemes of the expanded graphs of � .

Definition 4.2 Let � be a FTCY graph. A flat chain of length n in � is a subgraph
L� �� that has n edges ˙e1; � � � ;˙en , nC1 univalent or bivalent vertices v0; � � � ; vn

with identical framings f (up to sign) so that

v0.e1/D v0I v1.ei/D v0.eiC1/D vi ; i D 1; � � � ; n� 1I v1.en/D vn;

and that all p.ei/ are identical.

v0 v1 v2 vn

e1 e2 en

f.e1/ f.e2/ f.en/

Figure 6: A flat chain of length n

Definition 4.3 A contraction of a FTCY graph � along a flat chain L� � � is the
graph after eliminating all edges and bivalent vertices of L� from � , identifying the
univalent vertices of L� while keeping their framings unchanged.

Given a FTCY graph � and a function

mW V1.�/[V2.�/ �! Z�0;

the expanded graph �m is obtained by replacing each v 2 V1.�/[ V2.�/ by a flat
chain L�vmv of length mv Dm.v/ with framings ˙f.e/, where v1.e/D v . In particular
�0 D � for the function 0.v/D 0 for all v 2 V1.�/[V2.�/. The original graph �
can be recovered by contracting �m along the flat chains

f L�vmv j v 2 V1.�/[V2.�/g:

We now study their associated Calabi–Yau schemes. We denote by . yY ; yD/ the associ-
ated Calabi–Yau scheme of � and by . yYm; yDm/ that of �m . We recover the original
scheme yY by shrinking the irreducible components of yYm associated to the flat chains
that are contracted. This way we obtain a projection

�mW yYm �! yY :
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We define a relative automorphism of yYm to be an automorphism of yYm that is also a
yY –morphism; an automorphism of a relative morphism uW X ! . yYm; yDm/ is a pair of
a relative automorphism � of yYm and an automorphism h of X so that

u ı hD � ıu:

Definition 4.4 A relative morphism to yY rel
�

is an ordinary relative morphism to
. yYm; yDm/ for some m; it is stable if its automorphism group is finite.

The contraction cmW �m! � induces bijections (which we also call cm ):

V1.�m/ �! V1.�/; E.�m/�

� a
v2V1.�/[V2.�/

E. L�vmv /

�
�!E.�/:

Definition 4.5 Given an effective class . Ed ; E�/ of � , we define an effective class
. Edm; E�m/ of �m as follows. Define E�m.v/D E�.cm.e// for v 2 V1.�m/, and define

Edm.xe/D

(
Ed. xe1/; xe 2E. L�vmv /; v0.e1/D v;

Ed.cm.xe//; otherwise;

for xe 2E.�m/.

We fix a FTCY graph � , an effective class . Ed ; E�/ of � , and an even integer �. We
then form the moduli space SM��; Ed ; E�. yY rel/ of all stable relative morphisms u to yY rel

that satisfy

� �.OX /D �=2, where X is the domain curve of u;

� the associated effective class of u is . Edm; E�m/ if the target of the morphism is
. yYm; yDm/.

Since yY is a formal Calabi–Yau threefold with possibly normal crossing singularity and
smooth singular loci, the moduli space SM��; Ed ; E�. yY rel/ is a formal Deligne–Mumford
stack with a perfect obstruction theory [19; 20].

Lemma 4.6 The virtual dimension of SM��; Ed ; E�. yY rel/ is
P
v2V1.�/

`.�v/.

Proof The proof is straightforward and will be omitted.
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4.2 Equivariant degeneration

We let p 2ƒT D Hom.T;C�/ and let T act on P1 �A1 by

t � .Œx0;x1�; s/D .Œp.t/x0;x1�; s/:

Let Y be the blowup of P1 �A1 at .Œ0; 1�; 0/. The T –action on P1 �A1 can be
lifted to Y making the projection Y! P1 �A1 T –equivariant. Composed with the
projection P1 �A1!A1 , the morphism

Y �!A1

becomes a T –equivariant family of curves whose fibers over s ¤ 0 are P1 and whose
central fiber Y0 Š P1 tP1 .

The above construction can be generalized to many nodes cases. Let � be a FTCY
graph and let

V2.�/D fv1; : : : ; vng

be a complete list of bivalent vertices. Then we have a T –equivariant family

. yY; yD/!An

that has the property that for any subset J � f1; � � � ; ng, the fiber of . yY; yD/ over any
closed point in the set

An
J D f.s1; � � � ; sn/ 2An

j sj D 0 if and only if j … J g

is the scheme yY rel
�J

, where �J is the smoothing of � along the bivalent vertices
fvj j j 2 J g. In particular,

An
∅ D f.0; : : : ; 0/g; �∅ D �:

The family is T –equivariant with T acts trivially on An and on each fiber as described
in Section 3.

By the construction in [20], there is a T –equivariant family

M��; Ed ; E�. yY/!An

such that M��; Ed ; E�. yY/s DM�
�; Ed ; E�

. yYs/ for s 2An . In particular,

M��; Ed ; E�. yY/0 D SM��; Ed ; E�. yY rel/:
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The total space M��; Ed ; E�. yY/ is a formal Deligne–Mumford stack with a perfect obstruc-
tion theory ŒT1! T2� of virtual dimensionX

v2V1.�/

`.�v/CjV2.�/j:

For each v 2 V2.�/ there is a line bundle Lv on M��; Ed ; E�. yY/ with a section

svWM��; Ed ; E�. yY/! Lv

such that
SM��; Ed ; E�. yY rel/DM��; Ed ; E�. yY/0

is the zero locus
fsv D 0 j v 2 V2.�/g �M��; Ed ; E�. yY/:

The pair .Lv; sv/ corresponds to .L0; r0/ in [20, Section 3].

4.3 Perfect obstruction theory

Let � be a FTCY graph, and let . Ed ; E�/ be an effective class of � . We briefly describe
the perfect obstruction theory of SM��; Ed ; E�. yY rel/ constructed in [20].

Define M��; Ed ; E�. yY/! AjV2.�/j , ŒT1! T2� and fLv j v 2 V2.�/g as in Section 4.2.
Let Œ zT 1! zT 2� be the perfect obstruction theory on SM��; Ed ; E�. yY rel/. Let

uW .X;q/ �! . yYm; yDm/

represent a point in SM��; Ed ; E�. yY rel/�M��; Ed ; E�. yY/, where

qD fqvj j v 2 V1.�/; 1� j � `.�v/g:

We have the following exact sequence of vector spaces:

0 �! zT 1
u �! T1

u �!

M
v2V2.�/

Lvu �! zT 2
u �! T2

u �! 0:

We will describe T1
u , T2

u , and Lvu explicitly. When � is a regular FTCY graph, that is
when V2.�/D∅, the line bundles Lv do not arise and M��; Ed ; E�. yY/D SM��; Ed ; E�. yY rel/.

We need to introduce some notation. Given mW V1.�/[V2.�/! Z�0 , let L�vmv be
the flat chain of length mv Dm.v/ associated to v 2 V1.�/[V2.�/, and let

V . L�vm/D fxv
v
0 ; : : : ; xv

v
mvg;

where xvvmv 2 V1.�m/ if v 2 V1.�/.
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Let v 2 V1.�/ and 0 � l � mv � 1, or let v 2 V2.�/ and 0 � l � mv . We define a
line bundle Lv

l
on the divisor yDv

l
in yYm by

Lvl DN yDv
l
=†.ev/

˝N yDv
l
=†.e0v/

where v�1
0
.xvv

l
/D fev; e

0
vg. Note that Lv

l
is a trivial line bundle on yDv

l
.

With the above notation, we have

Lvu D
mvO
lD0

H 0. yDv
l ;L

v
l /; v 2 V2.�/:

The tangent space T1
u and the obstruction space T2

u to M��; Ed ; E�. yY/ at the moduli point

ŒuW .X;q/ �! . yYm; yDm/�

are given by the following two exact sequences:

(4-2) 0 �! Ext0.�X .Rq/;OX / �!H 0.D�/ �! T1
u

�! Ext1.�X .Rq/;OX / �!H 1.D�/ �! T2
u �! 0

(4-3) 0 �!H 0
�
u�
�
� yYm

.log yDm/
�_�
�!H 0.D�/

�!

M
v2V1.�/

0�l�mv�1

H 0
et.R

v�
l /˚

M
v2V2.�/
0�l�mv

H 0
et.R

v�
l / �!H 1

�
u�
�
� yYm

.log yDm/
�_�

�!H 1.D�/ �!
M

v2V1.�/
0�l�mv�1

H 1
et.R

v�
l /˚

M
v2V2.�/
0�l�mv

H 1
et.R

v�
l / �! 0

Rq D
X

v2V1.�/

`.�v/X
jD1

qvj ;where

H 0
et.R

v�
l /Š

M
q2u�1. yDv

l
/

Tq.u
�1.†.ev///˝Tq.u

�1.†.e0v///ŠC˚nv
l

for v�1
0
.xvv

l
/D fev; e

0
vg,

(4-4) H 1
et.R

v�
l /Š H 0. yDv

l ;L
v
l /
˚nv

l

.
H 0. yDv

l ;L
v
l /;
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and nv
l

is the number of nodes over yDv
l

. In (4-4),

H 0. yDv
l ;L

v
l / �!H 0. yDv

l ;L
v
l /
˚nv

l

is the diagonal embedding.

We refer the reader to Li [20] for the definitions of H i.D�/ and the maps between
terms in (4-2), (4-3).

4.4 Formal relative Gromov–Witten invariants

Usually, the relative Gromov–Witten invariants are defined as integrations of the pull
back classes from the target and the relative divisor. In the case studied, the analogue is
to integrate a total degree 2

P
v2V1.�/

`.�v/ class pull back from the relative divisor yD .
The class we choose is the product of the T –equivariant Poincaré dual cT

1
.O yDv . yL

v//

of the divisor yLv � yDv , one for each marked point qvi . Equivalently, we consider the
moduli space

SM��; Ed ; E�. yY rel; yL/D
n
.u;X; fqvj g/ 2

SM��; Ed ; E�. yY rel/ j u.qvj / 2
yLv
o
:

Its virtual dimension is zero. More precisely, let ŒT 1! T 2� be the perfect obstruction
theory on SM��; Ed ; E�. yY rel; yL/ and Œ zT 1! zT 2� be the perfection obstruction theory on
SM��; Ed ; E�. yY rel/. Given a moduli point

ŒuW .X; x/! . yYm; yDm/� 2 SM��; Ed ; E�. yY rel; yL/� SM��; Ed ; E�. yY rel/;

we have T 1
u � T 2

u D
zT 1
u �
zT 2
u �

M
v2V1.�/

`.�v/M
jD1

.N yLv= yDv /u.qv
j
/

as virtual vector spaces.

In the rest of this subsection (Section 4.4), we fix �; �; Ed ; E�, and write M instead of
SM��; Ed ; E�. yY rel; yL/. We now define the formal relative Gromov–Witten invariants of yY rel

by applying the virtual localization to the moduli stack M. We use the equivariant
intersection theory developed by Edidin and Graham [6] and the localization by Edidin
and Graham [7] and Graber and Pandharipande [11].

Since yY rel is toric, the moduli space M and its obstruction theory are T –equivariant.
We consider the fixed loci MT of the T –action on M. The coarse moduli space of
MT is projective. The virtual localization is an integration of the quotient equivariant
Euler classes. When Œu� varies in a connected component of MT , the vector spaces
T 1

u and T 2
u form two vector bundles. We denoted them by T 1 and T 2 . Since the
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obstruction theories are T –equivariant, both T i are T –equivariant. We let T i;f and
T i;m be the fixed and the moving parts of T i . Since the fixed part T i;f induces a
perfect obstruction theory of MT , it defines a virtual cycle

ŒMT �vir
2A�.MT /;

where A�.MT / is the Chow group with rational coefficients.

The perfect obstruction theory ŒT 1;f ! T 2;f � together with the trivial T –action
defines a T –equivariant virtual cycle

ŒMT �vir;T
2AT
� .MT /:

Since T acts on MT trivially, we have [7, Proposition 2]

AT
� .MT /ŠA�.M/˝ƒT

where ƒT D Hom.T;C�/ŠAT
� .pt/ŠQŒu1;u2�.

The moving part T i;m is the virtual normal bundles of MT in M. Let

eT .T i;m/ 2A�T .M
T /

be the T –equivariant Euler class of T i;m , where A�
T
.MT / is the T –equivariant

operational Chow group (see [6, Section 2.6]). For i D 1; 2, eT .T i;m/ lies in the
subring

A�.MT /˝QŒu1;u2��A�T .M
T /

and is invertible in

A�.MT /˝QŒu1;u2�m �A�T .M
T /m:

Here the subscript . /m is localization at the ideal mD .u1;u2/ (cf [7, Section 4]).

We can also define a degree homomorphism degm as follows. By [7, Theorem 1],

AT
� .M/m ŠAT

� .MT /m ŠA�.MT /˝QŒu1;u2�m;

so we may generalize the degree map degW A0.MT /!Q to

degmW Ad .MT /m!QŒu1;u2�m

a˝ b 7!

(
deg.a/ � b d D 0;

0 d ¤ 0:
by

Also, for c 2A�
T
.X /m and ˛ 2AT

� .X /m , we agreeZ
˛

c D degm.c \˛/ 2QŒu1;u2�m:
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Following the lead of the virtual localization formula [11], we define:

Definition 4.7 (Formal relative Gromov–Witten invariants)

(4-5) F���; Ed ; E�.u1;u2/D
1

jAut. E�/j

Z
ŒMT �vir;T

eT .T 2;m/

eT .T 1;m/

where we view ŒMT �vir;T as an element in AT
� .MT /m .

Note that
eT .T 2;m/

eT .T 1;m/
\ ŒMT �vir;T

2
�
AT
� .MT /m

�
0

where
�
AT
� .MT /m

�
0

is the degree zero part of the graded ring AT
� .MT /m . Therefore,

F���; Ed ; E�.u1;u2/ 2 .QŒu1;u2�m/0 DQ.u1=u2/

where .QŒu1;u2�m/0 is the degree zero part of the graded ring QŒu1;u2�m .

Since M usually is not proper, apriori the integral (4-5) may depend on u1=u2 .
Nevertheless, in this case we have:

Theorem 4.8 The function F��
�; Ed ; E�

.u1;u2/ is independent of u1;u2 ; hence is a ratio-
nal number depending only on � , �, Ed and E�.

In Section 6 and Section 7, we will reduce the invariance of F��
�; Ed ; E�

.u1;u2/ (Theorem
4.8) to the invariance for a special topological vertex (Theorem 5.2).

5 Invariance of the topological vertex

We begin with the notion of topological vertex and topological vertex with standard
framing.

Definition 5.1 (Topological vertex and standard framing) A topological vertex is a
FTCY graph that has one trivalent vertex and three univalent vertices (see Figure 10 in
Section 6). A topological vertex with a standard framing is a topological vertex whose
three edges e1 , e2 and e3 that share the only vertex v0 as their initial vertices have
their position and framing maps satisfying (see Figure 7)

f.e1/D p.e2/; f.e2/D p.e3/ and f.e3/D p.e1/:

In this section, we shall prove:
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v0 v1

v2

v3

p.e1/

p.e2/

p.e3/

f.e1/
f.e2/

f.e3/

Figure 7: A topological vertex with standard framing

Theorem 5.2 (Invariance of the topological vertex) Theorem 4.8 holds for any topo-
logical vertex with standard framing.

We fix a topological vertex with standard framing � once and for all in this section; we
let yY rel D . yY ; yD/ be its associated FTCY threefold. As before, we continue to denote
by T the group .C�/2 and abbreviate SM��; Ed ; E�. yY rel; yL/ by M.

Our strategy to prove the invariance of

(5-1) F���; Ed ; E�.u1;u2/D
1

jAut. E�/j

Z
ŒMT �vir

eT .T 2;m/

eT .T 1;m/
2Q.u1=u2/

is to construct a new proper T –equivariant DM-stack „ with perfect obstruction theory
and a T –morphism

ˆWM
�
D SM��; Ed ; E�. yY rel; yL/

�
�!„

so that

(1) the induced map on the T –fixed loci ˆT WMT �!„T is an open and closed
embedding;

(2) the obstruction theory of M along its fixed loci is identical to that of „ via ˆT .

Once we have ˆ, we shall take „1Dˆ.M/ (as a closed subset), which is T –invariant.
Because of the equivalence of obstruction theories stated, we haveZ

ŒMT �vir

eT .T 2;m/

eT .T 1;m/
D

Z
Œ„T

1
�vir

eT .T 2;m/

eT .T 1;m/
;

(Here by abuse of notation, we denote by T i;m the moving parts of the obstruction
complex ŒT 1! T 2� of M as well as „ along their fixed loci.)

To prove the invariance of the right hand side, we shall prove that we can pick another
T –invariant closed subsets „2 �„ that is disjoint from „1 so that the fixed loci

„T
D„T

1 [„
T
2
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and that the element Œ„�vir;T lifts to an element in AT
0
.„1[„2/ via the tautological

AT
0 .„1[„2/ �!AT

0 .„/:

On the other hand, we will show that the image of this lift under the composition

AT
0 .„1[„2/ �!AT

0 .„1/ �!A0.„
T
1 /m

degm
�!Q.u1;u2/

is F��
�; Ed ; E�

.u1;u2/ in (5-1). Since the degree map AT
0
.„1/! Q takes values in Q,

this will prove that the formal expression F��
�; Ed ; E�

.u1;u2/ is a rational number, thus
proving the invariance theorem.

5.1 The relative Calabi–Yau manifold W rel and the morphism ˆ

We shall construct the stack „ and the T –equivariant morphism ˆ promised. The
stack „ will be constructed as the moduli of relative stable morphisms to a pair of a
nonsingular projective T –threefold W with a relative divisor D�W and a subdivisor
L � D . The morphism ˆ will follow once we choose .W;D/ so that there is a
T –morphism . yY ; yD/! .W;D/.

We begin with constructing the toric variety W rel . Looking at the graph � chosen, the
obvious choice of W is the toric blowup of P1 �P1 �P1 along three disjoint lines

`1 D1�P1
� 0; `2 D 0�1�P1 and `3 D P1

� 0�1:

The moment polytope of W , which is the image of the moment map

‡ W W �!R3;

can be identified with the quotient W =U.1/3 of W by U.1/3� .C�/3 , as shown in Fig-
ure 8. Here we follow the convention that .z1; z2; z3/ is the point .Œz1; 1�; Œz2; 1�; Œz3; 1�/

in .P1/3 . We let D �W be the exceptional divisor and let Di �D be its connected
component lying over `i . Each Di is isomorphic to P1�P1 . We then let C1;C2 and
C3 be the proper transforms of

P1
� 0� 0; 0�P1

� 0 and 0� 0�P1;

and let Li �Di , i D 1; 2 and 3, be the preimages of

.1; 0; 0/ 2 `1; .0;1; 0/ 2 `2 and .0; 0;1/ 2 `3:

Clearly, restricting to Ci the log-canonical sheaf

(5-2) ^
3�W .log D/jCi

ŠOCi
:

Hence to the curves Ci the relative pair W relD .W;D/ is practically a relative Calabi–
Yau threefold.
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z1
z2

z3

p0

p1

p2

p3

q1 q2

q3

L1

L2

L3

D1

D2

D3

C1

C2

C3

Figure 8: Moment polytope of W . All faces of this polytope represent
the .C�/3 invariant divisors of W . The point p0 is the image of the point
.0; 0; 0/ 2 W . The line p0pi is the image of the curve Ci Š P 1 , and the
thickened line piqi is the image of the curve Li Š P 1 . The rectangle face
containing the edge piqi is the image of the relative divisor Di Š P 1 �P 1 .

