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Abstract

Pre-runtime scheduling of avionic systems is used to ensure that the systems provide the

desired functionality at the correct time. This paper considers scheduling of an integrated

modular avionic system which from a more general perspective can be seen as a multipro-

cessor scheduling problem that includes a communication network. The addressed system

is practically relevant and the computational evaluations are made on large-scale instances

developed together with the industrial partner Saab. A subset of the instances is made pub-

licly available. Our contribution is a matheuristic for solving these large-scale instances and

it is obtained by improving the model formulations used in a previously suggested constraint

generation procedure and by including an adaptive large neighbourhood search to extend it

into a matheuristic. Characteristics of our adaptive large neighbourhood search are that it is

made over both discrete and continuous variables and that it needs to balance the search for

feasibility and profitable objective value. The repair operation is to apply a mixed-integer

programming solver on a model where most of the constraints are treated as soft and a viola-

tion of them is instead penalised in the objective function. The largest solved instance, with

respect to the number of tasks, has 54,731 tasks and 2530 communication messages.

Keywords Multiprocessor scheduling · Avionic system · Matheuristic · Adaptive large

neighbourhood search · Integer programming · Scheduling

1 Introduction

Modern aircraft host a huge amount of electronics such as sensors that gather information,

units where the information is processed, actuators that control the aircraft, and equipment

that presents information to the pilot. Electronics in an aircraft is called avionics and due to

the real-time requirements of avionic systems, it is not sufficient that the logical result of a

computation is correct, it is also crucial that the result is produced at the correct time. This

punctuality can be ensured by having a schedule for all activities in the system. Scheduling

of real-time systems can refer either to on-line scheduling where the scheduling decisions are
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made at runtime or, as in this work, to pre-runtime (off-line) scheduling where the schedule

is created at compile time.

This work addresses the scheduling of an industrially relevant Integrated Modular Avionic

(IMA) system, that was introduced in Blikstad et al. (2018). This problem can be consid-

ered as a multiprocessor scheduling problem, where the tasks have multiple time windows

and precedence relations between them, combined with the scheduling of a communication

network. In the avionics context, a processor is referred to as a module and we consider the

case when all tasks are beforehand assigned to a module. The communication network is

scheduled by assigning communication messages to time slots. To send a communication

message involves the execution of certain tasks on the involved modules and for this reason,

the task and communication scheduling are closely integrated. Compared to the problem for-

mulation used in Blikstad et al. (2018), we here also include the possibility of co-allocation

of messages in a time slot as introduced in Rönnberg (2018). There is no objective function

and the purpose of the scheduling is to find a feasible solution or to conclude that none exists.

The future industrial need is a capability to solve very large-scale instances of avionics

scheduling problems of this kind and the contributions of this paper are extensions of previous

work that facilitate this. In the previous works Blikstad et al. (2018), Karlsson and Rönnberg

(2018), and Rönnberg (2018), the largest instance solved has 15 modules and about 20,000

tasks (about 50% of these are fixed tasks and 6000 of the tasks are placed on the most occupied

module).

A first contribution of the paper is an exact solution approach based on a constraint

generation procedure which is obtained by combining and improving the models and methods

presented in Blikstad et al. (2018), Karlsson and Rönnberg (2018), Rönnberg (2018), and

Boberg (2017). The constraint generation procedure alternates between solving a relaxation

of the problem and using its solution to restrict the solution space to define a subproblem.

If this subproblem has a feasible solution, this is a solution to the original problem, and

otherwise new constraints are added to the relaxed problem and the procedure is repeated.

Since it is important that the solution to the relaxed problem has a good chance to yield a

feasible solution to the subproblem, the relaxed problem has an objective function with the

purpose to contribute to this.

