
Hardy’s “Small” Discovery
Remembered
Indika Rajapakse, Lindsey Muir, and Paul Martin

What we do may be small, but it has a certain
character of permanence; and to have produced
anything of the slightest permanent interest,
whether it be a copy of verses or a geometrical
theorem, is to have done something utterly
beyond the powers of the vast majority of men.

—Godfrey Harold Hardy
A Mathematician’s Apology

The most beautiful mathematics to Godfrey Harold

Hardy was that which had no application. For Hardy,

mathematics was purely for intellectual challenge.

He justified the pursuit of pure mathematics with

the argument that its very “uselessness” meant

that it could not be used to cause harm. Hardy

went so far as to describe applied mathematics as

“ugly”, “trivial”, and “dull” [1].

Despite Hardy’s aversion to applied mathe-

matics, he had a profound impact on biology.

Mathematicians tend not to realize his contribu-

tion, which was downplayed by Hardy himself. At

the same time, biologists tend not to appreciate

his mathematical brilliance. This note is intended

to recognize G. H. Hardy’s “little” discovery as a

contribution to genetics and to revisit a classic

paper [2] that has shaped the field for the past

century.

Godfrey Harold Hardy, a graduate of Trinity

College, Cambridge, began his mathematics career
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in the early 1900s as a fellow at Trinity [3]. He
lectured in mathematics for a number of years
and published many papers of such significance
that he was considered Britain’s leading pure
mathematician. Hardy was also responsible for
bringing the Indian mathematical genius Srinivasa
Ramanujan to England, where they published many
papers together and developed the field of number
theory. While visiting an ill Ramanujan on one
occasion, Hardy mentioned that he had traveled
in cab number 1729 and “hoped it was not an
unfavorable omen” to which Ramanujan replied
“…it is a very interesting number; it is the smallest
number expressible as the sum of two cubes in two
different ways” (it is expressible as 1729 = 13

+123

or 93
+ 103, now known as the Hardy-Ramanujan

number).
In 1908, Hardy published a paper in Science that

changed the field of population genetics, entitled
“Mendelian Proportions in a Mixed Population”. The
findings were later known as the Hardy-Weinberg
Law (Equilibrium) because the same principle was
published by Wilhelm Weinberg in the same year
[4]. This principle offered a simple solution for the
question of how genetic diversity is maintained
in a population. For Hardy, the law was trivial
and obvious, and he was reluctant to acknowledge
its applications. But one hundred years later, the
Hardy-Weinberg Law remains a cornerstone of
modern computational genetics.

Preservation of genetic diversity in a population
requires stability, or equilibrium, of the genotype
distribution from one generation to the next. The
following is an outline of Hardy’s stability condi-
tion for Mendelian proportions [2]. This condition
holds for a closed system, where the population
mates randomly, or for purposes of simplicity,
where every individual mates with every other
individual once, and where each mating yields
a single offspring, with no selection, mutation,
migration, or death.
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Recall that in the mammalian genome, each gene

is represented by two of many possible variants,

called alleles. For example, the gene, or locus, for

eye color can exist in many forms, including a

“blue” allele coding for blue eyes and a “brown”

allele coding for brown eyes. If we consider only the

blue and brown alleles, an individual may have two

copies of the blue allele (homozygous for the blue

allele), one copy of each allele (heterozygous), or

two copies of the brown allele (homozygous for the

brown allele). An individual who is homozygous

for the blue allele can be designated as having

an “A1A1” genotype, while an individual who is

homozygous for the brown allele is designated as

having an “A2A2” genotype.

Consider the following case for alleles A1 and

A2,

P11 = the number of individuals with genotype

A1A1 (the homozygous A1 case)

2P12 = the number of individuals with genotype

A1A2 or A2A1 (the heterozygous case)

P22 = the number of individuals with genotype

A2A2 (the homozygous A2 case)

Therefore, we can write the first generation pro-

portions of individuals as P11 : 2P12 : P22. Let the

total number of individuals in the first generation

be represented as a, where a = P11 + 2P12 + P22.