For clarity of presentation, we will follow the convention that under the isomorphisms
Di Š P1�P1 and `i Š P1 , the tautological projection Di! `i is the first projection.
Under this convention, the line Li � Di is the line 0 � P1 and the intersection
pi D Ci \Di is the point .0; 0/.

As to the torus action, we pick the obvious one on .P1/3 via

.z1; z2; z3/
.t1;t2;t3/ D .t1z1; t2z2; t3z3/; .t1; t2; t3/ 2 .C

�/3:

It lifts to a .C�/3 –action on W that leaves Di and Li invariant. We let T � .C�/3

be the subgroup defined by t1t2t3 D 1; it is isomorphic to .C�/2 and is the subgroup
that leaves (5-2) invariant. In the following, we shall view W relD .W;D/ as a relative
Calabi–Yau T –manifold to the curves Ci .

Next we will define the moduli space M��; Ed ; E�.W rel;L/. Clearly, each Ci induces
a homology class ŒCi � 2 H2.W IZ/. For E� D .�1; �2; �3/ 2 P3

C , we let Ed be the
homology class

Ed D j�1
jŒC1�Cj�

2
jŒC2�Cj�

3
jŒC3� 2H2.W IZ/:

The pair . Ed ; E�/ is an effective class of � :

Ed.xei/D j�
i
j; E�.vi/D �

i ; i D 1; 2; 3:
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We then let

M��; Ed ; E�.W rel;L/

be the moduli of relative stable morphisms

uW .X IR1;R2;R3/ �!W rel
D .W;D1;D2;D3/;

where Ri � X are the relative divisors of u to Di � W (namely u�1.Di/ D Ri ),
that have fundamental classes Ed , have ramification patterns �i along Di , and satisfy
u.Ri/�Li , modulo the equivalence relation introduced in [20]. It is a proper, separated
DM-stack; it has a perfect obstruction theory [19; 20], and thus admits a virtual cycle.
This moduli stack M��; Ed ; E�.W rel;L/ is the stack „ we aimed to construct.

It follows from our construction that the scheme Y , which is the closure of the three
one-dimensional orbits in yY , can be identified with the union C1[C2[C3 in W ; the
formal scheme yY is isomorphic to the formal completion of W along Y . Further, the
relative divisor yD of yY (resp. the subdivisor yL� yD ) is the preimage of the relative
divisor D �W (resp. the subdivisor L�D ); the induced morphism

�W . yY ; yD; yL/ �! .W;D;L/

is T –equivariant; and the two effective classes . Ed ; E�/ are consistent under the map � .
Therefore, it induces a T –equivariant morphism of moduli spaces

ˆWM
�
D SM��; Ed ; E�. yY rel; yL/

�
�!„

�
DM��; Ed ; E�.W rel;L/

�
that induces a morphism

ˆT
WMT

�!„T

between their respective fixed loci.

Lemma 5.3 The morphism ˆT is an open and closed embedding; the obstruction
theories of M and „ are identical under ˆ along the fixed loci MT and its image
in „T .

Proof This follows immediately from that C1 , C2 and C3 are the closures of three
one-dimensional orbits, that Y D C1[C2[C3 and that yY is the formal completion
of W along Y .

We let „1 be the image ˆ
�
M
�
, as a closed substack of „. Since ˆ is T –equivariant,

„1 is T –invariant.
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5.2 A constancy criterion

We now construct the other T –invariant closed subset „2 and verify the sufficient
condition for the constancy of (5-1) briefly mentioned at the beginning of this section.

First, since T acts on „, for any closed point u 2„, the stabilizer StabT .u/ of u is
a subgroup of T . For those points u that are fixed by T (so that StabT .u/D T ), we
have:

Lemma 5.4 The fixed loci „T
1

is a closed and open subset of the fixed loci „T .

Proof The lemma will follow from the classification result in the next subsection.

We now choose a T –invariant, closed „2 �„ that contains „T �„T
1

and is disjoint
from „1 . We let U D„�„T . For any one-dimensional subtorus G � T we let U G

be the closed subset of those u with stabT .u/0 DG , where stabT .u/0 � stabT .u/ is
the connected component of the identity. Accordingly, we let U 0 � U be the open
subset of those elements with finite stabilizers. Since „ is proper, there is a finite set
ƒ of one-dimensional subtorus G � T with nonempty U G . For each such G , we
let U G

1
be the union of those connected components of U G whose closures in „ are

disjoint from „1 . Since the difference

U G
1
�U G

1 �„
T

and is disjoint from „T
1

, it is contained in „T �„T
1

. Thus

„2 D .„
T
�„T

1 /[
[

G2ƒ

U G
1

is T –invariant, closed, containing „T �„T
1

and disjoint from „1 .

Since both „1 and „2 are T –invariant and closed, we have the exact sequence of
T –equivariant Chow groups

AT
0 .„1[„2/ �!AT

0 .„/
ˇ
�!AT

0 .„�„1[„2/ �! 0:

Therefore, a � 2AT
0
.„/ lifts to AT

0
.„1[„2/ if and only if ˇ.�/D 0.

Unfortunately, the technique we shall apply only gives the vanishing of ˇ.Œ„�/vir;T

in the ordinary equivariant homology group, not the equivariant Chow-group. To
accommodate this, we shall work with the equivariant homology groups instead.
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We let TR be the maximal real subgroup U.1/�2 � T . We let BlT D .ClC1� 0/�2

and BlTRD .S
2lC1/�2 be the finite approximation1 of BT and BTR . For any proper

DM-stack M , we define

H TR
i .M /D lim

l
HiC4l

�
M �TR BlTR

�
; H� the BM-homology

parallel to the definition of the equivariant Chow-group

AT
i .M /D lim

l
AiC2l

�
M �T BlT

�
:

Because M �TR BlTR DM �T BlT and M is proper, we have a tautological homo-
morphism AT

i .M / �!H TR
2i
.M /.

In the remainder of this section, for any class in AT
i .„/, we shall not distinguish it

with its image in H TR
2i
.„/. Since our ultimate goal is to investigate the degree of the

cycles in AT
0
.„1/m , there is no loss of generality if we replace AT

� by H TR
2�

since the
degree maps commute with the tautological map from AT

0
to H TR

0
.

For � 2 H TR
0
.„/, we let �T 2 H TR

0
.„T /m be the associated element under the

localization isomorphism

H TR
0 .„/m �H TR

0 .„T /m:

(Here we follow the convention introduced in the previous section that m is the
ideal .u1;u2/ � H�

T
.pt/ and the subscript m means the localization by m.) We let

�T
1
C �T

2
D �T be the decomposition of �T under the tautological isomorphism

H TR
0 .„T /m DH TR

0 .„T
1 /m˚H TR

0 .„T
2 /m:

Lemma 5.5 Let � 2H TR
0
.„/ be any equivariant element. Suppose � can be lifted to

an � 2 H TR
0
.„1 [„2/. Then the component �1 2 H TR

0
.„1/ of � has the property

that �T
1
D �T

1
. Consequently, under the composition of the restriction and the degree

homomorphisms

degT
W H TR

0 .„1/m!H0.„
T
1 /˝Q QŒu1;u2�m �!QŒu1;u2�m;

�T
1

is mapped to a constant (independent of u1 and u2 ).

1 T DC� �C� acts on Bl T via the product of the standard C� action on ClC1 by multiplication:
v� D � � v for � 2C� and v 2ClC1 . The TR action on Bl TR is the one induced by T on Bl T .
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Proof Suppose � lifts to an � 2 H TR
0
.„1 [„2/. Since „1 and „2 are disjoint,

�D �1C �2 for �j 2H TR
0
.„j /. Then by the localization theorem,

H TR
0
.„1[„2/m ����! H TR

0
.„/mx??Š x??Š

H TR
0
.„T

1
/m˚H TR

0
.„T

2
/m

�
����! H TR

0
.„T /m

is commutative. Let �T
j 2 H TR

0
.„T

j /m be the element associated to �j via the left
vertical arrows. Then since � D �1 C �2 is mapped to � under the top horizontal
arrow, �T

1
D �T

1
. On the other hand, since �1 is an equivariant homology class,

degT .�T
1
/D deg.�1/ 2Q. Thus degT .�T

1
/ 2Q as well. This proves the lemma.

Following the lemma, to prove the invariance theorem we only need to check that the
class Œ„�vir;T lifts. For this purpose, we need a detailed classification of those u 2„

that are invariant under one-dimensional subtori G � T .

5.3 Elements with nontrivial stabilizers

Let a1; a2; a3 2 Z with a1C a2C a3 D 0 be three relatively prime integers and let G

be the subtorus
G D f.ta1 ; ta2 ; ta3/ j t 2C�g � T:

Our task is to characterize those stable relative morphisms that are invariant under
G � T and are small deformations of elements in „1 , where „1 Dˆ.M/.

To investigate relative stable morphisms to W , we need the expanded relative pairs
.W Œm�;DŒm�/, mD .m1;m2;m3/ (see Figure 9). We let � be the projective bundle

P
�
OP1�P1 ˚OP1�P1.0; 1/

�
over P1 �P1 with two sections

DC D P
�
OP1�P1 ˚ 0

�
and D� D P

�
0˚OP1�P1.0; 1/

�
I

we form an mi –chain of � by gluing mi copies of � via identifying the D� of one
� to the DC of the next � using the canonical isomorphism prW D˙! P1�P1 ; we
then attach this chain to Di by identifying the DC of the first � in the chain with Di

and declaring the D� of the last � be DŒm�i . The scheme W Œm� is the result after
attaching such three chains, of length m1 , m2 and m3 respectively, to D1 , D2 and
D3 in W . The union

DŒm�DDŒm�1[DŒm�2[DŒm�3
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is the new relative divisor of W Œm�. Note that our construction is consistent with that
the normal bundle of Di in W has degree �1 along Li .

z1

z2

z3

p0

p1

p2

p3

q1 q2

q3

p0
2

L1

L2

L3

D1

D2

D3

C1
C2

C3

�

DŒm�2

Figure 9: A sketch of the scheme W Œm� for m D .0; 2; 0/ . The main part
is the moment polytope of W (see Figure 8). The added two solids to
the right are the two �’s attached to D2 , resulting the scheme W Œm� with
mD .0; 2; 0/ . The shaded faces are the relative divisor DŒm� of W Œm� . The
straight diagonal line contained in the bottom face indicates the image of �k;c

in case �D .1;�1; 0/; the curved line indicates the image of �k;c in the other
case.

For future convenience, we denote by �Œmi � the chain of �’s that is attached to Di ; we
denote by LŒm�i �DŒm�i the same line as Li �Di . The new scheme W Œm� contains
W as its main irreducible component; it also admits a stable contraction W Œm�!W

whose restriction to the main component is the identity and its restriction to �Œmi �

is the tautological projection �Œmi �!Di . Also, .C�/3 acts on .W Œm�;DŒm�/ since
the .C�/3 –action on NDi=W induces a .C�/3 –action on each � attached to Di .
Therefore .C�/3 and T act on „. Unless otherwise mentioned, the maps W !W Œm�
and W Œm�!W are these inclusion and projection; these maps are .C�/3 –equivariant.

The pair .W;D/ contains .Y;p/, p D p1 C p2 C p3 , as its subpair. Accordingly,
the pair .W Œm�;DŒm�/ contains a subpair .Y Œm�;pŒm�/ whose main part Y Œm� is
the preimage of Y under the contraction W Œm�!W . The relative divisor pŒm� is
the intersection Y Œm�\DŒm�. It is the embedding Y Œm� � W Œm� that induces the
embedding „1 �„.
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We now fix a one-dimensional subtorus G�T . We let u0 be a relative stable morphism
in „1 , considered as an element in „; we let us be a small deformation2 of u0 in
„G that is not entirely contained in „1 . Each us is a morphism from its domain Xs

to W Œm� for some triple m possibly depending on s . We let zusW Xs ! W be the
composite of us with the contraction W Œm�! W . Then zus form a flat family of
morphisms. This family specializes to zu0 as s specializes to 0. Hence as sets, zus.Xs/

specializes to zu0.X0/ as s specializes to 0. Because zus.Xs/ are union of algebraic
curves in W and zu0.X0/ is contained in C1[C2[C3 , for general s the intersection
zus.Xs/\D is discrete. Hence every irreducible component Z � zu�1

s .Di/ must be
mapped to a fiber of �Œmi �=Di .

Now suppose there is such a connected component Z with us.Z/ lies in the fiber of
�Œmi � over q 2Di , then the predeformable requirement on relative stable morphisms
forces the same q in DŒm�i to lie in us.Xs/. Because of the requirement us.Z/\

DŒm�i �LŒm�i imposed on elements in „, we have

(5-3) zus.Xs/\Di �Li :

This leads to the following definition.

Definition 5.6 To each one-dimensional subtorus G � T , we define MT�
def to be the

union of all connected components of�
fŒu;X � 2„T� j zu.X /\D is finite

�
g

that intersect but are not entirely contained in „1 .

Following the discussion before Definition 5.6, all u in MT�
def satisfy (5-3). In case

aiC1 ¤ 0 (we agree a4 D a1 ), the only T�–fixed points of Li are pi and qi ; hence
all u in MT�

def satisfies a strengthened version to (5-3):

(5-4) zus.X /\Di � pi ; when aiC1 ¤ 0:

Here qi is ruled out because each connected component of MT�
def intersects „1 .

We now characterize elements in MT�
def . We comment that we shall reserve a1 , a2 and

a3 for the three relatively prime integers that defines G , as specified in the beginning
of this subsection. In this and the next two Subsections, we shall workout the case
a1 > 0 and a2; a3 < 0; the case �D .1;�1; 0/ will be considered in Section 5.6.

2 Here s should be viewed as varying in some smooth connected curve.
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Now let Œu;X � 2MT�
def and let V � zu.X / be any irreducible component. Since u is

T�–invariant, V is T�–invariant. Hence V must be the lift of the set

xV D f.c1ta1 ; c2t
a2

2
; c3t

a3

3
/ j t 2C[f1g g � .P1/3

for some .c1; c2; c3/. This immediately rules out the following possibilities:

(1) all ci are nonzero: should this happen, then xV \`2D .0;1;1/, which violates
(5-3);

(2) c1 D 0 but the other two are nonzero: should this happen, then either V \D D

V \D1 D q1 , or V \D D V \D2 D p0
2

(see Figure 9 for the location of p0
2

),
which violates (5-4);

(3) c2 D 0 but the other two are nonzero: should this happen, then V \D1 D q1

since a1 > ja3j, which violates (5-4).

This leaves us with the only two possibilities: (a) only one of ci is nonzero; (b) c3 D 0

but the other two are nonzero. In case (a), we have V D Ci for some i ; in case (b), V

is the image of the map

�k;c W P
1
�!W; k 2 ZC; c 2C�

that is the lift of P1! .P1/�3 defined by � 7! .�ka1 ; c�ka2�ka2 ; 0/. Clearly, �k;c is
G–invariant. It is easy to see that these are the only T�–equivariant maps Z!W

from irreducible Z whose images are not entirely contained in C1[C2[C3 and in
the divisor D . This proves:

Lemma 5.7 Suppose a1 > 0 and a2 , a3 < 0. Then any .u;X / 2MT�
def not entirely

contained in Y has at least one irreducible component Z �X and a pair .k; c/ so that
ujZ Š �k;c .

Here by ujZ Š �k;c we mean that there is an isomorphism Z Š P1 so that under this
isomorphism ujZ � �k;c .

When c specializes to 0, the map �k;c specializes to the morphism

�k;0W P
1
tP1

�!W

defined as follows. We endow the first copy (of P1 tP1 ) with the coordinate �1 and
the second copy with �2 ; we then form the nodal curve P1 tP1 by identifying the 0

of the first P1 with the 0 of the second P1 ; we define �k;0 to be the lift of the maps

�1 7! .�
ka1

1
; 0; 0/ and �2 7! .0; �

�ka2

2
; 0/:
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Since �1 D 0 and �2 D 0 are both mapped to the origin in .P1/�3 , they glue together
to form a morphism �k;0W P

1 tP1!W .

This leads to the following definition.

Definition 5.8 A deformable part of a .u;X / 2MT�
def consists of a curve Z �X and

an isomorphism ujZ Š �k;c for some .k; c/.

Suppose .u;X / has at least two deformable parts, say .Z1; �k1;c1
/ and .Z2; �k1;c2

/,
then the explicit expression of �k;c ensures that Z1 and Z2 share no common irre-
ducible components. Should Z1\Z2 ¤∅, their intersection would be a nodal point
of X that could only be mapped to either D1 or D2 of W under u. (Note that it
could not be mapped to p0 since otherwise both c1 D c2 D 0 and this node would be
in more than two irreducible components of X .) However, the case that the node is
mapped to D1 or D2 can also be ruled out because it would violate the predeformable
requirement of relative stable morphisms [19]. Hence Z1 and Z2 are disjoint. This
way, we can talk about the maximal collection of deformable parts of .u;X /, say

.Z1; �k1;c1
/; � � � ; .Zl ; �kl ;cl

/:

For convenience, we order it so that k� is increasing.

Definition 5.9 We define the deformation type of .u;X / 2MT�
def be

.k�/l D .k1 � k2 � � � � � kl/:

It defines a function on MT�
def , called the deformation type function.

Let .u;X / be an element in MT�
def of type .k�/l . Intuitively, we should be able to

deform u within MT�
def by varying ujZ� using �k�;t to generate an Al –family in MT�

def .
It is our next goal to make this precise.

To proceed, we need to show how to put �k;t into a family. We first blow up P1 �A1

at .0; 0/ to form a family of curves Y over A1 . The complement of the exceptional
divisor Y�E D P1�A1� .0; 0/ comes with an induced coordinate .�; t/. We define

ˆk jY�E W Y�E �!W I .�; t/ 7! .�ka1 ; t�ka2�ka2 ; 0/:

We claim that ˆk jY�E extends to a morphism ˆk W Y! W . Indeed, if we pick a
local coordinate chart near E , which is .�; v/ with t D �v , then

ˆk jY�E W .�; v/ 7! .�ka1 ; .�v/�ka2�ka2 ; 0/D .�ka1 ; v�ka2 ; 0/;
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which extends to a regular morphism

ˆk W Y �!W:

Note that for c 2A1 , the fiber of .ˆk ;Y/ over c is exactly the �k;c we defined earlier.
Henceforth, we will call .ˆk ;Y/ the standard model of the family �k;t ; we will use
Yc to denote the fiber of Y over c 2A1 .