The results for the exact constraint generation procedure show that such decomposition

approach is efficient for the problem structure, but in order to solve even larger instances, a

second contribution of this paper is to extend it into a matheuristic method (see e.g. Maniezzo

et al. (2010) and Archetti and Speranza (2014)) by combining it with an Adaptive Large

Neighbourhood Search (ALNS) [see Ropke and Pisinger (2006) and Pisinger and Ropke

(2007)] for solving the relaxed problem. To find a feasible solution to the relaxed problem is

for larger instances a true challenge and our ALNS is therefore carefully designed with respect

to searching for feasibility while taking the value of the objective function into account. This

is obtained by the following two key components. Firstly, since the repair method needs to

handle both discrete and continuous variables, several kinds of constraints, and an objective

function, we have chosen to repair the solution by using a mixed integer programming (MIP)-

solver. This gives the possibility to benefit from the very efficient heuristics implemented

in commercial solvers, as initially suggested in Muller et al. (2012). Secondly, the adaptive

mechanism of our ALNS is used to handle the balance between the objective value and

feasibility with respect to various constraints in a strategic oscillation fashion.

Our computational results are provided for two categories of industrially relevant

instances. The first category, which is not publicly available, orginates from Blikstad et al.

(2018) and it is included to provide a comparison to our previous work. The second cate-
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Fig. 1 An overview of a system with n nodes. The structure of the content is the same for all nodes and

therefore only displayed for node 1 and n

gory is new and derived to be industrially relevant but generic enough to be made publicly

available.

This section continues with a brief presentation of the industrial background of the problem

and a review of research that include avionics scheduling and MIP. Thereafter follows a

description of related work on matheuristics and ALNS, the latter with a particular emphasis

on strategies that use MIP-models to repair the solution. The section ends with an outline of

the paper and a summary of its contributions.

1.1 Problem statement

The addressed avionic system scheduling problem was introduced in Blikstad et al. (2018),

where a detailed technical background of the problem statement was given. The first

description was extended in Rönnberg (2018) to include further details with respect to

the communication scheduling. Here, we give the problem statement without describing

its complete technical background and refer the interested reader to Blikstad et al. (2018)

and Rönnberg (2018) for these.

The considered avionic system, illustrated in Fig. 1, contains a set of nodes with modules

(processors) that hosts tasks. Each node contains a single communication module (CM),

and one or more application modules (AMs). A CM handles the external, inter-node, and

intra-node communication of the node and an AM runs the software applications. These

applications are grouped and assigned to partitions that are the entities treated as tasks to

be scheduled. The nodes communicate by sending messages on a communication network

(CN) from a single CM to a set of receiving CMs and the communication protocol is such

that messages are sent in discrete time slots. The considered system executes periodically,

meaning that a schedule, called a major frame, is repeated infinitely.

The tasks in the system execute periodically and all tasks on the CMs have the same period

as the system. On the AMs, the period of a task can be a divisor of that of a major frame, and
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then there are multiple instances of a task in a major frame. Each task must be performed

on a particular module for the duration of its execution requirement without overlapping any

other task. For each task, there is a set of sub-intervals and each task must be assigned to one

of these. Between each ordered pair of tasks on an AM, there is an additional requirement

that there should be a minimum idle time between them.

There are precedence relations between tasks and these are referred to as dependencies.

A dependency restricts the duration between the start of an instance of a task to the start of

an instance of another task to be within the interval given by a minimal and a maximal time

lag.

To send and receive a message on a CN, there are four types of tasks that are performed in

a particular order on the involved CMs. On the sending CM, there is first a task that prepares

the message and then a task that sends the message. On each receiving CM, there is first a

task that dequeues the message and then a task that reads the data. Each message sent through

the CN must be assigned to a time slot, and thereby claim some of the capacity available

in this slot. Each slot has a maximum capacity that cannot be exceeded by the combined

requirement of the messages assigned to the slot. If two or more messages are sent in the

same slot, their tasks of the same type must be performed in immediate succession and with a

reduced execution requirement compared to if they were performed separately. Furthermore,

the assignment of a message to a slot imposes slot-unique release times and deadlines on the

tasks involved.

Further details are presented in Sect. 2, along with the mathematical model; there, and

throughout the paper, the model is divided into four components:

– AM-scheduling

– CM-scheduling

– Precedence relations

– CN-scheduling

AM-scheduling and CM-scheduling refers to the scheduling of tasks on the AMs and CMs

respectively, while Precedence relations refers to the dependencies between tasks and CN-

scheduling refers to the communication message scheduling and the additional requirements

on the tasks involved in sending and receiving messages.