The second generation proportions of individuals

can be derived from the table seen above.

Therefore, we can write the second generation

proportions of individuals as

(P11 + P12)
2 : 2(P11 + P12)(P12 + P22) : (P12 + P22)

2

Let the total number of individuals in the

second generation be represented as b, where

b = (P11 + P12)
2
+ 2(P11 + P12)(P12 + P22) + (P12 +

P22)
2. Hardy’s stability condition requires that the

proportion of individuals with any given geno-

type remains constant across generations and is

therefore established as follows

P11

a
=
(P11 + P12)

2

b
(1)

2P12

a
=

2(P11 + P12(P12 + P22)

b
(2)

P22

a
=
(P12 + P22)

2

b
(3)

Solving the above system simultaneously yields

P2
12 = P11 × P22, the stability condition for the

two-allele case. This provides a null hypothesis for

biologists investigating the distribution of genetic

characteristics in a population.

Since a2
= (P11 + 2P12 + P22)

2
= P2

11 + 4P12P11 +

4P2
12+2P11P22+4P12P22+P

2
22 = (P11+P12)

2
+2(P11+

P12)(P12+P22)+(P12+P22)
2
= b, this demonstrates

that a2
= b, as required by the assumption of a

closed system.

Let the haplotype frequency of allele A1 = p,

and the haplotype frequency of allele A2 = q,

recalling that a haplotype is a combination of

alleles at multiple genetic loci that are transmit-

ted together from one generation to the next.

Accordingly, and p =
2P11+2P12

2a
, and q =

2P22+2P12

2a
,

where homozygous individuals are counted twice,

heterozygous individuals counted once, and the

number of haplotypes is twice the population

size. Hence, p =
P11+P12

a
, and q =

P22+P12

a
. Since

p + q = 1, the modern population genetics inter-

pretation, p2
+ 2pq + q2

= 1 must hold, which

states that Pr(A1A1) = p
2, Pr(A1A2) = 2pq, and

Pr(A2A2) = q
2.

We can extend the two allele case to a general

case as follows. Under the same assumptions as

above and additionally that a given gene includes

k alleles, say A1, A2, · · · , Ak and Pij is the number

of people with the genotype AiAj , where i, j can

be any real number.

The following generations will approach values

in proportion to those suggested by counting

all possibilities of mating (the way Hardy did).

Thus, if in addition the values satisfy (or nearly

satisfy) the stability condition P2
ij = Pii × Pij , then

we can assume that the probabilities for each

genotype in each generation will be the same as the
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probabilities for each genotype in the preceding
generation. That is, the proportion of individuals
with each genotype will stay the same, while genetic
diversity will be maintained in a predictable way.
This formulation is the k allele analog of the
Hardy-Weinberg Law.

Certain violations of the closed system as-
sumption lead to departure from Hardy-Weinberg
Equilibrium. One such violation is non-random
mating, where preferential mating according to
genotype may occur in the population. We will
not explore the mathematical details, but we can
represent this case as follows: Pr(A1A1) = p

2
+pqF ,

Pr(A1A2) = 2pq(1− F), and Pr(A2A2) = p
2
+ pqF ,

where F is defined as the inbreeding coefficient
[5]. F can be thought of as the probability that
two alleles are identical due to parents passing
on the same allele to their progeny. It is therefore
also a measure of the degree of parental relat-
edness. When 0 < F < 1, homozygosity in the
population increases, which may reduce health
and reproductive fitness.

The modern interdisciplinary approach has
gathered great minds to work on some of the
most challenging problems in biology. Hardy’s
contribution has greatly influenced the growing
field of computational genetics. Today, applied
mathematics is a critical component of genetics
and has the potential to revolutionize the field
and profoundly impact modern medicine. If Hardy
were alive today, it would be interesting to know
whether he would join these minds or remain stead-
fast in his pursuit of pure mathematics. Despite
his disdain for applied mathematics, Hardy was
one of the greatest contributors to contemporary
mathematical biology, and at this one hundred
year anniversary, his “small” discovery will be
remembered as such a great contribution.
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