To deform u using the family ˆk , we need to glue Y onto the domain X . We let
D1 be the proper transform of 0�A1 � P1 �A1 and let D2 D1�A1 in Y . Both
D1 and D2 are canonically isomorphic to A1 via the second projection. For Z �X ,
we fix an isomorphism Z ŠYc so that ujZ Š �k;c ; we specify v1 , v2 2Z so that
u.vi/ 2Di ; we let X0 be the closure of X �Z in X .

We now glue Y onto X0 �A1 . In case both v1 and v2 are nodes of X , we glue
Y onto X0 �A1 by identifying D1 with v1 �A1 and D2 with v2 �A1 , using their
standard isomorphisms with A1 ; in case v1 is a marked point of X and v2 is a node,
we glue Y onto X0 �A1 by identifying D2 with v2 �A1 and declaring D1 to be the
new marked points, replacing v1 ; in case v1 is a node and v2 is a marked point, we
repeat the same procedure with the role of v1 and v2 and of D1 and D2 exchanged;
finally in case both v1 and v2 are marked points, we simply replace Z�A1 in X �A1

by Y while declaring that D1 and D2 are the two marked points replacing v1 and v2 .
We let X !A1 be the resulting family.

The morphisms

X0 �A1 pr
��!X0

ujX0
��!W Œm� and ˆk W Y��!W

glue together to form a morphism

U W X �!W Œm�:

The pair .U ;X / is the family in MT�
def that keeps ujX0

fixed.

More generally, we can deform u inside MT�
def by identifying and altering its restriction

to the deformable parts of X simultaneously. This way, any u 2MT�
def of type .k�/l

generates an Al family of elements in MT�
def .

5.4 Global structure of the loci of invariant relative morphisms

In this subsection, we shall prove that any connected component of MT�
def is an Al –

bundle.

We begin with a technical lemma:
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Lemma 5.10 Let v 2 Xnode be a node in u�1.D/. Then v remains a node when u

deforms infinitesimally in MT�
def .

The key to the proof is that the T� actions on the two irreducible components of X

that contain v are infinite on one and trivial on the other.

Recall that there is a natural inclusion hW T !Aut.W Œm�/ induced by the T –actions on
W and on NDi=W . There is a unique homomorphism h0W T ! Aut.W Œm�=W / such
that3 h0.t/ıh.t/2Aut.W Œm�/ act trivially on pi Œmi � for all t 2T , where pi Œmi � is the
fiber of �Œmi � over pi 2Di . Since u is G –invariant and the image u

�
u�1.�Œmi �/

�
is

entirely contained in pi Œmi �, there is a group homomorphism h1W T�! Aut.X / such
that for all � 2 T� ,

h0.�/ ı h.�/ ıuD u ı h1.�/ and h1.�/ acts on u�1.�Œmi �/ trivially:

Now let v 2 u�1.Di/ be a node of X that is mapped to Di under u; let V� be the
irreducible component of X that contains v that is mapped to W , and let VC be the
other irreducible component of X that contains v . Then u.VC/ must be contained in
�Œmi �. Since h1.id/D id and that T� is connected, h1.�/.V˙/� V˙ . Hence h1.�/

are automorphisms of V˙ that fix v . We let

T�jV˙
def
D fh1.�/ j � 2 T�g � Aut.V˙; v/I

it is a group which is a homomorphism image of G ŠC� , so it is either C� or trivial.

Lemma 5.11 The group GjV� is infinite while the group GjVC is trivial. Therefore
GjV� ŠC� .

Proof Since h1.�/ acts trivially on u�1.�Œmi �/� VC , GjVC is trivial.

Since u.v/Dpi and u.V�/�W , u.V�/ is T� invariant but not T� fixed. The induced
action on u.V�/ is infinite, so T�jV� must be infinite because u is T�–invariant.

We now prove Lemma 5.10.

Proof of Lemma 5.10 Suppose the node v can be smoothed of first order within
MT�

def , then there is a family of stable morphisms uB over BD Spec CŒt �=.t2/ in MT�
def

such that its closed fiber is u and that the family of the domain curves smoothes the
node v to the first order. We let XB be the domain of uB . Since the closed fiber of XB

3The automorphisms � 2 Aut.W Œm�/ that preserve the fibers of the map W Œm� ! W are called
relative automorphisms of W Œm�=W ; the group of all such automorphisms is denoted by Aut.W Œm�=W / .
If mD .m1;m2;m3/ then Aut.W Œm�=W /Š .C�/m1Cm2Cm3 .
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is X , v is a closed point of XB . And since XB smoothes the node v to the first order,
the tangent space TvXB is C2 . On the other hand, ….T�/ is fixed by T� , the family
XB ! B is T�–equivariant with T� acts trivially on B . Therefore, the T� action
on TvXB leaves TvVC and TvV� invariant and has opposite weights on TvVC and
TvV� . This contradicts to that T�jV� is infinite while T�jVC is trivial. This proves
the lemma.

As we argued before, each u 2MT�
def contains a deformable part that is the union of

some �k�;c� . Our next task is to show that the deformable parts of u remain the same
within a connected component of MT�

def .

We now make it more precise. We let .u;X / be any element in MT�
def ; let Y1; � � � ;Yl �

X be all its deformable parts so that ujY� Š �k�;c� ; let v�;1 and v�;2 2 Y� be the marked
points so that u.v�;j /D pj . According to the discussion in the previous Subsection,
by varying ujY� using ˆk� we get a copy A1 in MT�

def ; by varying all the deformable
parts we obtain a copy Al in MT�

def . This is the fiber of the fiber bundle structure on
MT�

def we are about to construct.

To extend this Al �MT�
def to nearby elements of Œu�, we need to extend all Y� in X to

a flat family of subcurves.

Lemma 5.12 The deformation type function on MT�
def is locally constant.

Proof We pick a smooth curve 02S and a morphism  W S!MT�
def so that  .0/D Œu�.

The morphism  pulls back the tautological family on MT�
def to a family U W X !W

over S . The central fiber X0 is X and thus contains Y� . We let N � X be the
subscheme of the nodes of all fibers of X=S . As before, we let R� X be the divisor
of special marked points in the domain X . Since v�;j is either a marked point or a node
of X , v�;j 2N [R. Let P�;j be the connected component of N [R that contains
v�;j . We claim that P�;j is a section of N [R! S . First, P�;j is flat over S at v�;j .
This is true in case v�;j is a marked point since R is flat over S by definition; in case
v�;j is a node, it is true because of Lemma 5.10. Therefore, P�;j dominates S . Then
because N [R is proper and unramified over S , dominating over S guarantees that
P�;j is finite and étale over S . Replacing S by its étale cover, we can assume that
P�;j is isomorphic to S via the projection.

We now pick the desired family of curves Y� . For j D 1 or 2, in case P�;j is one
of the sections of the marked points of X=S , we do nothing; otherwise, we resolve
the singularity of the fibers of X along P�;j . As a result, we obtain a flat family of
subcurves Y� � X that contains Y� as its central fiber. We let U�W Y� !W be the
restriction of U to Y� . Because U�.Y�/�W �W Œm�, U�.Y�/�W �S �W as well.
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Since U W X !W is a family of T�–equivariant relative stable maps, U�W Y�!W is
also a family of T�–equivariant stable morphisms. Then because U�jY� is isomorphic
to �k�;c� , each member of U� must be an �k�;c for some c 2C . This proves that the
deformation type of U jXs

contains that of U jX0
as a subset. Because this holds true

with 0 and s exchanged, it shows that the deformation type function remains constant
over S .

Finally, because any two elements in the same connected component of MT�
def can be

connected by a chain of images of smooth curves, the deformation type function takes
same values on such component. This proves the lemma.

We are now ready to exhibit a fiber bundle structure of any connected component of
MT�

def . Let Q�MT�
def be any connected component. We know that all elements in Q

are of the same deformation type, say .k�/l . To get the fiber structure, we need to take
a finite cover of Q.

Definition 5.13 We define the groupoid xQ over Q as follows. For any scheme S

over Q, we let xQ.S/ be the collection of data f.U ;X ;W/; ��;Z�; �� j �D 1 � � � ; lg of
which

(1) U W X !W is an object 4 in Q.S/;
(2) �� are morphisms from S to A1

� , A1
� ŠA1 ;

(3) Z� are flat families of subcurves in X over S with all marked points discarded;

(4) ��W Z�! ��� Yk� is an isomorphism over S ;

together they satisfy
U jZ� � ��� ˆk� ı��W Z� �!W:

Further, an arrow from f.U ;X ;W/; ��;Z�; ��g to f.U 0;X 0:W 0/; �0�;Z 0� ; � 0�g consists of
an isomorphism h1W X ! X 0 and an isomorphism h2W W !W 0 relative to W so
that under these isomorphisms Z� D Z 0� , �� D �0� , �� D � 0� (for all �D 1; : : : ; l ) and
U D U 0 .

Here we use A1
� to denote the target of �� , which is A1 . We are doing this to distinguish

them for different �.

For a fixed type .k�/l , we form a subgroup of the symmetry group Sl :

G.k�/l D f� 2 Sl j k�.�/ D k�g:

4Here we consider Q as a groupoid and Q.S/ is the collection of objects over S .
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Proposition 5.14 The groupoid xQ is a DM-stack acted on by G.k�/l ; it is finite and
étale over Q, and xQ=G.k�/l D Q. The morphisms �� in each object in xQ glue to
a morphism x��W xQ! A1

� . Let xQ0 D .x�1; � � � ; x�l/
�1.0/. Then there is a canonical

projection � W xQ! xQ0 making it an Al –bundle over xQ0 . Finally, the morphism

.�; .x�1; � � � ; x�l//W xQ �! xQ0 �Al

is an isomorphism of DM-stacks.

Proof We shall omit the proof, which is straightforward, by the previous discussion.

5.5 The obstruction sheaves

In this subsection, we will investigate the obstruction sheaf to deforming a Œu� in MT�
def

for the case a2 , a3< 0. We will construct weight zero quotient trivial sheaves (meaning
ŠO ) of these obstruction sheaves. It is these quotient sheaves that allow us to prove
the desired vanishing in equivariant Chow groups.

We will follow the convention introduced in Section 5.4. We let S ! xQ be a T –
equivariant étale neighborhood, and let

U W X �!W; R� X ; D �W and Z� � X

be the tautological family of MT�
def over S . Here W is an S –family of W Œm� of

possibly varying m, D is the relative divisor of W , R�X is the union of the sections
of marked points and Z� � X is the �–th deformable parts of U .

Let T 2 be the obstruction sheaf over S of the obstruction theory of MT�
def . According

to [20, Proposition 5.1], its T�–invariant part, indicated by the subscript .�/T� , fits into
the long exact sequences:

�! Ext1X=S .�X=S .R/;OX /T�
ˇ
�!A1

T�

ı
�! zT 2

T�
�! 0(5-5)

�! B0
T�
�!R1��

�
U��W|=S .logD/_

�
T�

˛
�!A1

T�
�!B1

T�
�! 0(5-6)

�! zT 1
T�
�!HT� �! T 2

T�
�! zT 2

T�
�! 0:(5-7)

Within these sequences, Bj D
L3

iD1 B
j
i ; each summand Bj

i is a sheaf that associates
to the smoothing of the nodes of the fibers of X that are mapped under U to D

(�W ) or the singular loci of �Œmi �; the W| is the scheme W with the log structure
defined in [20, Section 1.1] and �W| is the sheaf of log differentials. In our case,
U��W|=S .D/D zU��W .log D/, where zU W X !W is the obvious induced morphism.

Without taking the T�–invariant part, the top two exact sequences define the obstruction
sheaf zT 2 to deforming Œu� in M��; Ed ; E�.W rel/—the moduli of relative stable morphisms
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to W rel without requiring u.R/ � L. Taking the invariant part and adding the last
exact sequence defines the obstruction sheaf T 2

T�
of MT�

def . The sheaf H is the pull
back of the normal line bundle to L�D . For the � we are interested, HT� D 0; hence
the last exact sequence reduces to T 2

T�
� zT 2

T�
.

In the following we shall show that the l families Z� � X of deformable parts of
.U ;X / each contributes to a weight zero trivial (meaning ŠO ) quotient sheaf of T 2

T�
.

We begin with the sheaf

(5-8) R1�0�

�
ˆ�k��W .log D/_

�
;

where ˆk� W Y!W is the family constructed before and �0W Y!A1 is the projection.
We let D12 (resp. D31 ) be the T –invariant divisor of W that contains C1 and C2 (resp.
C1 and C3 ); it is also the proper transform of the product of the first and second (resp.
the first and third) copies of P1 in .P1/3 . We let �12W W !D12 , �31W W !D31

and �1W W ! C1 be the obvious projections. We claim that �W .log D/jD12
has a

direct summand ��
1
N_

C1=D31
, the pull back of the conormal bundle to C1 in D31 .

Indeed, via the projection �31 we have a homomorphism

��31N
_
C1=D31

jD12
�!�W jD12

�!�W .log D/jD12
:

Also via the projection �12 we have a homomorphism

��12�D12
.log E12/jD12

�!�W .log D/jD12
; E12 DD12\D:

Combined, we have

��31N
_
C1=D31

jD12
˚��12�D12

.log E12/jD12
�!�W .log D/jD12

;

which can easily be shown an isomorphism. This proves that �W .log D/jD12
has a

direct summand ��
1
N_

C1=D31
. Consequently, ˆ�

k�
�W .log D/_ has a direct summand

ˆ�
k�
.��

1
NC1=D31

/.

Because of our choice, the weight of dzi is ai ; the weight of T _
0

Yc is 1=k� and the
weight of ˆ�

k�
.��

1
NC1=D31

/ at 0�A1 �Y is �a3 . Hence, the sheaf (5-8) splits into
line bundles of weights

�a3� a1C
1

k�
; �a3� a1C

2

k�
; � � � � � � ;�a3�

1

k�
:

Since all ai are integers, and a3 ��1 and �a3�a1 D a2 ��1, within the above list
there is exactly one that is zero. Hence

(5-9) R1�0�

�
ˆ�k��W .log D/_

�
T�
ŠOA1 :
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We now let ��W S ! A1
� be so that U jZ� Š ��� ˆk� . Since Z� � X is a flat family of

subcurves,

R1��
�
U��W|=S .logD/_

�
T�
�!R1��

�
U��W|=S .logD/_jZ�

�
T�

is surjective; but the last term is isomorphic to the pull back ��˛ of (5-9); hence we
obtain a quotient sheaf

(5-10) '�W R
1��

�
U��W|=S .logD/_

�
T�
�! ��� OA1

�
:

Lemma 5.15 The homomorphism '� canonically lifts to surjective

(5-11) y'�W T 2
T�
�! ��� OA1

�
:

The default proof is to follow the construction of the sheaves and the exact sequences in
(5-5)–(5-7); once it is done, the required vanishing will follow immediately. However,
to follow this strategy, we need to set up the notation as in [20] that itself requires a lot
of efforts. Instead, we will utilize the decomposition of S to give a more conceptual
argument; bypassing some straightforward but tedious checking.

We first decompose U into four subfamilies. Since W=S is a family of expanded pairs
of .W;D/, W Œ0�DW �S is a closed subscheme of W . We then let X Œ0�DU�1.W Œ0�/.
Because of Lemma 5.10,

U Œ0� D U jX Œ0� W X Œ0� �!W Œ0�

is an S –family of relative stable morphisms relative to DŒ0� DD �S �W Œ0� . Next
we consider the composite

zU W X �!W �!W Œ0�

and the preimage zU�1.Di/. Because of the same reason, either this preimage is a flat
family of nodes over S or is a flat family of curves over S . In the former case we
agree X Œi� D∅; in the later case we define

X Œi� D zU�1.Di �S/; U Œi� D U jX Œi� W X Œi� �!W Œi�;

where the last term W Œi� is the S –family of �Œmi �’s that are attached to W Œ0� along
Di �S to form W .

Since U Œ0�W X Œ0� ! W Œ0� is a family of T�–equivariant relative stable morphisms,
and since U Œi� is a family of T�–equivariant relative stable morphisms to � relative
to D� and DC , modulo an additional equivalence induced by the C� action on �,
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the obstruction sheaves T Œi�;2 to deforming U Œi� as T�–equivariant maps (T Œi�;2 are
sheaves over S ) fit into similar exact sequences:

�! Ext1X Œi�=S .�X Œi�=S .R
Œi�/;OX Œi�/T�

ˇŒi�

�!AŒi�;1
T�

ıŒi�

�! T Œi�;2
T�
�! 0;(5-12)

�! BŒi�;0
T�
�!R1��

�
U Œi���W Œi�|=S .logD/_

�
T�

˛Œi�

�!AŒi�;1
T�
�!BŒi�;1

T�
�! 0:(5-13)

Here we have already used the observation that zT Œi�;2
T�
D T Œi�;2

T�
.

Now let Nsp � U�1.Di �S/ be any section of nodes of X that separates X Œ0� and
X Œi� . By Lemma 5.11, the induced T�–automorphisms on the connected component of
X Œ0� adjacent to Nsp is infinite and on X Œi� is finite. Therefore the T�–invariant parts

Ext1X=S .�X=S .R/;OX /T� D
3M

iD0

Ext1X Œi�=S .�X Œi�=S .R
Œi�/;OX Œi�/T� :

For the same reason, because the tangent bundle Tpi
W has no weight zero nontrivial

T�–invariant subspaces,

(5-14) R1��
�
U��W|=S .logD/_

�
T�
D

3M
iD0

R1��
�
U Œi���W Œi�|=S .logDŒi�/_

�
T�
;

where DŒi� is the relative divisor of W Œi� . Further, if we follow the definition of the
sheaves Bi and Ai , we can prove that

3M
iD0

AŒi�;j
T�
DAj

T�
and

3M
iD0

BŒi�;j
T�
D Bj

T�
I

that under these isomorphisms,

3M
iD0

˛Œi� D ˛;

3M
iD0

ˇŒi� D ˇ and
3M

iD0

ıŒi� D ıI

and

(5-15)
3M

iD0

T Œi�;2
T�
D T 2

T�
:

Finally, the exact sequences (5-5) and (5-6) become the direct sums of the exact
sequences (5-12) and (5-13).
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Now we come back to the weight zero quotient '� in (5-10). By its construction, '� is
merely the canonical quotient homomorphism

(5-16) R1��
�
U Œ0���W Œ0�=S .logDŒ0�/_

�
T�

�!R1��
�
U Œ0���W Œ0�=S .logDŒ0�/_jZ�

�
T�
D ��� OA1

�

under the isomorphism (5-14). Because of (5-15), to lift '� to y'� we only need to lift
(5-16) to T Œ0�;2

T�
! ��� OA1

�
.