The problem statement does not include an objective function since all feasible solutions

to the problem are considered equally good. Instead, the challenge is to determine whether a

feasible solution exists or not, and if there is a feasible solution, provide a schedule. A schedule

for a major frame is defined by two types of decisions, the assignment of communication

messages to time slots and the assignment of start times to tasks.

1.2 Related work on avionic scheduling

The solution approach in this paper utilises MIP techniques to solve a pre-runtime schedul-

ing problem that occurs in the development of IMA systems. Therefore, we restrict the

related work on avionic scheduling to contributions that apply MIP approaches to pre-runtime

scheduling of IMA systems. We start by characterising the previous work with respect to the

decisions to be made while scheduling and how they are constrained. This is followed by

a description of solution approaches. For a technically oriented overview of scheduling in

IMA systems, we refer to Blikstad et al. (2018).

In our problem setting, each task is limited to execute on a specific module and this gives

a reduced complexity compared to when each task must be assigned to a module with respect

to different side constraints, as in Hao et al. (2018) and Eisenbrand et al. (2010). In Hao
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et al. (2018), the assignment is done with respect to memory and security constraints, while

in Eisenbrand et al. (2010) this is done with respect to memory requirements, the bandwidth

of the network linking together the modules, and co-habitation constraints (a subset of tasks

must execute on the same or a specific module).

In an IMA system, software applications typically must communicate with each other

within certain time limits. This often occurs as precedence constraints between tasks or

instances of tasks forcing them to execute within a given duration of one another. In our

problem setting, we have precedence constraints between particular instances of tasks, while

in the problem setting of Hao et al. (2018), Zhang et al. (2014), Craciunas and Oliver (2016),

and Lhachemi et al. (2016), they have precedence constraints between tasks. When prece-

dence constraints are defined between tasks, the constraint forces the instances of the involved

tasks to execute within a given duration of another. In Craciunas and Oliver (2016) and Lha-

chemi et al. (2016), the number of instances of the tasks involved in a precedence constraint

are assumed to be the same, while in Hao et al. (2018) and Zhang et al. (2014) any number

of instances of the tasks in a precedence constraint is allowed. In Hao et al. (2018), they also

handle constraints related to if tasks execute on the same module or not.

An Ethernet network is often used for communication between tasks on different modules.

Depending on the modelling of this network, the level of interaction between communication

and task scheduling can differ. In our model, a specific time-triggered Ethernet network,

described in Blikstad et al. (2018), is used where the messages sent on the network must

obey sequencing constraints. The messages sent on the network are associated with tasks on

the modules and this increases the complexity of the scheduling problem. In Zhang et al.

(2014) and Craciunas and Oliver (2016), who both also address time-triggered Ethernet

networks, there are sequencing constraints between messages sent on the network that are

linked to tasks on the modules. However, in Eisenbrand et al. (2010), an Avionics Full-Duplex

Switched Ethernet network is studied, and there the network communication appears as an

extra knapsack constraint on the assignment of tasks to modules, where each module has a

maximum bandwidth limit.

There exist various solution approaches to tackle the scheduling problems in IMA systems

using MIP techniques. In Hao et al. (2018), Lhachemi et al. (2016), and Zhang et al. (2014), the

authors state MIP models and solve problems with up to 5, 10 and, 270 tasks, respectively.

In Eisenbrand et al. (2010) the authors present three different MIP formulations for their

problem and compare their performance to a heuristic for instances with up to 177 tasks.

An exact incremental solution approach utilising the problem structure, as well as a solution

approach for solving the entire problem at once, are presented in Craciunas and Oliver (2016).

Their performance is evaluated on instances with up to 6912 tasks, using both a satisfiability

modulo theory solver and a MIP solver.

In our problem, the model for the communication between modules is very detailed,

resulting in more tasks than described in existing literature concerning scheduling of IMA

systems. We will present results for instances with up to 54,731 tasks, which is to be compared

to that the maximum number of tasks that we have found in the existing literature is 6912.