For this, we need to look at the exact sequence (5-13) for X Œ0� . Since U Œ0� is a relative
stable map to .W;D/, namely no � has been attached to W , the sheaf BŒ0�;j D 0.
Therefore the sequence (5-13) reduces to ˛Œ0� D id. On the other hand, T Œ0�;2

T�
is the

obstruction sheaf on S to deformations of U Œ0� . Since Z� is a family of connected
components of X Œ0�=S , the exact sequence (5-12) decomposes into direct sum of exact
sequences that contains

(5-17) �! Ext1Z�=S
�
�Z�=S .R

Œ0�/;OZ�
�
T�

ˇŒZ��

�!

�!R1��
�
U Œ0���W|=S .logD/_jZ�

�
T�

ıŒZ��

�! T ŒZ��;2
T�

�! 0

as their factors.

For Z� , since it is smooth, it has expected dimension zero and has actual dimension
one, the obstruction sheaf T ŒZ��;2

T�
must be a rank one locally free sheaf on S . Then

because the middle term in (5-17) is ��� OA1
�
, which is a rank one locally free sheaf,

the arrow ıŒZ�� must be an isomorphism while ˇŒZ�� D 0. Hence '� lifts to

T Œ0�;2
T�
�

M


T ŒZ �;2
T�

�! T ŒZ��;2
T�

� ��� OA1
�
;

and lifts to y'�W T 2
T�
! ��� OA1

�
, thanks to (5-15).

5.6 The case for �D .1;�1; 0/

We now investigate the structures of maps Œu� 2MT�
def in case � D .1;�1; 0/. Let

.u;X / be any such map, let R�X be the divisor of marked points and let zu be the
contraction X !W . Because a3 D 0, zu.X / intersects D1 at p1 ; it intersects D3

at p3 ; its intersection with D2 can be any point in L2 . Thus being T�–equivariant
forces zu.X / to be a finite union of a subset of C1 , C2 , C3 and the lifts to W of the
sets fz1z2 D c; z3 D 0g � .P1/3 .

In case all irreducible components are mapped to [Ci under zu, Œu�2„1 . For those that
are not in „1 , there are some Z �X so that zu.Z/ are the lifts of fz1z2 D c; z3 D 0g.
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Such ujZ are realized by the morphisms �k;c W P
1!W that are the lifts of

� 7! .ck�k ; ��k ; 0/ 2 .P1/3:

When c specializes to 0, the maps �k;c specialize to the �k;0W P
1 tP1!W that is

the lift of �1 7! .�k
1
; 0; 0/ and �2 7! .0; ��k

2
; 0/. Indeed, there is a family Y!A1 and

a morphism ˆk W Y!W so that its fiber over c 2A1 is the �k;c defined; also this is
a complete list of T�–equivariant deformations of �k;c . Since the argument is exactly
the same as in the prior case studied, we shall not repeat it here.

Here comes the main difference between this and the case studied earlier. In the
previous case, Im�k;c \Di D pi for both i D 1 and 2; hence we can deform each
ujZ Š �k;c to produce an A1 family in MT�

def . In the case under consideration, though
Im�k;c \D1 D p1 , if we fix an embedding A1 �L2 so that 0 2A1 is the p2 2L2 ,
then Im�k;c \D2 D ck 2 L2 . In other words, if we deform ujF Š �k;c , we need
to move the connected component of X Œ2� that is connected to Y . (Recall that for
uW X !W Œm�, X Œi� D u�1.�Œmi �/ for 1� i � 3 and X Œ0� D u�1.W /.)

This leads to the following definition.

Definition 5.16 We say that a connected component Z �X Œ0� is subordinated to a
connected component E�X Œ2� if Z\E¤∅; we say a connected component E�X Œ2�

is deformable if every connected component of X Œ0� that is subordinate to E is of the
form �k;c for some pair .k; c/. We say u has deformation type .k�/l D .k1� � � � � kl/

if it has exactly l deformable connected components �k1;c1
; � � � ; �kl ;cl

in X Œ2� .

The deformation types define a function on MT�
def .

Lemma 5.17 The deformation type function is locally constant on MT�
def .

Proof The proof is parallel to the case studied previously, and will be omitted.

As in the previous case, any Œu� 2MT�
def of deformation type .k�/l generates an Al

in MT�
def so that its origin lies in „1 . Let E1; � � � ;El � X Œ2� be the complete set

of deformable parts of u; let Z�;j , j D 1; � � � ; n� be the complete set of connected
components in X Œ0� that are subordinate to E� . By definition, each ujZ�;j Š �k�;j ;c�;j .
To deform u, we shall vary the c�;j in each �k�;j ;c�;j and move E� accordingly to get
a new map.

In accordance, we shall divide X into three parts. We let X0 be the union of irreducible
components of X other than the E� ’s and Z�;j ’s. The variation of u will remain
unchanged over this part of the curve. The second part is the moving part E� ’s. Recall
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that each ujE� is a morphism to �Œm2�. Suppose it maps to the fiber �Œm2�c of �Œm2�

over c 2 L2 � D2 . To deform u, we need to make the new map mapping E� to
�Œm2�c0 . Since the total space of �Œm2� over L2 is a trivial P1Œm2� bundle, there is a
canonical way to do this. We let

'c;c0 W �Œm2�c
Š
��!�Œm2�c0

be the isomorphism of the two fibers of �Œm2� over c and c0 2 L2 induced by the
projection �Œm2�! P1Œm2� that is induced by the product structure on �Œm2� over
L2 . The third parts are those Z�;j that are subordinate to E� .

We now deform the map u using the parameter space Al . We let K� be the least
common multiple of .k�;1; � � � ; k�;n�/; we let e�;j D K�=k�;j . Since Z�;j and Z�;j 0

are connected to the same connected component E˛ �X Œ2� ,

c
k�;j
�;j D c

k�;j 0

�;j 0 I

we let it be c� . For tD .t1; � � � ; tl/ 2Al , we define

ut
jX0
D ujX0

; ut
jE� D 'c�;t

K�
�
ıujE� and ut

jZ�;j D �k�;j ;t
e�;j
�
:

Here by utjZ�;j D �k�;j ;0 in case Z�;j Š P1 (when c�;j ¤ 0) we mean that we will
replace Z�;j by P1 tP1 with necessarily gluing if required; and vice versa.

The Al family ut is a family of T�–equivariant relative stable morphisms in MT�
def ;

the map u0 associated to 0 2Al lies in „1 ; the induced morphism Al !MT�
def is an

embedding up to a finite quotient.

By extending this to any connected component Q of MT�
def , we obtain:

Proposition 5.18 Let Q be any connected component of MT�
def that is not entirely

contained in „1 . Suppose elements of Q has deformation type .k�/l . Then there is
a stack xQ, a finite quotient morphism xQ=G.k�/l !Q, a closed substack xQ0 �

xQ, l

projections ��W xQ!A1
� and a projection � W xQ! xQ0 so that�
�; .�1; � � � ; �l/

�
W xQ Š
��! xQ0 �Al

is an isomorphism. Further, given a Œu� 2Q, the fiber Al in xQ that contains a lift of
Œu� 2Q is the Al family fut j t 2Alg; its intersection with the zero section xQ0 is u0 .
Finally, the intersection Q\„1 is the image of xQ0 .

Proof Let U W X !W be the tautological family over xQ. We choose xQ so that there
are families of subcurves E1; � � � ; El �X so that for each z 2 xQ, E1\Xz; � � � ; El \Xz

are exactly the l deformable parts of Xz . Then the composite E�!W �!W factor
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through L2 � W , and the resulting morphism E� ! L2 factor through xQ ! L2 .
Because each E�\Xz has a �k;c connected to it, the image of xQ!L2 lies in L2�q2 .
We then fix an isomorphism A1 ŠL2� q2 with 0 corresponding to p2 . This way we
obtain the desired morphism

��W xQ �!A1
� ŠL2� q2:

The proof of the remainder part of the Proposition is exactly the same as the case
studied; we shall not repeat it here.

The last step is to investigate the obstruction sheaf over Q and its lift to xQ.

Let R � X be the divisor of marked points. By passing to an étale covering of xQ,
we can assume that R!Q is a union of sections; in other words, we can index the
marked points of Œu� in xQ globally. We then pick an indexing so that for �� l the �–th
section of the marked points R� lies in E� . For �D 1; : : : ; n, where n is the number of
marked points, we let U�W xQ! L2 be

U�
def
D U jR� W R� Š xQ �! L2 �W :

Since L2�D2 is isomorphic to L2�
xQ�D2�

xQ under the contraction W!W � xQ
and since R� lies in E� , for ˛ � l the morphism U� is exactly the �� under the
isomorphism A1

� Š L2 � q2 , and U�� NL=D is canonically isomorphic to ��� NL2=D2
.

Because D2 is fixed by T� , NL2=D2
is fixed as well, and hence ��� NL2=D2

is a trivial
line bundle on xQ with trivial T�–linearization.

Because HD
Ln
�D1 U�� NL=D (see Section 5.5),

Ll
�D1 �

�
� NL2=D2

becomes a direct
summand of H . Because it has weight zero, it induces a canonical homomorphism

lM
�D1

��� NL2=D2
�! T 2

T�
;

a weight zero subsheaf of T 2
T�

.

Lemma 5.19 The homomorphism
Ll
�D1 �

�
� NL2=D2

! T 2
T�

in (5-7) is injective, and
is a direct summand of T 2

T�
.

Proof First the first l marked points lie in the connected components of X Œ2� that
are connected to the domain of at least one �k;c in W . Because all deformations of
�k;c as T�–invariant maps are �k;c0 , and they intersect D2 in L2 only; hence for
these � even if we do not impose the condition U.R�/ � L2 the condition will be
satisfied automatically. In short, the arrow zT 1

T�
!HT� has image lying in the summand
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Ln
�DlC1 U�� NL=D . This proves that the homomorphism

Ll
�D1 �

�
� NL2=D2

! T 2
T�

is
injective.

We now show that this subsheaf is canonically a summand of the obstruction sheaf. The
ordinary moduli of stable relative morphisms M��; Ed ; E�.W rel/ requires that the marked
points be sent to the relative divisor. The moduli space „DM��; Ed ; E�.W rel;L/ imposes
one more restriction: the marked points be sent to L�D . The obstruction sheaves
of the two moduli spaces are related by the exact sequence (5-7) because of the exact
sequences

0 �!NLi=Di
�!NLi=W �!NDi=W jLi

�! 0:

In our case, Li is a P1 and the above exact sequence splits T –equivariantly. Hence
the sheaf T 2

T�
splits off a factor that is the cokernel of zT 1

T�
! HT� . ThereforeLl

�D1 �
�
� NL2=D2

, which is a summand of HT� and a subsheaf of T 2
T�

, becomes
a summand of T 2

T�
.

5.7 Proof of Theorem 4.8

Before presenting the proof, a quick review of the construction of the virtual cycles of
moduli stacks is in order.

Let T D .C�/2 and „ be as before. As shown in [3; 4; 21], the virtual cycle Œ„�vir is
constructed by

(a) identifying the perfect obstruction theory of „;

(b) picking a vector bundle5 (locally free sheaf) E on „ so that it surjects onto the
obstruction sheaf of „;

(c) constructing an associated cone C �E of pure dimension rank E .

The virtual cycle Œ„�vir is the image of the cycle ŒC �2H2r .E;E�„/ under the Thom
isomorphism

'E W H2r .E;E �„/ �!H0.„/; r D rank E:

Here as usual, we denote by E the total space of E and denote by „ � E its zero
section that is isomorphic to „. Also, all homologies are taken with Q–coefficient.
And 'E ŒC � 2H0 because „ has virtual dimension zero.

Following [11], we can make the above construction T –equivariant. We choose E

be a T –equivariant vector bundle. Then the cone C alluded before is a T –invariant
subcone of E . Because C �E is T –equivariant, the limiting class of

ŒC �TR BlTR� 2H2rC4l

�
E �TR BlTR

�
5It was shown in [20] the existence of a global vector bundle E can be replaced by that „ is dominated

by a quasi-projective scheme.
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defines a T –equivariant ŒC �T 2H T
2r
.E;E�„/; its image under the T –equivariant

Thom isomorphism 'E is the T –equivariant virtual moduli cycle

'E

�
ŒC �T

�
D Œ„�vir;T

2H T
0 .„/:

We now prove that the class Œ„�vir;T can be lifted to H T
0
.„1[„2/. Since U is disjoint

from „T , elements in U have stabilizers of at most dimension one. Clearly, the set of
those with finite stabilizers, denoted by U0 , is open in U . Those with one dimensional
stabilizers form a closed subset of U . By the conclusions from the previous two
sections, each of its connected component is a connected component of ….G/ for some
one-dimensional G � T . As before we denote such connected components by Qa ,
indexed by a set a 2A, namely

U D U0[

[
a2A

Qa:

Also, for each a 2A, it associates to a subgroup Ga � T so that Qa is a connected
component of ….Ga/.

As Ga is a subgroup of T , it associates to a triple of relatively prime integers
.a1; a2; a3/. To streamline the discussion, we remark that we only need to consider
two cases:

(1) a1 , �a2 and �a3 are positive;

(2) .a1; a2; a3/D .1;�1; 0/.

Indeed, since the symmetry of .P1/3 defined by .z1; z2; z3/ 7! .z2; z3; z1/ lifts to a sym-
metry of W , any statement that holds true for .a1; a2; a3/ holds true for .a2; a3; a1/.
Consequently, we only need to work with the cases that ja1j � ja2j and ja3j. Then
because .a1; a2; a3/ and .�a1;�a2;�a3/ define the same subgroup G � T , we can
assume further that a1 > 0. Hence either a2 and a3 < 0 or one of them is zero. The
former is case (1); for later, by applying the S3 symmetry we can reduce it to case (2).

We now suppose that T�a�T belongs to the two classes just mentioned. We let Qa be
a connected component of ….Ga/ associated to Ua . According to Lemmas 5.14 and
5.18, after a finite branched covering �aW

xQa!Qa , xQa is isomorphic to Qa;0 �Al

for some integer l > 0.

Next, we need to investigate the T –action on xQa . Since xQa is fixed by Ga and is
invariant under T , the T –action on it is determined by the action of a G0 DC� � T

complement to Ga . Since the list of Ga � T appeared in this construction is finite,
we can pick such a G0 so that G0 �Ga D T for all Ga � T . By going through the
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construction, we see immediately that the G0 –action on xQa is the product of the action
on xQa;0 induced by that on „1 and the action

(5-18) .u1; � � � ;ul/
�
D .�w1u1; � � � ; �

wl ul/ 2Al

for some w D .w1; � � � ; wl/, where w� 2Q� . In case some w� are nonintegers, we
let d be the least common multiple of the denominators of all w� and replace the G0

action by composing it with the degree d homomorphism G0! G0 . This way the
new exponents are dw� , which are integers. Thus without loss of generality, we can
assume that all wi are integers in the first place. Hence if we let PaW

xQa! Al be
the projection, which is .�1; � � � ; �l/ by our convention, and if we endow Al with the
G0 –action (5-18), then xQa!Al is G0 –equivariant.

We can quotient the pair xQa!Al by G0 now. We let xQa;0�
xQa be the union of fibers

over „T , which by our previous study is exactly the preimage P�1
a .0/. Accordingly,

we let .Al/� DAl � 0 and form

�aW Ma
def
D
�
xQa�

xQa;0

�
=G0 �! .Al/�=G0 D P l�1

w :

Here we use the subscript w to indicate the weights and the superscript l � 1 to
denote the dimension of the weighted projective space; to be precise, we shall view the
weighted projective space as a DM-stack. Since the specific weight is irrelevant to our
study, we shall not keep track of it in our study.

We next put our prior knowledge of the invariant part of the obstruction sheaf of Qa in
this setting. We let T 2

a be the obstruction sheaf on xQ and let T 2
a;T�a

be its invariant
part. By Lemmas 5.15 and 5.19, there is a canonical quotient sheaf homomorphism

(5-19) T 2
a;T�a

�!

lM
�D1

��� OA1
�
;

both with trivial T�a –actions.

A direct check shows that to each � there is a G0 –linearization on OA1
�

so that the above
homomorphism is G0 –equivariant. Because G0 �GaDT , the adopted G0 –linearization
and the trivial Ga –linearization on OA1

�
makes (5-19) T –equivariant.

Since the obstruction sheaf T 2 on „ is a T –equivariant quotient sheaf of E , pulling
back to xQa , denoting it by Ej xQa

, and then composing with (5-19) give us a T –
equivariant quotient sheaf

(5-20) Ej xQa
�!

lM
�D1

��� OA1
�
:
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Their descents to Ma then give us a vector bundle Fa over Ma and a quotient homo-
morphism

Fa �! ��aVa:

Here Va is the descent (or the G0 –quotient) of
Ll
�D1OA1

�
—a rank l vector bundle

on P l�1
w with trivial T –action; Fa is the descent of E , a vector bundle over Ma .

We need a key technical lemma recently proved in [15, Lemma 2.6] concerning the
cone C �E and its restriction to Qa .

Lemma 5.20 [15] Let C jQa
�EjQa

be the restriction of C �E to Qa ; let C j xQa
�

Ej xQa
be the pull back of C jQa

to xQa .Then C j xQa
lies in the kernel bundle of the

homomorphism (5-20).

Before we prove Theorem 4.8, we need to recall the convention we shall adopt in
dealing with „ using analytic method. We now work with the analytic category in the
remainder of this section. By viewing „ as an orbifold, every point x 2„ is covered
by charts

p˛W x˛ 2 V˛ �! x 2 V˛=H˛ � „;

where V˛ are (possibly singular) analytic spaces acted on by finite groups H˛ . For
two charts Vˇ and V˛ over the same p˛.V˛/Dpˇ.Vˇ/, we say Vˇ is over V˛ if there
is a group homomorphism Hˇ ! H˛ and an Hˇ–equivariant map �˛ˇW Vˇ ! V˛
commuting with the projections p˛ and pˇ . We say xˇ 2 Vˇ is over x˛ 2 V˛ if in
addition we have �ˇ˛.xˇ/D x˛ .

Since „ is an orbifold, it is covered by charts defined, and for any two charts x˛ 2 V˛
and xˇ 2 Vˇ of x 2 „, there is a third chart x 2 V of x 2 „ that is over both
x˛ 2 V˛ and xˇ 2 Vˇ .

The vector bundle E!„ pulls back to H˛–equivariant vector bundles E˛ on V˛ .
To define Gysin map with Q–coefficients, we can use Q–sections6 of E , which are
collections of compatible Q–sections on a covering charts of „.

Proof of Theorem 4.8 We first argue that we can find a TR –equivariant Q–section
of E over U that is disjoint from the cone C jU �EjU .

6A Q–section of EjV˛=H˛ is an H˛ –invariant weighted union of C1–sections of E˛ : Œs� DP
ai Œsi � with ai 2Q�0 ,

P
ai D 1 and si are sections of E˛ . The sum of Œs� with Œs0�D

P
a0i Œs
0
i � is

Œs�C Œs0�D
P

aia
0
j Œsi C s0j � . Here each Œsi � is viewed as a subset of V˛ with multiplicity one. We can scale

a section Œs� by a smooth function � on V˛=H˛ (or a H˛ –invariant function on V˛ ) by Œ�s�D
P

ai Œ�si � .
To extend the section Œs� , we can first extend each si individually and then averaging using H˛ to make it
H˛ –invariant. Two Q–sections over V˛ and Vˇ are equal over a third chart V over V˛ and Vˇ if the
pull back of the two sections to V are identical.
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We will construct the desired section of EjU by first constructing sections of EjQ�a
and then extend them to U . Since we will be content with Q–section, we can construct
such section over xQ�a D ��1

a .Q�a /. We let

�aW xQ�a �!Ma and Ej xQ�a �! ��a Fa �! ��a�
�
aVa

be the tautological map constructed before Lemma 5.20.

Since Va is a rank l (orbi)bundle on a P l�1
w , the rank l > dim P l�1

w guarantees that
there are Q–sections Œsa� of Va that is disjoint from the zero section of Va . We now
pick an analytic TR –equivariant splitting of Ej xQ�a so that

Ej xQ�a D �
�
a�
�
aVa˚E?j xQ�a

Such splitting exists if we pick a TR –invariant hermitian metric on E . Using this
splitting, we can lift the sections Œsa� of Va to a Q–section of E over xQ�a . By pushing
this section to Q�a , we obtain a Q–section of E over Q�a . By working over all Q�a ,
we obtain a Q–section on [a2AQ�a . We denote this section by Œs�Q . By Lemma 5.20,
Œs�Q is disjoint from the restriction of the cone C �E to Q�a for all a 2A.

Next, since [a2AQ�a is closed in U , we can extend Œs�Q to a TR –invariant Q–
section Œs�ex

Q of E in a TR –invariant neighborhood of [a2AQ�a � U . We denote this
neighborhood by V :

U � V �[a2AQ�a :
Since Œs�Q is disjoint with the cone C �E , by choosing V small, we can assume that
the extension Œs�ex

Q remains disjoint with the cone C �E .

Finally, we need to extend Œs�ex
Q to over U . This time, since elements in U0 have finite

stabilizers in TR ,
U0 D U0=TR and E DEjU0

=TR;

are an orbifold and an orbibundle over it. Also, since the restriction of Œs�ex
Q to V is

TR –equivariant, it descends to a Q–section of E over

V D .V \U0/=TR � U0:

We denoted this section by Œs�. Because the quotient C D C jU0
=TR is a cone of pure

R–dimension 2r � 2 in E , (recall that virtual dimension of „ is zero means that C

has pure complex dimension r ,) and because E is a rank 2r (real) orbibundle over
U0 , by a generic position argument and possibly after shrinking V if necessary, we
can extend Œs� to a Q–section Œs�ex of E over U0 so that it is disjoint with the cone C .
The pull back of Œs�ex over to EjU0

is the desired Q–section that is TR –equivariant,
is disjoint with the cone C jU0

and is an extension of Œs�Q .
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Since Œ„�vir;T D 'E ŒC �, the existence of a TR –equivariant Q–section disjoint from
C jU implies that the image ˇ.Œ„�vir;T / D 0 for ˇ the arrow shown below. By the
exact sequence

H
TR
0
.„�U / �!H

TR
0
.„/

ˇ
�!H

TR
0
.U / �! 0;

we see that Œ„�vir;T lifts to a class in H
TR
0
.„1 [ „2/ since „ � U D „1 [ „2 .

Combined with the comment at the end of Section 5.2 we complete the proof of the
theorem.

6 Topological vertex, Hodge integrals and double Hurwitz
numbers

In this section, we will investigate a general topological vertex and compute its formal
relative GW-contribution introduced in (4-5). According to its definition (Definition 5.1),
the topological vertex �nIw1;w2

is a FTCY as in Figure 10, where nD .n1; n2; n3/ 2

Z˚3 ,

(6-1) f1Dw2�n1w1; f2Dw3�n2w2; f3Dw1�n3w3; w3D�w1�w2I

its GW-invariants contribution we denote by

(6-2) F�
�; E�
.nIw1; w2/

def
D F

��nIw1;w2

�; Ed ; E�
.u1;u2/;

where the RHS is defined by (4-5).

To simplify the notation, we will fix nD .n1; n2; n3/ and .w1; w2/ once and for all
and write � instead of �nIw1;w2

.

v0 v1

v2

v3

p.e1/D w1

p.e2/D w2

p.e3/D w3

f.e1/D f1

f.e2/D f2

f.e3/D f3

Figure 10: The graph of a topological vertex
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6.1 Torus fixed points and label notation

In this subsection, we describe the T –fixed points in SM��; E�.�/
def
D SM��; Ed ; E�. yY rel; yL/,

and introduce the label notation. Such label corresponds to a disjoint union of connected
components of

SM��; E�.�/T D SM��; E�.�/TR ;

or equivalently, a collection of graphs in the graph notation.

Let yY rel D . yY ; yD/ be the FTCY associated to � , and let

yDi
D yDvi ; C i

D C xei

for iD1; 2; 3. Given uW .X;q/�!
�
yYm; yDm

�
, which represents a point in SM��; E�.�/T ,

we introduce its associated map

zuD �m ıuW X ! yY rel
� ;

where �mW yYm! yY is the projection defined in Section 4.1. Then zu.X /�C 1[C 2[C 3 .
Let z0 and zi be the two T fixed points on C i , and let

V i
D zu�1.zi/; i D 0; 1; 2; 3:

We also let Ei be the closure of zu�1.C i nfz0; zig/ for i D 1; 2; 3. Then Ei is a union
of projective lines, and ujEi W Ei!C i is a degree d i D j�i j cover fully ramified over
z0 and zi .

For i D 1; 2 or 3, we then define

P i.mi/D ��1
m .zi/;

which is a point if mi D 0 and a chain of mi copies of P1 if mi > 0. We let

yui
D ujV i W V i

�! P i.mi/; zui
D ujEi W Ei

�! C i :

The degrees of zui restricted to connected components of Ei determine a partition �i

of d i .

For the same i , we let V i
1
; : : : ;V i

ki be the connected components of V i , and let gi
j be

the arithmetic genus of V i
j . (We define gi

j D 0 if V i
j is a point.) We introduce

�i
D

kiX
jD1

.2� 2gi
j /:

�

3X
iD0

�i
C 2

3X
iD1

`.�i/D��:Then
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Note that �i � 2 minf`.�i/; `.�i/g for i D 1; 2; 3, so

��i
C `.�i/C `.�i/� 0

and the equality holds if and only if mi D 0. In this case, we have �i D �i and
�i D 2`.�i/.

We introduce moduli spaces of relative stable maps to the nonrigid .P1; f0;1g/ (called
rubber in [30] etc.):

SM���;�;�
def
D SM��.P1; �; �/==C�:

The quotient SM��.P1; �; �/==C� is defined in [23, Section 5].

For each i 2 f1; 2; 3g, there are two possibilities:

Case 1 mi D 0. Then yui is a constant map from `.�i/ points to pi .

Case 2 mi > 0. Then yui represents a point in SM���i ;�i ;�i .

Definition 6.1 An admissible label of SM��; E�.�/ is a pair .E�; E�/ such that

(1) E�D .�0; �1; �2; �3/, where �i 2 2Z;

(2) E� D .�1; �2; �3/, where �i is a partition such that j�i j D j�i j;

(3) �0 � 2
P3

iD1 `.�
i/;

(4) �i � 2 minf`.�i/; `.�i/g for i D 1; 2; 3;

(5) �
P3

iD0 �
i C 2

P3
iD1 `.�

i/D��.

Let G��; E�.�/ denote the set of all admissible labels of SM��; E�.�/.

For a nonnegative integer g and a positive integer h, let SMg;h be the moduli space
of stable curves of genus g with h marked points. Although SMg;h is empty for
.g; h/D .0; 1/; .0; 2/, for notational simplicity, we agree that:Z

SM0;1

1

1� d 
D

1

d2
;

Z
SM0;2

1

.1��1 1/.1��2 2/
D

1

�1C�2

:

This convention will fit in with the general results.

For a nonnegative integer g and a positive integer h, let SM�
�;h

be the moduli of
possibly disconnected stable curves C with h marked points such that
� if C1; : : : ;Ck are connected components of C and gi are the arithmetic genus

of Ci , then
kX

iD1

.2� 2gi/D �I

� each connected component contains at least one marked point.
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The connected components of SM�
�;h

are of the form

SMg1;h1
� � � � � SMgk ;hk

; where
kX

iD1

.2� 2gi/D �;

kX
iD1

hi D h:

The restriction of the Hodge bundle E! SM�
�;h

to the above connected component is
the direct sum of the Hodge bundles on each factor; the Hodge integral

ƒ_.u/D

kY
iD1

ƒ_gi
.u/:

We define

SME�;E� D

3Y
iD0

SME�;E�
i ;

where SME�;E�
0 D SM�

�0;`.E�/
; for i 2 f1; 2; 3g, we define

SME�;E�
i
D

(
fptg; ��i C `.�i/C `.�i/D 0;

SM���i ;�i ;�i ; ��i C `.�i/C `.�i/ > 0:

For each .E�; E�/ 2 G��; E�.�/, there is a morphism iE�;E� W
SME�;E� !

SM��; E�.�/T whose
image FE�;E� is a union of connected components of SM��; E�.�/T . The morphism iE�;E�
induces an isomorphism

SME�;E�

.� 3Y
iD1

AE�;E�
i
�
Š FE�;E� ;

where AE�;E�
i is the automorphism group associated to the edge ei :

AE�;E�
i
D

`.�i /Y
jD1

Z�i
j
;��i

C `.�i/C `.�i/D 0I

1!

`.�i /Y
jD1

Z�i
j
!AE�;E�

i
! Aut.�i/! 1;��i

C `.�i/C `.�i/ > 0:

The set of fixed points SM��; E�.�/T is a disjoint union of

fFE�;E� j .E�; E�/ 2G��; E�.�/g:

Remark 6.2 There are two perfect obstruction theories on FE�;E� : one is the fixed part
ŒT 1;f ! T 2;f � of the restriction of the perfect obstruction theory on SM��; E�.�/; the
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other comes from the perfect obstruction theory on the moduli spaces SM�
�0;`.E�/

and
SM���i ;�i ;�i . It is straightforward to check that they coincide.

6.2 Contribution from each label

We view wi and fi in Equation (6-1) as elements in

Zu1˚Zu2 DƒT ŠH 2
T .pt;Q/:

Recall that H�
T
.ptIQ/DQŒu1;u2�. The results of localization calculations will involve

rational functions of wi and fi which are elements in Q.u1;u2/.

If mi > 0, let  0
i ;  

1
i denote the target  class of SMi

E�;E�
(see eg [23, Section 5] for

definitions). Let N vir
E�;E�

denote the virtual bundle on SME�;E� which is the pull back of
T 1;m� T 2;m under iE�;E� .

With the above notation and the explicit description of ŒT 1 ! T 2� in Section 4.3,
calculations similar to those in [22, Appendix A] show that

1

eT .N
vir
E�;E�
/
D

3Y
iD0

Bvi

3Y
iD1

Bei
;

Bv0
D

3Y
iD1

a�iƒ_.wi/w
`.E�/�1
iQ`.�i /

jD1
.wi.wi � �

i
j 

i
j //
;where

and for i 2 f1; 2; 3g:

Bvi
D

8̂<̂
:

1; ��i C `.�i/C `.�i/D 0

.�1/`.�
i /��i=2a�i

f
��iC`.�i /C`.�i /

i

�wi � 
0
i

; ��i C `.�i/C `.�i/ > 0

Bei
D .�1/j�

i jniC`.�i /�j�i j

`.�i /Y
jD1

Q�i
j
�1

aD1
.wiC1�

i
j C awi/

.�i
j � 1/!w

�i
j
�1

i

The disconnected double Hurwitz numbers H ��;�;� (see Section 2.2) can be related to
intersection of the target  class (see [23, Section 5] for a derivation):

H ��;�;� D
.��C `.�/C `.�//!

jAut.�/�Aut.�/j

Z
Œ SM���;�;��vir

. 0/��C`.�/C`.�/�1
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The three-partition Hodge integral G�
�; E�
.w/ defined by (2-14) in Section 2.3 can be

expressed as

G�
�;E�
.w/D .�

p
�1/`.E�/V�;E�.w/

3Y
iD1

E�i .wiC1; wi/;

where

V�;E�.w/D
1

jAut.E�/j

Z
SM�
�;`.E�/

3Y
iD1

ƒ_.wi/w
`.E�/�1
iQ`.�i /

jD1
.wi.wi � �

i
j 

i
j //
;(6-3)

E�.x;y/D

`.�/Y
jD1

Q�j�1

aD1
.y�j C ax/

.�j � 1/!x�j�1
:(6-4)

IE�;E�.nIw/D
Z
ŒFE�;E� �vir

1

eT .N
vir
E�;E�
/
:We set

IE�;E�.nIw/D
1Q3

iD1 jAE�;E�
i j

Z
Œ SME�;E� �vir

1

eT .N
vir
E�;E�
/

Then

which equals

jAut. E�/j.�1/
P3

iD1.ni�1/j�i j
�
�
p
�1
�`. E�/C`.E�/

V�0;E�.w/�

�

3Y
iD1

E�i .wi ; wiC1/z�i

�
�
p
�1

fi

wi

���iC`.�i /C`.�i / H �
�i ;�i ;�i

.��i C `.�i/C `.�i//!
:

Therefore,

(6-5) IE�;E�.nIw/

D jAut. E�/j.�1/
P3

iD1.ni�1/j�i j
�
�
p
�1
�`. E�/

G�
�0;E�

.w/

�

3Y
iD1

z�i

�p
�1
�
ni �

wiC1

wi

����iC`.�i /C`.�i / H �
�i ;�i ;�i

.��i C `.�i/C `.�i//!
:
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6.3 Sum over labels

The right hand side of (4-5) can be written as a sum of contributions from SME�;E� , where
.E�; E�/ 2G��; E�.�/, so we have

F�
�; E�
.nIw1; w2/D

1

jAut. E�/j

X
.E�;E�/2G��;E�.�/

IE�;E�.nIw/:

We define generating functions

F�
E�
.�InIw1; w2/D

X
�22Z;��`. E�/

���C`. E�/F�
�; E�
.nIw1; w2/

zF�
E�
.�InIw1; w2/D .�1/

P3
iD1.ni�1/j�i j

p
�1

`. E�/
F�
E�
.�InIw1; w2/:(6-6)

Then relation (6-5) becomes

(6-7) zF�
E�
.�InIw1; w2/D

X
j�i jDj�i j

G�
E�
.�Iw/

3Y
iD1

z�iˆ��i ;�i

�p
�1
�
ni �

wiC1

wi

�
�
�
;

where G�
E�
.�Iw/ is defined by (2-13) in Section 2.3; ˆ��;�.�/ is the generating function

of disconnected double Hurwitz numbers defined in Section 2.2.

Equations (6-7), (2-9) and (2-10) imply that

(6-8) zF�
E�
.�InIw1; w2/D

X
j�i jDj�i j

zF�
E�
.�I 0; w1; w2/

3Y
iD1

z�iˆ��i ;�i

�
.
p
�1ni�

�
/:

By Theorem 5.2,

F�
E�
.�I 0Iw1; w2/D

X
�

���C`.E�/F��
0

�; Ed ;E�
.w1; w2/

does not depend on w1; w2 . So F�
E�
.�InIw1; w2/ and zF�

E�
.�InIw1; w2/ do not depend

on w1; w2 by (6-6) and (6-8). From now on, we will write

F�
E�
.�In/; zF�

E�
.�In/

instead of F�
E�
.�InIw1; w2/, zF�E�.�InIw1; w2/. In summary, for each E� 2 P3

C and
each n 2 Z3 , we have defined a generating function F�

E�
.�In/ that are expressed in

terms of Hodge integrals and double Hurwitz numbers as follows.
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Proposition 6.3 We have

(6-9) zF�
E�
.�In/D

X
j�i jDj�i j

G�
E�
.�Iw/

3Y
iD1

z�iˆ��i ;�i

�p
�1
�
ni �

wiC1

wi

�
�
�
:

Proposition 6.3 and the sum formula (2-9) of double Hurwitz numbers imply:

Corollary 6.4 (Framing dependence in winding basis) We have

(6-10) zF�
E�
.�In/D

X
j�i jDj�i j

zF�
E�
.�I 0/

3Y
iD1

z�iˆ��i ;�i

�p
�1ni�

�
:

Note that (6-10) is valid for any three complex numbers n1; n2; n3 .

6.4 Representation basis

The framing dependence (6-10) is particularly simple in the representation basis used
in [1]. For this, we shall use the notation introduced in Section 2.1. We define

(6-11) zC E�.�In/D
X

j�i jDj�i j

zF�
E�
.�In/

3Y
iD1

��i .�i/;

which is equivalent to

zF�
E�
.�In/D

X
j�i jDj�i j

zC �
E�
.�In/

3Y
iD1

��i .�i/

z�i

:

Then (6-10) is equivalent to:

Proposition 6.5 (Framing dependence in representation basis) We have

zC E�.�In/D e
1
2

p
�1.

P3
iD1 ��i ni /� zC E�.�I 0/:

We introduce zC E�.�/D zC E�.�I 0/ and let qD e
p
�1� , then (6-11), (6-9) and the Burnside

formula (2-8) of double Hurwitz numbers imply:
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Proposition 6.6 We have

zC E�.�/D q
� 1

2
.
P3

iD1 ��iwiC1=wi /
X

j�i jDj�i j

G�
E�
.�Iw/

3Y
iD1

��i .�i/;(6-12)

G�
E�
.�Iw/D

X
j�i jDj�i j

3Y
iD1

��i .�i/

z�i

q
1
2
.
P3

iD1 ��iwiC1=wi / zCE�.�/:(6-13)

7 Gluing formulae of formal relative Gromov–Witten invari-
ants

Let � be a FTCY graph (see Definition 3.2), and let . Ed ; E�/ be an effective class of
� (defined in Definition 4.1). In this section, we will calculate the formal relative
Gromov–Witten invariant

F���; Ed ; E�.u1;u2/ 2Q.u2=u1/:

We will reduce the invariance of F��
�; Ed ; E�

(Theorem 4.8) to the invariance of the topo-
logical vertex at the standard framing (Theorem 5.2). We will derive gluing formulae
for such invariants.

As in Definition 4.1, we will use the abbreviation

dxe D Ed.xe/; xe 2E.�/I �v D E�.v/; v 2 V1.�/:

7.1 Torus fixed points and label notation

In this subsection, we describe the T –fixed points in SM��; Ed ; E�. yY rel; yL/, and introduce
the label notation. This is a generalization of Section 6.1.

Given a morphism
uW .X;q/ �! . yYm; yDm/;

which represents a point in SM��; Ed ; E�. yY rel; yL/T , as before we let zuD �m ıuW X ! yY .
Then

zu.X /�
[
xe2E.�/

C xe;

where C xe is defined as in Section 3.5.