1.3 Related work onmatheuristics and ALNS

In the proceedings of the first workshop on matheuristics in 2008, Caserta and Voß

(2010) described matheuristics as exploiting mathematical programming techniques in

(meta)heuristic frameworks. In the following years, matheuristics received an increased

attention from the combinatorial optimisation community, and a number of contributions on
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matheuristics were published and summarised in three surveys. The first survey, by Doerner

and Schmid (2010), presented matheuristic techniques applied to rich vehicle routing prob-

lems. The second survey, by Ball (2011), focused on the different application areas in which

matheuristics had been used. In the third survey the topic was again matheuristic techniques

applied to routing problems, this time by Archetti and Speranza (2014). The topic was relevant

to survey once more thanks to the number of contributions in these years.

Since then, matheuristic techniques have been applied to an even wider range of applica-

tions. Two recent examples being Guido et al. (2018), who uses MIP models to explore large

neighbourhoods in a metaheuristic search for an offline patient-to-bed assignment problem,

and Framinan and Perez-Gonzalez (2018), who use a succession of MIP models in an approx-

imation algorithm for an order scheduling problem. The matheuristic to be presented in this

paper is based on an ALNS that uses restricted MIP models to explore large neighbourhoods

efficiently.

The ALNS framework was introduced in the papers Ropke and Pisinger (2006) and

Pisinger and Ropke (2007) as an extension of the large neighbourhood search (LNS) by

Shaw (1998). LNS is a metaheuristic strategy that iteratively tries to improve a solution by

exploring large neighbourhoods. In an LNS, the move of an iteration is defined by two oper-

ators, a destroy operator that creates a neighborhood by destroying the current solution and a

repair operator that reconstruct a solution given a neighborhood. Different destroy and repair

operators are typically defined, and a pair of these is selected at random in an iteration. The

ALNS framework extends LNS by employing a master level metaheuristic (or local search)

to guide the neighbourhood search, together with a mechanism to adapt the algorithm based

on its performance. In Ropke and Pisinger (2006) and Pisinger and Ropke (2007), simulated

annealing was used as the master level metaheuristic.

In Ropke and Pisinger (2006), the ALNS framework was applied to the pickup and delivery

problem with time windows and in Pisinger and Ropke (2007), it was used to solve a general

routing problem. Since then, the ALNS framework has been successfully applied to a number

of different optimization problems; see for example time-tabling in Kiefer et al. (2017),

optimisation of yard assignment in an automotive transshipment terminal in Cordeau et al.

(2011), scheduling twin yard cranes in Gharehgozli et al. (2015), and multi-mode resource-

constrained project scheduling in Gerhards et al. (2017).

In the original ALNS framework, the authors suggest using fast heuristics to repair the

destroyed solution. However, in Muller et al. (2012), the authors instead use MIP models as

repair operators. Their motivation for this is that the heuristics in commercial MIP solvers

have become efficient enough to be used instead of fast problem-specific heuristics. This

is particularly useful for complex problems where it is not straightforward to implement

efficient heuristics. In Muller et al. (2012), the authors employ a strategy where the destroy

operator releases a set of variables from their current solution while keeping the rest fixed.

This creates a restricted MIP-model that defines the neighbourhood to be searched. The solver

then acts as the repair operator and tries to find a new solution to the restricted MIP model

that improves the objective compared to the solution that was destroyed. Since the solution

of the restricted MIP model of an iteration is a feasible solution for the restricted MIP of the

next iteration, Muller et al. (2012) use steepest descent as the master level heuristic to guide

the neighbourhood search. As a mechanism to improve diversity, Muller et al. (2012) restart

the search with the next best solution if no improvement is found in a predetermined number

of iterations.

Since then, MIP models have been further used in ALNS. Two publications that utilise

restricted MIP models as repair operators, similar to Muller et al. (2012), are Mancini (2016)

that solve a vehicle routing problem, and Belo-Filho et al. (2015) that solve an integrated
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production and distribution problem. Both their algorithms use the solution of the previous

iteration as a feasible starting solution in the next iteration, and then only accept a new

solution if it improves the objective. Neither of them employ a restart mechanism.

In Gerhards et al. (2017), the authors implement MIP models as repair operators in an

ALNS to a solve a multi-mode resource scheduling problem. After each iteration, they per-

form a problem specific heuristic, called Serial Schedule Generation Scheme, in an attempt

to improve the solution created by the repair operator. A difference in Gerhards et al. (2017),

compared to Muller et al. (2012), is that they use different objectives in the repair operators,

which might result in a solution with a worse global objective than the solution of the previous

iteration. Regardless of the new value of the global objective, the authors always keep their

new solution, and therefore their master level metaheuristic can be interpreted as a variable

neighbourhood descent method.

The work of Pereira et al. (2015) uses repair operators that hybridise the use of a con-

structive heuristic and a MIP model within their ALNS search developed for the probabilistic

maximal covering location-allocation problem. In an iteration, the authors first destroy and

repair the location decision by a pair of destroy and repair heuristics, and secondly they

recreate a complete solution to the original problem using a MIP model.

1.4 Outline and contribution

The motivation for the solution method to be presented in this paper is the industrial need

for a scheduling tool that can be used for large-scale avionic scheduling instances of the

kind addressed in this paper. To this end, Sect. 2 first presents an exact solution approach

based on a constraint generation procedure which is the outcome of combining models

and methods presented in Blikstad et al. (2018), Karlsson and Rönnberg (2018), Rönnberg

(2018), and Boberg (2017) with some further improvements which yield a significant increase

in computational performance.

To further enhance the capability to solve very large-scale problems, Sect. 3 presents how

the constraint generation procedure is extended into a matheuristic. The matheuristic uses

an ALNS to solve the relaxation of the problem used in the constraint generation procedure,

and the search explores the neighbourhoods by solving MIP models. To achieve feasibility

in this relaxed problem is difficult, and we therefore designed the ALNS to balance the focus

between the objective value and feasibility in a way inspired by strategic oscillation, see

Glover (1977).

Section 4 contains computational results for two categories of industrially relevant

instances. The first category, which is not publicly available, is included since it is important

for our project. Some of these instances were introduced in Blikstad et al. (2018) and enable

comparision to our previous work. The second category is new and derived to be industrially

relevant but expressed in generic enough terms to be made publicly available.1 As illus-

trated by the computational results for these instances, both the improvements of the exact

approach, as introduced in Sect. 2, and the design and use of an ALNS, introduced in Sect. 3,

successfully contributes to solving very large-scale instances that could not previously be

solved. The paper is ended by concluding remarks in Sect. 5.

1 https://gitlab.liu.se/eliro15/avionics_inst/tree/master.
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2 Exact solution approach

A mathematical model and an exact solution approach based on constraint generation were

presented in Blikstad et al. (2018) and the exact procedure to be described in this section is

based on the same mechanisms as the original one. Therefore, we begin this section with a

short review of the original procedure, followed by a summary of the enhancements made,

and then the details of the exact approach proposed in this paper are presented.

2.1 The constraint generation procedure from previous work

Already in Blikstad et al. (2018), the mathematical model was divided into the four com-

ponents Precedence relations, AM-scheduling, CN-scheduling, and CM-scheduling. It was

then observed that for problem instances of practical relevance

– the computational challenge is due to the large number of tasks to be sequenced on the

CMs,

– a considerable amount of the tasks on the CMs are fixed, and

– the technical restrictions, like release times and deadlines of tasks, precedence relations

and CN-scheduling, are not particularly tight.

Together, these characteristics make it profitable to make the following model formulation,

which is suitable for constraint generation. This formulation divides the CM-scheduling com-

ponent into relaxed CM-scheduling and CM-sequencing. For the relaxed CM-scheduling, a

so-called section is defined for each part of a major frame that is not occupied by a fixed task,

and it is required that each non-fixed task is assigned to a section, while complying with all

requirements related to CM-scheduling, except preventing non-fixed CM-tasks from over-

lapping. In a complete model for the problem, CM-sequencing refers to that, for each set of

non-fixed tasks that can be assigned to the same section, require that the tasks cannot overlap.

This complete model, of course, includes an extreme number of variables and constraints,

but by design, this formulations lends itself to constraint generation.