Let zv be the T fixed point associated to v 2 V .�/, as in Section 3.5, and let

V v
D zu�1.zv/:
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Let Exe be the closure of zu�1.C xe nfzv0.e/; zv1.e/g/ for xeD fe;�eg 2E.�/. Then Exe

is a union of projective lines, and ujExe W E
xe! C xe is a degree dxe cover fully ramified

over v0.e/ and v1.e/.

For v 2 V1.�/[V2.�/, we define

Pv.mv/D ��1
m .zv/;

which is a point if mv D 0, and is a chain of mv copies of P1 if mv > 0. We let

yuv D ujV v W V
v
! Pv.mv/:

For xe 2E.�/, we define
zuxe D ujExe W E

xe
! C xe:

The degrees of zuxe restricted to connected components of Exe determine a partition
�e D ��e of dxe .

For v 2 V .�/, we let V v
1
; : : : ;V v

kv
be the connected components of V v , and let gvj

be the arithmetic genus of V v
j . (We define gvj D 0 if V v

j is a point.) We define

�v D

kvX
jD1

.2� 2gvj /:

�

X
v2V .�/

�vC
X

e2Eo.�/

`.�e/D��:Then

Given v 2 V1.�/ with v�1
1
.v/D feg, we have �v � 2 minf`.�e/; `.�v/g. Therefore,

(7-1) rv
def
D ��vC `.�e/C `.�v/� 0I

the equality holds if and only if mv D 0, and in this case, �e D �v , �v D 2`.�v/.

For each v 2 V1.�/, there are two cases:

Case 1 mv D 0. Then yuv is a constant map from `.�v/ points to zv .

Case 2 mv > 0. Then yuv represents a point in SM���v;�e;�v .

In case v 2 V2.�/ with v�1
1
.v/D fe; e0g, the same conclusions hold. Namely, we have

�v � 2 minf`.�e; `.�e0/g and

(7-2) rv
def
D ��vC `.�e/C `.�e0/� 0;

and equality holds when the same conclusion as in the case v 2 V1.�/ holds with �v

replaced by �e0 .
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Definition 7.1 An admissible label of SM��; Ed ; E�. yY rel; yL/ is a pair .E�; E�/ such that:

(1) E�W V .�/ �! 2Z. Let �v denote E�.v/.

(2) E�W Eo.�/�! P , where E�.e/D E�.�e/ and jE�.e/j D dxe . We write �e for E�.e/.

(3) For v 2 V1.�/ with v�1
1
.v/D feg, we have �v � 2 minf`.�e/; `.�v/g.

(4) For v 2 V2.�/ with v�1
1
.v/D fe; e0g, we have �v � 2 minf`.�e/; `.�e0/g.

(5) For v 2 V3.�/, define `E�.v/D
P

e2v�1
0
.v/ `.�

e/. Then �v � 2`E�.v/.

(6) �
P
v2V .�/ �

vC 2
P

e2E.�/ `.�
e/D��.

We denote by G��; Ed ; E�.�/ the set of all admissible labels of SM��; Ed ; E�. yY rel; yL/.

Given .E�; E�/2G��; Ed ; E�.�/, define rv as in (7-1) and (7-2) for v 2V1.�/ and v 2V2.�/,
respectively. We define

SME�;E� D

Y
v2V .�/

SME�;E�
v

where

SME�;E�
v
D

8̂̂̂̂
<̂
ˆ̂̂:
fptg; v 2 V1.�/[V2.�/; rv D 0;

SM���v;�e;�v ; v 2 V1.�/; v�1
1
.v/D feg; rv > 0;

SM��
�v;�e;�e0

; v 2 V2.�/; v�1
1
.v/D fe; e0g; rv > 0;

SM��v;`E�.v/; v 2 V3.�/:

For each .E�; E�/ 2G��; Ed ; E�.�/, there is a morphism

iE�;E� W
SME�;E�!

SM��; Ed ; E�. yY rel/T

whose image FE�;E� is a union of connected components of SM��; Ed ; E�. yY rel/T . The
morphism iE�;E� induces an isomorphism

SME�;E�

.� Y
xe2E.�/

AE�;E�
xe

�
Š FE�;E� ;

where AE�;E�
xe is the automorphism group associated to the edge xe :

AE�;E�
xe
D

`.�e/Y
jD1

Z�e
j
; fv0.e/; v1.e/g\V1.�/D fvg ¤∅ and rv D 0I

1!

`.�e/Y
jD1

Z�e
j
!AE�;E�

xe
! Aut.�e/! 1 ; otherwise.
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The fixed points set SM��; Ed ; E�. yY rel; yL/T is a disjoint union of

fFE�;E� j .E�; E�/ 2G��; Ed ; E�.�/g:

7.2 Perfect obstruction theory on fixed points set

There are two perfect obstruction theories on FE�;E� : one is the fixing part ŒT 1;f !T 2;f �

of the restriction of the perfect obstruction theory on SM��; Ed ; E�. yY rel; yL/; the other comes
from the perfect obstruction theory on the moduli spaces

SM��v;`E�.v/ and SM���;�;�:

Let Œ SME�;E� �
vir denote the virtual cycle defined by ŒT 1;f ! T 2;f �. By inspecting the

T –action on the perfect obstruction theory on SM��; Ed ; E�. yY rel; yL/ (see Li [20] and the
description in Section 4), we get

Œ SME�;E� �
vir
D

Y
v2V .�/

Œ SME�;E�
v �vir

where

Œ SME�;E�
v �vir
D

8̂̂̂̂
<̂
ˆ̂̂:
Œfptg�; v 2 V1.�/[V2.�/; rv D 0;

Œ SM���v;�e;�v �
vir
; v 2 V1.�/; v�1

1
.v/D feg; rv > 0;

c1.L/\ Œ SM���v;�e;�e0
�
vir
; v 2 V2.�/; v�1

1
.v/D fe; e0g; rv > 0;

Œ SM��v;`E�.v/�; v 2 V3.�/:

Here L is a line bundle on SME�;E�
v coming from the restriction of the line bundle Lv

on M��; Ed ; E�. yY/ (see Section 4.3).

We now give a more explicit description of L. Let

uW .X;q/ �! .P1.m/;p0;pm/

represent a point in SM���v;�C;�� , where P1.m/ is a chain of m> 0 copies of P1 with
two relative divisors p0 and pm . Let �l be the l –th irreducible component of P1.m/

so that �l \�lC1 D fplg. The complex lines

L0
u D Tp0

�1; L1
u D

m�1O
lD1

Tpl
�l ˝Tpl

�lC1 and L1u D Tpm
�m

form line bundles L0 , L1 and L1 on SM���v;�C;�� when we vary u in SM���v;�C;�� .
The line bundle L is given by

LD L0
˝L1

˝L1:
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Note that
c1.L

0/D� 0; c1.L
1/D� 1;

where  0;  1 are target  classes (see eg [23, Section 5]).

The line bundle L1 has another interpretation. Let D be the divisor in SM���v;�C;��
that corresponds to morphisms with target P1.m/, m> 1, then L1 DO.D/.

Let

(7-3)
J 0
�v;�C;��

D
˚
.�C; ��; �/ j �C; �� 2 2Z; � 2 P; j� j D j�Cj D j��j;

��CC 2`.�/��� D��v; ��˙C `.�˙/C `.�/ > 0
	
:

For each .�C; ��; �/ 2 J 0
�;�C;��

, there is a morphism

��C;��;� W
SM��
�C;�C;�

� SM����;�;�� �! SM���v;�C;��

with image is contained in D . Moreover,

Œ SM���v;�C;�� �vir
\ c1.L

1/

D

X
.�C;��;�/
2J 0�v;�C;��

a�

jAut.�/j
.��C;��;� /�

�
Œ SM��

�C;�C;�
�vir
� Œ SM����;�;�� �vir

�

where a� and Aut.�/ are defined in Section 2.1.

7.3 Contribution from each label

We follow the definitions in Sections 2.1 and 3.3.

In this subsection, we view the position p.e/ and the framing f.e/ as elements in

Zu1˚Zu2 DƒT ŠH 2
T .pt;Q/:

Recall that H�
T
.ptIQ/DQŒu1;u2�. The results of localization calculations will involve

rational functions of p.e/ and f.e/.

Let NE�;E�
vir denote the pull back of T 1;m�T 2;m of FE�;E� under iE�;E� . Let rv be defined

as (7-1) and (7-2). For e 2Eo.�/, let xe D fe;�eg 2E.�/ as before.

With the conventions and the explicit description of ŒT 1! T 2� in Section 4.3, calcula-
tions similar to those in [22, Appendix A] show that

1

eT .NE�;E�
vir/
D

Y
v2V .�/

Bv
Y
xe2E.�/

Bxe;

Geometry & Topology, Volume 13 (2009)



A mathematical theory of the topological vertex 597

where

Bv D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

1 v 2 V1.�/[V2.�/; rv D 0;

.�1/`.�
e/��v=2a�e

f.e/r
v

�p.e/� 0
v 2 V1.�/; v

�1
1
.v/D feg; rv > 0;

.�1/`.�
e/��v=2

�
a�e a�e0 f.e/r

v

.�p.e/� 0/.�p.e0/� 1/

v 2 V2.�/; v
�1
1
.v/D fe; e0g; rv > 0;

Y
e2v�1

0
.v/

a�eƒ_.p.e//p.e/`E�.v/�1Q`.�e/
jD1

�
.p.e/.p.e/� �e

j 
e
j /
�
/

v 2 V3.�/I

Bxe D .�1/n
edxe
�

8̂̂̂̂
<̂
ˆ̂̂:

E�e

�
p.e/; l0.e/

�
�E�e

�
p.�e//; l0.�e/

� v0.e/; v1.e/ 2 V3.�/;

.�1/`.�
e/�dxe E�e .p.e/; l0.e// v0.e/ 2 V3.�/; v1.e/ … V3.�/;

1 v0.e/ … V3.�/; v1.e/ … V3.�/:

Recall that ne is defined in Definition 3.4 and E�.x;y/ is defined by (6-4).

For v 2 V2.�/, we haveZ
Œ SME�;E�v�vir

f.e/r
v

.�p.e/� 0/.�p.e0/� 1/

D

Z
Œ SM��

�v;�e ;�e0
�vir

f.e/r
v

c1.L/

.�p.e/� 0/.p.e/� 1/

D

Z
Œ SM��

�v;�e ;�e0
�vir

f.e/r
v

.�p.e/� 0C p.e/� 1C c1.L
1//

.�p.e/� 0/.p.e/� 1/

D

Z
Œ SM��

�v;�e ;�e0
�vir

f.e/r
v

p.e/� 1
C

Z
Œ SM��

�v;�e ;�e0
�vir

f.e/r
v

�p.e/� 0

C

X
.�C;��;�/
2J
�v;�e ;�e0

a�

jAut.�/j

Z
Œ SM��

�C;�e ;�
�vir

f.e/
r
C

�C;�

�p.e/� 0

Z
Œ SM��

��;�;�e0
�vir

f.e/r
�
��;�

p.e/� 1

D jAut.�e/�Aut.�e0/j
� f.e/

p.e/

�rv X
.�C;��;�/
2J
�v;�e ;�e0

.�1/
r
C

�C;�

H �
�C;�e;�

rC
�C;�

!
z�

H �
��;�;�e0

r���;� !
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where rC
�C;�

D��CC `.�e/C `.�/, r���;� D��
�C `.�/C `.�e0/, and

(7-4) J�v;�e;�e0 D J 0
�v;�e;�e0 [f.2`.�

e/; �; �e/; .�; 2`.�e0/; �e0/g:

Given v 2V3.�/, we can arrange v�1
0
.v/Dfe1; e2; e3g so that p.e1/^p.e2/Du1^u2 .

Therefore the ordering .e1; e2; e3/ is unique up to cyclic permutation. Let

(7-5) E�v D .�e1 ; �e2 ; �e3/; wv D .p.e1/; p.e2/; p.e3//:

Then V�v;E�v .wv/ is independent of choice of cyclic ordering of e1; e2; e3 , where
V�;E�.w/ is defined by (6-3). Set

IE�;E�.u1;u2/D

Z
ŒFE�;E� �vir

1

eT .NE�;E�
vir/
:

Then the following holds:

IE�;E�.u1;u2/

D
1Q

xe2E.�/ jAE�;E�
xej

Z
Œ SME�;E� �vir

1

eT .NE�;E�
vir/

D jAut. E�/j
Y
xe2E.�/

.�1/n
edxe z�e

Y
v2V3.�/

V�v;E�v .w
v/

Y
e2v�1

0
.V3.�//

E�e .p.e/; l1.e//

�

Y
v2V1.�/;v1.e/Dv

p
�1

`.�e/C`.�v/
.�1/d

xe

�

�p
�1

f.e/

p.e/

�rv H ��v;�e;�v

rv!

�

Y
v2V2.�/

v�1
1
.v/Dfe;e0g

�
p
�1

`.�e/C`.�e0 /
�p
�1

f.e/

p.e/

�rv

�

X
.�C;��;�/
2J
�v;�e ;�e0

H �
�C;�e;�

rC
�C;�

!
.�1/`.�/z�

H �
��;�e0 ;�

r���;� !

�

So we have:

IE�;E�.u1;u2/D jAut. E�/j
Y
xe2E.�/

.�1/n
edxe

Y
v2V3.�/

p
�1

`E�.v/
G�
�v;E�v

.wv/

�

Y
v2V1.�/;
v1.e/Dv

p
�1

`.�v/C`.�v/
.�1/d

xe
�p
�1

f.e/

p.e/

�rv H �
�v;�v;�i

rv!
(7-6)

Geometry & Topology, Volume 13 (2009)



A mathematical theory of the topological vertex 599

�

Y
v2V2.�/

v�1
1
.v/Dfe;e0g

�
p
�1

`.�e/C`.�e0 /
�
p
�1

f.e/

p.e/

�rv

�

X
.�C;��;�/
2J
�v;�e ;�e0

H �
�C;�e;�

rC
�C;�

!
z� .�1/`.�/

H �
��;�e0 ;�

r���;� !

�

7.4 Sum over labels

Finally, with the notation above, the formal relative GW invariants of a general FTCY
graph � are

F���; Ed ; E�.u1;u2/D
1

jAut. E�/j

X
.E�;E�/2G��.�;

Ed ; E�/

IE�;E�.u1;u2/:

Define a generating function

(7-7) F��
Ed ; E�
.�Iu1;u2/D

X
�22Z;��`. E�/

���C`. E�/F���; Ed ; E�.u1;u2/:

Then (7-6) becomes

F��
Ed ; E�
.�Iu1;u2/DX

j�xe jD Ed.xe/

Y
xe2E.�/

.�1/n
edxe z�xe

Y
v2V3.�/

p
�1

`.E�v/
G�
E�v
.�Iwv/

�

Y
v2V1.�/;
v1.e/Dv

.�1/d
xep
�1

`.�e/C`.�v/
ˆ��e;�v

�p
�1

f.e/

p.e/
�
�

(7-8)

�

Y
v2V2.�/;

v�1
1
.v/Dfe;e0g

p
�1

`.�e/C`.�e0 /
ˆ��e;�

�p
�1

f.e/

p.e/
�
�
.�1/`.�/z�ˆ

�

�e0 ;�

�p
�1

f.e0/

p.e0/
�
�

where G�
E�

is defined by (2-13), wv is defined in (7-5), and ˆ��;� is defined in Section
2.2. Equations (6-9) and (6-6) imply:

(7-9)
p
�1

`. E�/
G�
E�
.�I p.e1/; p.e2/; p.e3//

D
p
�1

`. E�/ X
j�i jDj�i j

zF�
E�
.�I 0/

3Y
iD1

z�iˆ��i ;�i

�p
�1

l0.ei/

p.ei/
�
�
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D .�1/
P3

iD1
Ed.xei /

X
j�i jDj�i j

F�
E�
.�I 0/

3Y
iD1

p
�1

`.�i /�`.�i /
z�iˆ��i ;�i

�
�
p
�1

l0.ei/

p.ei/
�
�

7.5 Invariance

In this subsection, we prove that formal relative Gromov–Witten invariants are rational
numbers independent of u1;u2 (Theorem 4.8). We will use operations on FTCY graphs
such as smoothing and normalization (defined in Section 3.4) to reduce this to the
invariance of the topological vertex (Theorem 5.2).

Let � be a FTCY graph, and let

�2 D �V2.�/; �
2
D �V2.�/:

Then �2 , �2 are regular FTCY graphs. We call �2 the full smoothing of � , and �2

the full resolution of � . We have surjective maps

�2 D �V2.�/W E
o.�/!Eo.�2/; �

2
D �V2.�/W V .�2/! V .�/:

Definition 7.2 Let � be a FTCY graph, and let �2 be the full resolution of � . Let
. Ed ; E�/ be an effective class of � . A splitting type of . Ed ; E�/ is a map E� W V2.�/! P
such that jE�.v/j D Ed.xe/ if v1.e/D v .

Given a splitting type E� of an effective class . Ed ; E�/ of � , let . Ed ; E�t E�/ denote the
effective class of �2 defined by Ed W E.�2/DE.�/! Z�0 and

E�t E�.v/D

�
E�.�2.v//; �2.v/ 2 V1.�/

E�.�2.v//; �2.v/ 2 V2.�/:

Let S Ed ; E� denote the set of all splitting types of . Ed ; E�/.

The following is clear from the expression (7-8).

Lemma 7.3 Let � be a FTCY graph, and let . Ed ; E�/ be an effective class of � . Then

F��
Ed ; E�
.�Iu1;u2/D

X
�2S Ed ;E�

zE�F��
2

Ed ; E�tE�
.�Iu1;u2/

where zE� D
Q
v2V2.�/

zE�.v/ .
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By Lemma 7.3, it suffices to consider regular FTCY graphs. For a regular FTCY graph
� , (7-8) reduces to

(7-10)

F��
Ed ; E�
.�Iu1;u2/D

X
j�xe jDdxe

Y
xe2E.�/

.�1/n
edxe z�xe

Y
v2V3.�/

p
�1

`.E�v/
G�
E�v
.�Iwv/

�

Y
v2V1.�/;v1.e/Dv

.�1/d
xep
�1

`.�e/C`.�v/
ˆ��e;�v

�
p
�1

f.e/

p.e/
�

�

since V2.�/D∅.

Let . Ed ; E�/ be the effective class of a regular FTCY graph. Let P Ed ; E� be the set of all
maps E�W Eo.�/! P such that

� jE�.e/j D dxe ;

� E�.e/D E�.v/ if v0.e/D v 2 V1.�/.

Note that we do not require E�.e/ D E�.�e/. Denote E�.e/ by �e . Given v 2 V3.�/,
there exist e1; e2; e3 2E.�/, unique up to a cyclic permutation, such that v�1

0
.v/D

fe1; e2; e3g and p.e1/^ p.e2/D u1 ^u2 . Define

(7-11) E�v D .�e1 ; �e2 ; �e3/ and zE�v D z�e1 z�e2 z�e3 :

Note that F�
E�v
.�I 0/ and zE�v are invariant under cyclic permutations of e1; e2; e3 , thus

well-defined.