The constraint generation procedure begins with solving a relaxed problem where the

mathematical model includes the components Precedence relations, AM-scheduling, CN-

scheduling, and relaxed CM-scheduling. In a solution to the relaxed problem, each task is

assigned to a section. By restricting the solution space of the complete model to comply with

a solution to the relaxed problem, only a very small subset of CM-sequencing constraints

are relevant to include in the model. Hence, a subproblem is defined by solving the complete

model under the restriction imposed by the solution to the relaxed problem. In the subprob-

lem, there is no guarantee that CM-sequencing is possible, therefore, the CM-sequencing

constraints are treated as soft constraints and the objective of the subproblem is to minimize

the number of overlapping CM-tasks.

If the subproblem finds a solution where there are no overlaps, a solution to the complete

model has been found. Otherwise, it can be detected which of the CM-sequencing constraints

are violated, and these can be added to the relaxed problem, which is then re-solved. This

process can be repeated until an overlap-free solution to the subproblem is found. Conver-

gence of the method follows from that there is a finite number of constraints to be added

to the relaxed problem, and that in each iteration, at least one new constraint is added. In

practice, the success of the method relies on that only very few of the constraints need to be

generated.
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2.2 The constraint generation procedure proposed in this work

The constraint generation procedure used in this work differs from previous work as follows.

Firstly, in Blikstad et al. (2018), a restriction of the industrial problem was studied, since the

possibility of co-allocating CN-messages was omitted. To allow co-allocation of messages

is important from a practical point of view, but it makes the problem computationally more

challenging because of the additional decisions to be made. In this paper, co-allocation is

included as outlined in Rönnberg (2018), but with some improvements of the mathematical

modelling.

Secondly, the relaxed CM-scheduling component has been improved by, instead of assign-

ing the CM-tasks to a section (that is, part of a major frame that is not occupied by a fixed task)

assign each CM-task to a smaller interval where the task must be placed, as outlined in Karls-

son and Rönnberg (2018). This more fine-grained decision is made possible because after

pre-processing, the interval between the release time and deadline of a task is divided into

several sub-intervals, and it is known that in a feasible solution, a task must be placed within

one of these sub-intervals. Thirdly, in the Bachelor thesis Boberg (2017), a computational

study was performed to investigate which mathematical formulation of the CM-sequencing

component performs best. The results of this study led to a modification of the CM-sequencing

constraints compared to Blikstad et al. (2018).

By combining these enhancements, together with some further improvements of details,

the resulting mathematical model is as to be presented. The model is divided into a Relaxed

problem and a Subproblem, as illustrated in Fig. 2. The presentation of the model is structured

such that it begins with introducing parts of the formulation that are common for AM- and

CM-scheduling and it continues to present each of the model components according to the

section references in Fig. 2. A consequence of the model changes is that the constraint called

chains in Blikstad et al. (2018) has become redundant and it is therefore removed in this

work. An overview of the solution procedure is presented after the model components.

2.3 Common for AM- and CM-scheduling

Let the set I index all tasks in the system and let P denote the length of the major frame. Task

i has an execution requirement ei and must execute without preemption within the interval

between its release time t r
i and deadline td

i , i ∈ I. If t r
i = td

i − ei holds, task i is referred to as

fixed. The period of task i is denoted by pi , i ∈ I, with pi being a divisor of P so that there

are P/pi instances of task i in a major frame. For i ∈ I, introduce the continuous variable

xi = start time of task i .

Let HCM and HAM denote the set of CMs and the set of AMs, respectively. Let the set Ih

include the indices of the tasks assigned to module h ∈ HCM ∪ HAM. For the industrial

problem under consideration, all tasks on the CMs have a period of length P and all tasks on

the AMs have a period of length P/64.

The interval between the release time and deadline of a task is, due to technical limitations

and as a consequence of pre-processing, divided into sub-intervals. In a feasible solution, a

task is assigned to one of these intervals. Let the set Qi include the indices of the sub-intervals

of task i , and let the release time and deadline of sub-interval q for task i be denoted by t r
iq

and td
iq , respectively, q ∈ Qi , i ∈ I. Note that t r

i = minq∈Qi
t r
iq and that td

i = maxq∈Qi
td
iq .
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Fig. 2 Information flow and model components in the constraint generation procedure

For i ∈ I, q ∈ Qi , introduce the binary variable

αiq =

{

1, if task i is assigned to sub-interval q,

0, otherwise.