Using (7-9) and the sum formula (2-9) of double Hurwitz numbers, we can rewrite
(7-10) as follows:

(7-12) F��
Ed ; E�
.�Iu1;u2/

D

X
E�2P Ed ;E�

Y
v2V3.V /

F�
E�v
.�I 0/zE�v

Y
xe2E.�/

p
�1

`.�e/�`.��e/
.�1/n

edxeˆ��e;��e .
p
�1ne�/:

Note that the right hand side of (7-12) does not depend on u1;u2 . This completes the
proof of Theorem 4.8. From now on, we write F��

Ed ; E�
.�/ instead of F��

Ed ; E�
.�Iu1;u2/.

We define

F���; Ed ; E� D F���; Ed ; E�.u1;u2/;

to be formal relative Gromov–Witten invariants of yY rel
�

.
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7.6 Gluing formulae

Let . Ed ; E�/ be an effective class of a regular FTCY graph � . Let

T Ed ; E� D
n
E�W E.�/! P

ˇ̌̌
jE�.e/j D Ed.xe/; E�.�e/D E�.e/t

o
:

Note that we do not require E�.e/D E�.v/ if v0.e/D v 2 V1.E/. We have

(7-13) F�
E�
.�I 0/D

.�1/j�
1jCj�2jCj�3j

p
�1

`. E�/

X
j�i jDj�i j

zCE�.�/

3Y
iD1

��i .�i/

z�i

;

where zCE�.�/D zCE�.�I 0/. Applying (7-13) and the Burnside formula (2-8) of double
Hurwitz numbers, we see that (7-12) is equivalent to the following.

Proposition 7.4 Let � be a regular FTCY graph. Then

F��
Ed ; E�
.�/

D

X
E�2T Ed ;E�

Y
xe2E.�/

.�1/.n
eC1/dxe e�

p
�1��e ne�=2

Y
v2V3.�/

zCE�v .�/
Y

v2V1.�/
v0.e/Dv

��e .�v/
p
�1

`.�v/
z�v

:

Recall that ��e is defined by (2-3), and we have n�e D�ne , ��t D��� , so

���e n�e
D �.�e/t � .�ne/D ��e ne:

Theorem 7.5 (Gluing formula) Let � be a FTCY graph, and let �2 and �2 be its
full smoothing and its full resolution, respectively. Let . Ed ; E�/ be an effective class of
� which can also be viewed as an effective class of �2 . Then

F
��2

Ed ; E�
.�/D F��

Ed ; E�
.�/D

X
E�2S Ed ;E�

zE�F��
2

Ed� ; E�tE�
.�/:

Proof By Lemma 7.3 and Proposition 7.4, it suffices to show that if j�j D j�j D d ,
then X

j� jDd

��.�/
p
�1

`.�/
z�

z�
��.�/

p
�1

`.�/
z�

D .�1/dı�.�t /;

which is obvious.
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7.7 Sum over effective classes

Given a regular FTCY graph, let Eff.�/ denote the set of effective classes of � .
Introduce formal Kähler parameters

tD ftxe W xe 2E.�/g

and winding parameters

pD fpv D .pv1 ;p
v
2 ; : : :/ W v 2 V1.�/g

We define the formal relative Gromov–Witten partition function of yY rel
�

to be

(7-14) Z�
rel.�I tIp/D

X
. Ed ; E�/2Eff.�/

F��
Ed ; E�
.�/e�

P
xe2E.�/

Ed.xe/txe
Y

v2V1.�/

pv�v

where pv� D pv�1
� � �pv�`.�/ .

Let T � denote the set of pairs .E�; E�/ such that

� E�W Eo.�/! P such that E�.�e/D E�.e/t ;

� E�W V1.�/! P ;

� j�ej D j�vj if v0.e/D v .

We abbreviate E�.e/ to �e for e 2 Eo.�/, abbreviate E�.v/ to �v for v 2 V1.�/,
and define E�v by (7-11) for v 2 V3.�/. The following is a direct consequence of
Proposition 7.4.

Corollary 7.6

Z�
rel.�I tIp/D

X
.E�; E�/2T�

Y
xe2E.�/

e�j�
e jtxe .�1/.n

eC1/j�e je�
p
�1��e ne�=2

�

Y
v2V3.�/

zCE�v .�/
Y

v2V1.�/;v0.e/Dv

��e .�v/
p
�1

`.�v/
z�v

8 Combinatorial expressions for the topological vertex

We use the notation introduced in Section 2.1. The goal of this section is to derive the
following combinatorial expression for zC E�.�/:
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Theorem 8.1 Let E� 2 P3
C . Then

zC E�.�/D
zW E�.q/;

where q D e
p
�1� , and zW E�.q/ is defined by (2-7).

We now outline our strategy to prove Theorem 8.1. By Proposition 6.6,

zC E�.�/D
X

j�i jDj�i j

3Y
iD1

��i .�i/q
� 1

2

�P3
iD1 ��iwiC1=wi

�
G�
E�
.�Iw/;

where w is as in (2-11). Since the above sum is independent of w, we may take
wD .1; 1;�2/ and obtain

zC E�.�/D
X

j�i jDj�i j

3Y
iD1

��i .�i/q�
1
2
�
�1C��2C

1
4
�
�3 �G�

E�
.�I 1; 1;�2/:

In Section 8.1, we show that the main result in [23] gives a combinatorial expres-
sion of G��;�;∅.�Iw/ (Theorem 8.7). In Section 8.2, we relate G�

E�
.�I 1; 1;�2/ to

G�∅;�1[�2;�3.�I 1; 1;�2/. This gives the combinatorial expression zW E�.q/ in Theorem
8.1. Moreover, (6-13) and Theorem 8.1 imply the following formula of three-partition
Hodge integrals.

Theorem 8.2 (Formula of three-partition Hodge integrals) Let w be as in (2-11) and
let E�D .�1; �2; �3/ 2 P3

C . Then

G�
E�
.�Iw/D

X
j�i jDj�i j

3Y
iD1

��i .�i/

z�i

q
1
2

�P3
iD1 ��iwiC1=wi

�
zWE�.q/:

The cyclic symmetry of zC E�.�/ is obvious from definition. By Theorem 8.1 we have
the following cyclic symmetry

zW�1;�2;�3.q/D zW�2;�3;�1.q/D zW�3;�1;�2.q/

which is far from being obvious.

Finally, we conjecture that the combinatorial expression zW E�.q/ coincides with W E�.q/
predicted in [1]:

Conjecture 8.3 Let E� 2 P3
C . Then

zW E�.q/DW E�.q/;
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where q D e
p
�1� , and W E�.q/ is defined by (2-6).

We have strong evidence for Conjecture 8.3. By Theorem 8.1 and Corollary 8.8,
Conjecture 8.3 holds when one of the three partitions is empty. When none of the
partitions is empty, A Klemm has checked by computer that Conjecture 8.3 holds in all
the cases where

j�i
j � 6; i D 1; 2; 3:

We will list some of these cases in Section 8.4.

As explained in Section 1, Conjecture 8.3 will follow from the results in [28].

8.1 One-partition and two-partition Hodge integrals

We recall some notation in [22]:

C��.�I �/D
p
�1
j�j

G��;∅;∅.�I 1; �;�� � 1/;

V�.q/D q���=4
p
�1
j�j
W�.q/;

where W�.q/DW�;∅;∅.q/ is defined in Section 2.1. The main result of [22] is the
following formula conjectured by Mariño and Vafa [25] (see Okounkov and Pandhari-
pande [29] for another proof):

Theorem 8.4

C��.�I �/D
X
j�jDj�j

�.�/

z�
q��.�C

1
2
/=2V�.q/

Theorem 8.4 can be reformulated in our notation as follows:

Theorem 8.5 (Formula of one-partition Hodge integrals) Let w be as in (2-11), and
let � 2 PC . Then

G��;∅;∅.�Iw/D
X
j�jDj�j

��.�/

z�
q

1
2
��w2=w1W�;∅;∅.q/:

Let
G�
�C;��

.�I �/D .�1/j�
�j�`.��/G�

�C;��;∅.�I 1; �;�1� �/:

The main result of [23] is the following formula conjectured in [35]:
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Theorem 8.6 Let .�C; ��/ 2 P2
C . Then

G�
�C;��

.�I �/D
X

j�˙jDj�˙j

��C.�
C/

z�C

���.�
�/

z��
q.��C�C����

�1/=2W�C;��.q/:

We now reformulate Theorem 8.6 in the notation of this paper.

G�
�1;�2;∅.�I 1; �;�1� �/

D .�1/j�
2j�`.�2/

X
j�i jDj�i j

��1.�1/

z�1

��2.�2/

z�2

q.��1�C��2�
�1/=2W�1;�2.q/

D

X
j�i jDj�i j

��1.�1/

z�1

�.�2/t .�
2/

z�2

q.��1�C��2�
�1/=2q��2=2W�1;.�2/t ;∅.q/

D

X
j�i jDj�i j

��1.�1/

z�1

��2.�2/

z�2

q.��1�C��2
���1
� /=2W�1;�2;∅.q/

Theorem 8.6 is equivalent to the following:

Theorem 8.7 (Formula of two-partition Hodge integrals) Let w be as in (2-11) and
let .�1; �2/ 2 P2

C . Then

G�
�1;�2;∅.�Iw/

D

X
j�i jDj�i j

X
j�i jDj�i j

��1.�1/

z�1

��2.�2/

z�2

q
1
2.��1w2=w1C��2w3=w2/W�1;�2;∅.q/:

Note that Theorem 8.5 corresponds to the special case where .�1; �2/ D .�;∅/.
Theorem 8.7 and (6-12) imply:

Corollary 8.8 Let E�D .�1; �2; �3/ 2 P3
C , and let q D e

p
�1� . Then

zC E�.�/DW E�.q/

when one of �1; �2; �3 is empty.

8.2 Reduction

Recall that
Gg; E�.�/DGg; E�.1; �;�� � 1/:

Geometry & Topology, Volume 13 (2009)



A mathematical theory of the topological vertex 607

For two partitions �1 and �2 , let �1[�2 be the partition with

mi.�
1
[�2/Dmi.�

1/Cmi.�
2/; 8i � 1:

We have:

Lemma 8.9 Let E�D .�1; �2; �3/ 2 P3
C . Then

(8-1)

Gg; E�.�I 1/D .�1/j�
1j�`.�1/

z�1[�2

z�1 � z�2

Gg;∅;�1[�2;�3.�I 1/

C ıg0

X
m�1

ı�1.m/ı�2∅ı�3.2m/

.�1/m�1

m
:

Proof Let

Ig; E�.w/D
Z
SMg;`.E�/

3Y
iD1

ƒ_.wi/w
`. E�/�1
iQ`.�i /

jD1
.wi.wi ��

i
j d i

E�
Cj /

and let Ig; E�.�/D Ig; E�.1; �;�� � 1/. Then

I0; E�.�/D
.�.�� � 1//`. E�/�1

�2`.�2/.�� � 1/2`.�
3/

�
j�1
jC
j�2j

�
C
j�3j

�� � 1

�`. E�/�3

Note that Ig; E�.�/ has a pole at � D 1 only if

(8-2) g D 0; E�D ..m/;∅; .2m// or .∅; .m/; .2m//;

where m> 0. Let

E�.�/D

`.�/Y
jD1

Q�j�1

aD1
.��j C a/

.�j � 1/!
:

Then E�.�/ is a polynomial in � of degree j�j � `.�/, and

E�.�� � 1/D .�1/j�j�`.�/E�.�/:

Then

Gg; E�.�/D
.�
p
�1/`. E�/

jAut. E�/j
E�1.�/E�2.�1� ��1/E�3

�
1

�� � 1

�
Ig; E�.�/

D .�1/j�
1j�`.�1/ .�

p
�1/`. E�/

jAut. E�/j
E�1.�1� �/E�2.�1� ��1/E�3

�
1

�� � 1

�
Ig; E�.�/
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Gg;∅;�1[�2;�3.�/D
.�
p
�1/`. E�/

jAut.�1[�2/�Aut.�3/j
E�1[�2.�1� ��1/while

�E�3

�
1

�� � 1

�
Ig;∅;�1[�2;�3.�/

where E�1[�2.�1� ��1/DE�1.�1� ��1/E�2.�1� ��1/.

Suppose that .g; E�/ is not the exceptional case listed in (8-2). Then neither is
.g;∅; �1[�2; �3/. It is immediate from the definition that

Ig;�1;�2;�3.1/D Ig;∅;�1[�2;�3.1/;

so

(8-3) Gg; E�.1/D .�1/j�
1j�`.�1/ jAut.�1[�2/j

jAut.�1/�Aut.�2/j
Gg;∅;�1[�2;�3.1/

For the exceptional case (8-2), we have

G0;.m/;∅;.2m/.�/D
�

.� C 1/.m� 1/!.2m� 1/!

m�1Y
aD1

.�mC a/

�

m�1Y
aD1

.
2m

�� � 1
C a/

2m�1Y
aDmC1

.
2m

�� � 1
C a/

G0;∅;.m/;.2m/.�/D
�1

.� C 1/.m� 1/!.2m� 1/!

m�1Y
aD1

.
�� � 1

�
mC a/while

�

m�1Y
aD1

.
2m

�� � 1
C a/

2m�1Y
aDmC1

.
2m

�� � 1
C a/:

So

(8-4) G0;.m/;∅;.2m/.1/D
.�1/m�1

2m
; G0;∅;.m/;.2m/.1/D

�1

2m
:

Combining the general case (8-3) and the exceptional case (8-4), we obtain (8-1).

Let p, pi , pi
� be defined as in Section 2.3, and let G�.�IpI �/ be defined as in (2-13).

We have:

Lemma 8.10 Let

(8-5) pCi D .�1/i�1p1
i Cp2

i ; pC� D

`.�/Y
jD1

pC�j :
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Then

(8-6) G�.�Ip1;p2;p3
I 1/DG�.�I 0;pC;p3

I 1/ exp
�X

m�1

.�1/m�1

m
p1

mp3
2m

�
:

Proof We have

G.�IpI 1/DG.�IpI 1; 1;�2/D
X
E�2P3
C

1X
gD0

�2g�2C`. E�/Gg; E�.�I 1/p
1
�1p2

�2p3
�3 :

By Lemma 8.9,

G.�IpI 1/

D

X
E�2P3
C

1X
gD0

�2g�2C`. E�/Gg;∅;�1[�2;�3.1/
z�1[�2

z�1z�2

.�1/j�
1j�`.�1/p1

�1p2
�2p3

�3

C

X
m�1

.�1/m�1

m
p1

mp3
2m

D

X
.�C;�3/2P2

C

1X
gD0

�2g�2C`.�C/C`.�3/Gg;∅;�C;�3.1/

�

� X
�1[�2D�C

z�C

z�1z�2

.�1/j�
1j�`.�1/p1

�1p2
�2

�
p3
�3

C

X
m�1

.�1/m�1

m
p1

mp3
2m

It is easy to see that

X
�1[�2D�C

z�C

z�1z�2

.�1/j�
1j�`.�1/p1

�1p2
�2 D pC

�C
:(8-7)

G.�Ip1;p2;p3
I 1/DG.�I 0;pC;p3

I 1/C

1X
mD1

.�1/m�1

m
p1

mp3
2mSo

which is equivalent to (8-6).

Geometry & Topology, Volume 13 (2009)



610 Jun Li, Chiu-Chu Melissa Liu, Kefeng Liu and Jian Zhou

8.3 Combinatorial expression

Lemma 8.11 Let pC be defined by (8-5).

G�.�I 0;pC;p3
I 1/

D

X
�C;�i ;�i2P

c�
C

.�1/t�2q.�2�
�C
��
�3=2/=2W�C;�3.q/.�1/j�

3j�`.�3/
3Y

iD1

��i .�i/

z�i

pi
�i :

Proof By Theorem 8.7,

G�.�I 0;pC;p3
I 1/

D

X
�˙;�˙;�32P

��C.�
C/

z�C

��3.�3/

z�3

q.�2�
�C
��
�3=2/=2W∅;�C;�3.q/pC

�C
p3
�3 :

Recall that

W∅;�C;�3.q/D q��3=2W�C;.�3/t .q/;

pC
�C
D

X
�1[�2D�C

z�C

z�2z�2

.�1/j�
1j�`.�1/p1

�1p2
�2 :

Let si
� D

X
j�jDj�j

��.�/

z�
p� be Schur functions. Then

G�.�I 0;pC;p3
I 1/

D

X
�˙;�˙;�32P

��C.�
C/

z�C

��3.�3/

z�3

q.�2�
�C
C�

�3=2/=2W�C;.�3/t .q/p
C

�C
p3
�3

D

X
�˙;�˙;�32P

��C.�
C/

z�C

�.�3/t .�
3/

z�3

q.�2�
�C
��
�3=2/=2W�C;�3.q/p3

�3

�

X
�1[�2D�C

z�C

z�1 � z�2

.�1/j�
1j�`.�1/p1

�1p2
�2

D

X
�i ;�C;�32P

�
��C.�

1[�2/

z�1 � z�2

�.�3/t .�
3/

z�3

� q.�2�
�C
��
�3=2/=2W�C;�3.q/.�1/j�

1j�`.�1/p1
�1p2

�2p3
�3

�
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D

X
�1;�2;�C;�i2P

�
��C.�

1[�2/��1.�1/��2.�2/

z�1 � z�2

� q.�2�
�C
��
�3=2/=2W�C;�3.q/.�1/j�

1j�`.�1/s1
�1s2

�2s3
.�3/t

�
D

X
�1;�2;�C;�i2P

�
��C.�

1[�2/�.�1/t .�
1/��2.�2/

z�1 � z�2

� q.�2�
�C
��
�3=2/=2W�C;�3.q/s1

�1s2
�2s3

.�3/t

�
D

X
�C;�i2P

c�
C

.�1/t�2q.�2�
�C
��
�3=2/=2W�C;�3.q/s1

�1s2
�2s3

.�3/t

D

X
�C;�i ;�i2P

c�
C

.�1/t�2q.�2�
�C
��
�3=2/=2W�C;�3.q/.�1/j�

3j�`.�3/
3Y

iD1

��i .�i/

z�i

pi
�i :

In the above we have used (8-7) and the following identity:

c
�

�C��
D

X
�C;��

��C.�
C/���.�

�/��.�
C[ ��/

z�Cz��
:

Remark 8.12 By the same method we also have

(8-8) G�.�I 0;pC;p3
I 1/

D

X
C; i ;�i2P

c
C

.1/t2q
.�2�

C
C�

3=2/=2WC;.3/t .q/

3Y
iD1

� i .�i/

z�i

pi
�i :