Each task is assigned to one of its sub-intervals by the constraint
∑

q∈Qi

αiq = 1, i ∈ I, (1)

while the constraint
∑

q∈Qi

t r
iqαiq ≤ xi ≤

∑

q∈Qi

td
iqαiq − ei , i ∈ I, (2)

restricts the release time and deadline of the task to be that of the sub-interval it is assigned

to.

2.4 Precedence relations

In this problem setting, we consider one type of precedence relation constraints called depen-

dencies. The dependencies are indexed by quadruples where (i, j, k, l) refers to restricting
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Fig. 3 Examples of the two ways in which the duration between the start of instance k = 0 of task i to next

start of instance l = 0 of task j can be measured for dependency (i, j, k, l) ∈ D

the duration from the start of instance k of task i to the next start of instance l of task j to be

between lmin
i jkl and lmax

i jkl . Let the set D be the set of all dependency indices. For dependency

(i, j, k, l) ∈ D introduce the continuous variable

ui jkl = the length of a dependency,

and the binary variable

yD
i jkl =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, if instance k of task i starts before instance l of task j

in a major frame,

0, if instance l of task j starts before instance k of task i

in a major frame.

The minimum and maximum length of a dependency (i, j, k, l) ∈ D is enforced by the

constraints

ui jkl = x j + lp j − (xi + kpi ) + PyD
i jkl , (3)

lmin
i jkl ≤ ui jkl ≤ lmax

i jkl . (4)

Note that the length of a dependency is measured differently depending on the order of the

instances within a major frame. This is illustrated in Fig. 3.

2.5 AM-scheduling

Scheduling of the AMs involves sequencing the tasks while respecting idle times between

them. Let the set IIO
h ⊆ {(i, i ′) ∈ Ih ×Ih : i < i ′} include all pairs of task indices on AM h

that with respect to their respective release times and deadlines can be placed such that they

overlap or violate the idle times between them, h ∈ HAM.

For h ∈ HAM, (i, i ′) ∈ IIO
h , introduce the binary variable

yi i ′ =

{

1, if task i starts before task i ′,

0, if task i ′ starts before task i .
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The minimum idle time between tasks is order specific and for the pair of tasks (i, i ′) ∈ IIO
h ,

h ∈ HAM, it is denoted by l idle
i i ′

. The AM-sequencing constraints

xi + ei + l idle
i i ′ − (td

i + l idle
i i ′ − t r

i ′)(1 − yi i ′) ≤ xi ′ , (i, i ′) ∈ IIO
h , h ∈ HAM, (5)

xi ′ + ei ′ + l idle
i ′i − (td

i ′ + l idle
i ′i − t r

i )yi i ′ ≤ xi , (i, i ′) ∈ IIO
h , h ∈ HAM, (6)

make the start times of the tasks comply with the order in which they are sequenced.

2.6 CN-scheduling

For the communication message scheduling, let M be an ordered set of CN-message indices

and, further, let N be an ordered set of CN-slot indices, where the order is with respect to

the location in a major frame. For n ∈ N , m ∈ M, introduce the binary variable

znm =

{

1, if message m is assigned to CN-slot n,

0, otherwise.

Each CN-message is assigned to a CN-slot by the constraint

∑

n∈N

znm = 1, m ∈ M, (7)

while the constraint
∑

m∈M

l
msg
m znm ≤ lslot

n , n ∈ N , (8)

ensures that the capacity of each slot is respected, where lslot
n denotes the capacity of CN-slot

n ∈ N and l
msg
m , denotes the amount of capacity that CN-message m ∈ M claims in a slot.

2.6.1 CN-message order

To facilitate some of the modelling to follow, an order between the CN-messages needs to be

established and co-allocation of CN-messages needs to be managed. Co-allocation of CN-

messages refers to that two or more messages are assigned to the same CN-slot, something

which implies that certain tasks are merged on the CMs. To avoid symmetries in the model

with respect to co-allocation of messages, and without loss of generality, co-allocated CN-

messages are forced to be placed in a slot in ascending order with respect to their CN-message

indices.