Lemma 8.13 We have

exp
�
�

X
m�1

.�1/m�1

m
p1

mp3
2m

�
D

X
�2P

.�1/j�j�`.�/

z�
p1
�p3

2�

where 2� is the partition .2�1; 2�2; : : : ; 2�`.�//.
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Proof Let .xi
1
; : : : ;xi

n; : : : / be formal variables such that pi
m D

P
n.x

i
n/

m . By stan-
dard series manipulations,

exp
�
�

X
m�1

.�1/m�1

m
p2

mp3
2m

�
D exp

�X
m�1

.�1/m�1

m

X
n1;n3

.x1
n1
/m.x3

n3
/2m

�

D

Y
n1;n3

exp
�X

m�1

.�1/m�1

m
.p1

n1
.p3

n3
/2/m

�
D

Y
n1;n3

.1Cx1
n1
.x3

n3
/2/:

Now recall (cf [24, page 65, (4.1’)]):

Y
i;j

.1Cxiyj /D
X
�2P

.�1/j�j�`.�/

z�
p�.x/p�.y/:

Hence we have

exp
�X

m�1

.�1/m�1

m
p1

mp3
2m

�
D

X
�2P

.�1/j�j�`.�/

z�
p�.x

1/p�..x
3/2/

D

X
�2P

.�1/j�j�`.�/

z�
p�.x

1/p2�.x
3/:

By Lemma 8.10, Lemma 8.11, and Lemma 8.13, we have

G�.�Ip1;p2;p3
I 1/

DG�.�I 0;pC;p3
I 1/ exp

� X
m�1

.�1/m�1

m
p1

mp3
2m

�
D

X
�C;�i2P

c�
C

.�1/t�2q.�2�
�C
��
�3=2/=2W�C;�3s1

�1s2
�2s3

.�3/t

�

X
�2P

.�1/j�j�`.�/

z�
p�.x

1/p2�.x
3/

D

X
�C;�i2P

c�
C

.�1/t�2q.�2�
�C
��
�3=2/=2W�C;�3.q/s1

�1s2
�2s3

.�3/t

�

X
�;�1;�32P

.�1/j�j�`.�/

z�
��1.�/��3.2�/s1

�1s3
�3
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D

X
�C;�1;�3;�1;�3;�2P

�
c�
C

.�1/t�2c
�1

�1�1c
�3

�3.�3/t
q.�2�

�C
��
�3=2/=2

�W�C;�3.q/
�.�1/t .�/��3.2�/

z�
s1
�1s2

�2s3
�3

�
D

X
�C;�1;�3;�1;�3;�2P

�
c�
C

.�1/t�2c
�1

.�1/t�1c
�3

�3.�3/t
q.�2�

�C
��
�3=2/=2

�W�C;�3.q/
��1.�/��3.2�/

z�
s1
�1s2

�2s3
�3

�
:

By Proposition 6.6,

G�.�IpI 1/D
X

�i ;�i2P

zCE�.�/q
.�
�1�2�

�2���3=2/=2
3Y

iD1

��i .�i/

z�i

pi
�i

D

X
�i2P

zCE�.�/q
.�
�1�2�

�2���3=2/=2
3Y

iD1

s�i .xi/:

By comparing coefficients,

X
c�
C

.�1/t�2c
�1

.�1/t�1c
�3

�3.�3/t
q.�2�

�C
��
�3=2/=2W�C;�3.q/

��1.�/��3.2�/

z�
s1
�1s2

�2s3
�3

D

X
�i ;�i2P

zCE�.�/q
.�
�1�2�

�2���3=2/=2
3Y

iD1

si
�i :

Therefore, zCE�.�/D
zWE�.q/

where zWE�.q/ is defined by (2-7). This completes the proof of Theorem 8.1.

Remark 8.14 By (8-8) one gets a slightly different expression.

8.4 Examples of Conjecture 8.3

We have seen in Section 8 that Conjecture 8.3 holds when one of the three partitions is
empty. When none of the partitions is empty, A Klemm has checked by computer that
Conjecture 8.3 holds in all the cases where

j�i
j � 6; i D 1; 2; 3:
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We list some of these cases here.

zW.1/;.1/;.1/.q/DW.1/;.1/;.1/.q/D
q4� q3C q2� qC 1

q1=2.q� 1/3

zW.1/;.1/;.2/.q/DW.1/;.1/;.2/.q/D
q6� q5C q3� qC 1

.q2� 1/.q� 1/3

zW.1/;.1/;.1;1/.q/DW.1/;.1/;.1;1/.q/D
q6� q5C q3� qC 1

q.q2� 1/.q� 1/3

zW.1/;.1/;.3/.q/DW.1/;.1/;.3/.q/D
q3=2.q8� q7C q4� qC 1/

.q3� 1/.q2� 1/.q� 1/3

zW.1/;.1/;.2;1/.q/DW.1/;.1/;.2;1/.q/

D
q8� 2q7C 3q6� 3q5C 3q4� 3q3C 3q2� 2qC 1

q1=2.q3� 1/.q� 1/4

zW.1/;.1/;.1;1;1/.q/DW.1/;.1/;.1;1;1/.q/D
q8� q7C q4� qC 1

q3=2.q3� 1/.q2� 1/.q� 1/3

zW.1/;.2/;.2/.q/DW.1/;.2/;.2/.q/D
q1=2.q8� q7C q5� q4C q3� qC 1/

.q2� 1/2.q� 1/3

zW.1/;.1;1/;.2/.q/DW.1/;.1;1/;.2/.q/D
q9� q8C q6� q5C 2q3� q2� qC 1

q3=2.q2� 1/2.q� 1/3

zW.1/;.2/;.1;1/.q/DW.1/;.2/;.1;1/.q/D
q9� q8� q7C 2q6� q4C q3� qC 1

q1=2.q2� 1/2.q� 1/3

zW.1/;.1;1/;.1;1/.q/DW.1/;.1;1/;.1;1/.q/D
q8� q7C q5� q4C q3� qC 1

q3=2.q2� 1/2.q� 1/3

zW.1/;.1/;.4/.q/DW.1/;.1/;.4/.q/D
q4.q10� q9C q5� qC 1/

.q4� 1/.q3� 1/.q2� 1/.q� 1/3

zW.1/;.1/;.3;1/.q/DW.1/;.1/;.3;1/.q/

D
q.q10� 2q9C 2q8� 2q6C 3q5� 2q4C 2q2� 2qC 1/

.q4� 1/.q2� 1/.q� 1/4

zW.1/;.1/;.2;2/.q/DW.1/;.1/;.2;2/.q/D
q.q8� 2q6C q5C q4C q3� 2q2C 1/

.q3� 1/.q2� 1/2.q� 1/3

zW.1/;.1/;.2;1;1/.q/DW.1/;.1/;.2;1;1/.q/

D
q10� 2q9C 2q8� 2q6C 3q5� 2q4C 2q2� 2qC 1

q.q4� 1/.q2� 1/.q� 1/4
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zW.1/;.1/;.1;1;1;1/.q/DW.1/;.1/;.1;1;1;1/.q/D
q10� q9C q5� qC 1

q2.q4� 1/.q3� 1/.q2� 1/.q� 1/3

zW.1/;.2/;.3/.q/DW.1/;.2/;.3/.q/D
q2.q10� q9C q6� q4C q3� qC 1/

.q3� 1/.q2� 1/2.q� 1/3

zW.1/;.3/;.2/.q/DW.1/;.3/;.2/.q/D
q2.q10� q9C q7� q6C q4� qC 1/

.q3� 1/.q2� 1/2.q� 1/3

zW.1/;.2/;.2;1/.q/DW.1/;.2/;.2;1/.q/

D
q11� 2q10C 2q9� q8C q7� q6C q4� qC 1

.q3� 1/.q2� 1/.q� 1/4

zW.1/;.2;1/;.2/.q/DW.1/;.2;1/;.2/.q/

D
q11� q10C q7� q5C q4� q3C 2q2� 2qC 1

q.q3� 1/.q2� 1/.q� 1/4

zW.1/;.2/;.1;1;1/.q/DW.1/;.2/;.1;1;1/.q/

D
q12� q11� q10C q9C q8� q6C q4� qC 1

q.q3� 1/.q2� 1/2.q� 1/3

zW.1/;.1;1;1/;.2/.q/DW.1/;.1;1;1/;.2/.q/

D
q12� q11C q8� q6C q4C q3� q2� qC 1

q3.q3� 1/.q2� 1/2.q� 1/3

zW.1/;.1;1/;.3/.q/DW.1/;.1;1/;.3/.q/

D
q12� q11C q8� q6C q4C q3� q2� qC 1

q.q3� 1/.q2� 1/2.q� 1/3

zW.1/;.3/;.1;1/.q/DW.1/;.3/;.1;1/.q/

D
q.q12� q11� q10C q9C q8� q6C q4� qC 1/

.q3� 1/.q2� 1/2.q� 1/3

zW.1/;.1;1/;.2;1/.q/DW.1/;.1;1/;.2;1/.q/

D
q11� q10C q7� q5C q4� q3C 2q2� 2qC 1

q2.q3� 1/.q2� 1/.q� 1/4

zW.1/;.2;1/;.1;1/.q/DW.1/;.2;1/;.2;1/.q/

D
q11� 2q10C 2q9� q8C q7� q6C q4� qC 1

q.q3� 1/.q2� 1/.q� 1/4

zW.1/;.1;1/;.1;1;1/.q/DW.1/;.1;1/;.1;1;1/.q/D
q10� q9C q7� q6C q4� qC 1

q2.q3� 1/.q2� 1/2.q� 1/3
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zW.1/;.1;1;1/;.1;1/.q/DW.1/;.1;1;1/;.1;1/.q/D
q10� q9C q6� q4C q3� qC 1

q2.q3� 1/.q2� 1/2.q� 1/3

zW.2/;.2/;.2/.q/DW.2/;.2/;.2/.q/

D
q.q10� 3q8C 3q7C 2q6� 5q5C 2q4C 3q3� 3q2C 1/

.q2� 1/3.q� 1/3

zW.2/;.2/;.1;1/.q/DW.2/;.2/;.1;1/.q/

D
q12� q11� q10C 2q9� q7C q6� q5C 2q3� q2� qC 1

q.q2� 1/3.q� 1/3

zW.2/;.1;1/;.1;1/.q/DW.2/;.1;1/;.1;1/.q/

D
q12� q11� q10C 2q9� q7C q6� q5C 2q3� q2� qC 1

q2.q2� 1/3.q� 1/3

zW.1;1/;.1;1/;.1;1/.q/DW.1;1/;.1;1/;.1;1/.q/

D
q10� 3q8C 3q7C 2q6� 5q5C 2q4C 3q3� 3q2C 1

q2.q2� 1/3.q� 1/3

W.1/;.2/;.3;1/.q/D zW.1/;.2/;.3;1/.q/

D

q3=2
�

q13� 2q12C q11C 2q10� 3q9

C 2q8� 2q6C 2q5� qC 1

�
.q4� 1/.q2� 1/2.q� 1/4

W.1;1/;.2;1/;.3/.q/D zW.1;1/;.2;1/;.3/.q/

D
�
q19
� q18

� q17
C q16

C q15
� q13

C q11
� q10

C q8
C q7

� q6
� 2q5

C 2q4
C q2

� 2qC 1
�

�
�
q2.q3

�1/2.q2
�1/2.q�1/4

��1

W.2/;.2/;.2;1;1;1/.q/D zW.2/;.2/;.2;1;1;1/.q/

D
�
q22
� q21

� 2q20
C 3q19

C q18
� 3q17

C 3q15
� q14

� 2q13

C q12
C q11

C q10
� 2q9

� q8
C 3q7

� 3q5
C q4

C 3q3

� 2q2
� qC 1

�
�
�
q7=2.q5

� 1/.q3
� 1/.q2

� 1/3.q� 1/4
��1

W.1/;.2;2/;.3;2/.q/D zW.1/;.2;2/;.3;2/.q/

D
�
q23
� 2q22

C q21
C q20

� q19
C q18

� 2q17
C q16

C q15

C q13
� 3q12

C q10
C 2q9

C q8
� 2q7

� 2q6
C 2q4

C 2q3

� 2q2
� qC 1

�
�
�
q.q4

� 1/.q3
� 1/2.q2

� 1/3.q� 1/4
��1
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Appendix Notation

�D .�1 � � � � � �h > 0/ partition, Section 2.1
j�j/`.�/ / �t size/length/transpose of a partition �, Section 2.1
∅ the empty partition, Section 2.1
Aut.�/ automorphism group of a partition �, Section 2.1
z� �1 � � ��`.�/jAut.�/j, Section 2.1
P/PC set of all partitions/all nonempty partitions, Section 2.1
P2
C

/P3
C

set of pairs/triples of partitions which are not all empty,
Section 2.1

E�D .�1; �2; �3/ a triple of partitions, Section 2.1
`. E�/ `.�1/C `.�2/C `.�3/, Section 2.1
Aut. E�/ Aut.�1/�Aut.�2/�Aut.�3/, Section 2.1
Sd symmetric group on d elements, Section 2.1
�� irreducible character of Sd , Section 2.1
pi i–th power sum xi

1
Cxi

2
C � � � , Section 2.1

p� Newton function p�1
p�2
� � � , Section 2.1

s�/s�=� Schur function/skew Schur function, Section 2.1
c
�
�� Littlewood-Richardson coefficients, Section 2.1
Œm� qm=2 � q�m=2, Section 2.1
��

P
�i.�i � 2i C 1/, Section 2.1, (2-3)

W�/W�;� /W E�/ zW E� Section 2.1, (2-4)/(2-5)/(2-6)/(2-7)
2� double of a partition �, Section 2.1
H �
�;�C;��

disconnected double Hurwitz number, Section 2.2

ˆ�
�C;��

.�/ generating function of H �
�;�C;��

, Section 2.2

E/Li Hodge bundle/line bundles over SMg;n, Section 2.3
�j / i cj .E/ (�–classes)/c1.Li/( –classes), Section 2.3
 i D c1.Li/  –classes, Section 2.3
ƒ_g .u/ ug ��1ug�1C � � �C .�1/g�g , Section 2.3
Gg; E�.w/, Gg; E�.�/ three-partition Hodge integral, Section 2.3
G E�, G, G�

E�
, G� generating functions of three-partition Hodge integrals,

Section 2.3
T a rank 2 subtorus of .C�/3 (so T Š .C�/2), Section 3.1
ƒT Hom.T;C�/, group of irreducible character of T

(so ƒT Š Z˚2), Section 3.1
TR maximal compact subgroup of T

(so TR Š U.1/2), Section 3.1
� (FTCY) graph, Section 3.3, Definition 3.1
E.�//Eo.�//V .�/ set of edges/oriented edges/vertices of a graph � ,

Section 3.3
rev orientation reversing map E0.�/!E0.�/, Section 3.3,

Definition 3.1
e oriented edge, Section 3.3
�e D rev.e/ an oriented edge e with the opposite orientation, Section 3.3
v0/v1 initial/terminal vertex map E0.�/! V .�/, Section 3.3, Definition 3.1
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V1.�//V2.�//V3.�/ set of univalent/bivalent/trivalent vertices of � , Section 3.3
p/f position/framing map, Section 3.3, Definition 3.2
l0, l1 maps from Eo.�/ to Z˚2, Section 3.3, Definition 3.3
En.e/e an integer associated to an oriented edge e,

Section 3.3, Definition 3.4
�v /�e;f0

/�v /�v1;v2 smoothing/degeneration/normalization/gluing of a FTCY
graph � , Section 3.4, Definition 3.5/3.6/3.7/3.8

�A/ �A smoothing/normalization of � along a set A of bivalent
vertices, Section 3.4

yY rel D . yY ; yD/ relative FTCY threefold associated to a FTCY graph � ,
Section 3.5

yD relative divisor in yY , Section 3.5
yDv a connected component of yD associated to a vertex v, Section 3.5
yL/ yLv a T –invariant divisor of yD/ yDv , Section 3.5
xe (unoriented) edge, Section 3.5
C xe T –invariant P1 associated to an unoriented edge xe, Section 3.5
. Ed ; E�/ effective class, Section 4.1, Definition 4.1
dxe D Ed.xe/ degree w.r.t. C xe Š P1, Section 4.1
�v D E�.v/ ramification pattern w.r.t. the divisor yDv � yY , Section 4.1
�m expanded graph, Section 4.1
. yYm; yDm/ relative FTCY scheme associated to the graph �m, Section 4.1
� 2�.OX /, where X is the domain of a relative stable map, Section 4.1
SM��; Ed ; E�. yY rel; yL/ moduli stack of stable relative morphisms to yY rel, Section 4.4
ŒT 1! T 2� perfect obstruction theory, Section 4.4
T i;f /T 1;m fixed/moving part of T i (i D 1; 2), Section 4.4
F��
�; Ed ; E�

formal relative GW invariants of a FTCY graph � , Section 4.4
nD .n1; n2; n3/ framing of a topological vertex, Section 6, (6-1)
wi /fi position/framing vectors of a topological vertex, Section 6, Figure 10
F�
�; E�

formal relative GW invariants of a topological vertex, Section 6, (6-2)
SM��; E�.�/ moduli stack of stable relative maps to a topological vertex, Section 6.1
SM���;�;� moduli stack of stable relative maps to a rubber, Section 6.1
.E�; E�/ admissible label, Section 6.1/7.1, Definition 6.1/7.1
�i /�v and �i /�e components of E� and E� in .E�; E�/, Section 6.1/7.1, Definition 6.1/7.1
rv Section 7.1, (7-1), (7-2)
G�
�; E�

.�//G�
�; Ed ; E�

.�/ set of admissible labels of SM��; E�.�// SM��; Ed ; E�. yY rel; yL/,

Section 6.1/7.1, Definition 6.1/7.1
SM�
�;h

disconnected version of SMg;h, Section 6.1
ƒ_.u/ disconnected version of ƒ_g .u/, Section 6.1
FE�;E� T fixed locus associated to the label .E�; E�/, Section 6.1/7.1
SME�;E� a finite cover of F.E�;E�/, Section 6.1/7.1
SME�;E�

i / SME�;E�
v factors of SME�;E� (which is a product of moduli spaces), Section 6.1/7.1

L0;L1;L1;L line bundles on SM���;�;�, Section 7.2
 0;  1 target  –classes, Section 7.2
J 0
�v ;�e ;�e0

/J
�v ;�e ;�e0 Section 7.2/7.3, (7-3)/(7-4)

V�;E�.w//E�.x;y/ vertex/edge contribution to G�
�;E�
.w/, Section 6.2, (6-3)/(6-4)
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E�v , wv partitions/weights of a trivalent vertex v, Section 7.3, (7-5)
IE�;E� contribution from FE�;E� to the invariant F�

�; E�
/F��
�; Ed ; E�

, Section 6.2/7.3
zF�
E�

/ zC E� generating functions of formal relative GW invariants of a topological

vertex in winding/representation basis, Section 6.3/6.4
F��
Ed ; E�

/Z�
rel generating functions of formal relative GW invariants of a relative

FTCY threefold yY rel
�

, Section 7.4/7.7, (7-7)/(7-14)
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