Introduce, for m′, m ∈ M : m < m′, the binary variables

yS
mm′ =

{

1, if message m is placed before message m′,

0, if message m′ is placed before message m,

and

wmm′ =

{

1, if message m is placed before message m′ in a slot,

0, otherwise.

Further, let nmin
m and nmax

m denote the least and the greatest CN-slot index, respectively, that

is eligible for message m ∈ M. For m′ ∈ M, m ∈ M : m < m′ introduce the constraints
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∑

n∈N

nznm + 1 − wmm′ − (nmax
m − nmin

m′ + 1)(1 − yS
mm′) ≤

∑

n∈N

nzm′n

≤
∑

n∈N

nznm + (nmax
m′ − nmin

m )(1 − wmm′), (9)

∑

n∈N

nzm′n + 1 − (nmax
m′ + 1 − nmin

m )yS
mm′ ≤

∑

n∈N

nznm, (10)

wmm′ ≤ yS
mm′ , (11)

to relate both to the order of the messages and co-allocation of messages to the assignment

of CN-messages to CN-slots, so that the values of the involved variables comply with their

definitions.

2.6.2 Time restrictions for CN-tasks

There are four types of tasks involved in communicating a CN-message, two on the sending

CM and two on each of the receiving CMs. These tasks are henceforth referred to as CN-tasks

and the elements of the index set K = {1, 2, 3, 4} are used to refer to which type of CN-task

is considered. Let the set IK
k include all tasks of type k ∈ K, and introduce the set IM

m to

include the CN-tasks that are involved in communicating CN-message m ∈ M.

For each CN-slot and type of CN-task, there are release times and deadlines that the

corresponding CN-tasks must comply with if a CN-message is assigned to this slot. Denote

the release time and deadline that task i ∈ IM
m ∩ IK

k must comply with if CN-message m is

assigned to slot n by t
r-msg
nk and t

d-msg
nk , respectively, n ∈ N , k ∈ K, m ∈ M. The constraint

∑

n∈N

t
r-msg
nk znm ≤ xi ≤

∑

n∈N

t
d-msg
nk znm − ei , i ∈ IM

m ∩ (IK
2 ∪ IK

3 ), m ∈ M, (12)

ensures that these times are respected.

For CN-tasks of type 2, it holds that each interval [t r
iq , td

iq ], coincides with an interval

[t
r-msg
n2 , t

d-msg
n2 ] for some n ∈ N , and vice versa, and that ei = td

iq − t r
iq holds, q ∈ Qi , i ∈ IK

2 .

For this reason, choosing a sub-interval for a CN-task of type 2 and assigning a CN-message

to a CN-slot is in fact the same decision, expressed by the constraint

αiq = znm, q ∈ Qi : t r
iq = t

r-msg
n2 , i ∈ IK

2 ∩ IM
m , m ∈ M, n ∈ N . (13)

In the model, these variables are, for clarity reasons, introduced separately.

2.6.3 Merging of CN-tasks

When CN-messages are co-allocated in a slot, their corresponding CN-tasks that are of

the same type and on the same CM will be merged. This is possible since the execution

requirement of CN-tasks constitutes of two terms, the first being initialisation and the second

being a message specific part, and for tasks that are merged, this initialisation is omitted for

all but the first of the merged task. For CN-task i ∈ IM
m , m ∈ M, denote initialisation by einit

i

and the CN-message specific part by ei − einit
i . For CN-tasks of type 1, 3, and 4 it hold that

einit
i ≈ ei/2 and for CN-tasks of type 2 it hold that einit

i = ei .

More specifically, when merging a set of CN-tasks, these tasks are placed in the order

according to their CN-message index and such that, for all but the first task, the initialisation

part of the execution requirement overlaps the preceding task. To handle merging in the
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Relaxed problem, an order between each pair of tasks that potentially can be merged is

introduced, even if the majority of the tasks are sequenced by the CM-sequencing component.

For m′ ∈ M, m ∈ M : m < m′, h ∈ HCM, k ∈ K, introduce the set IIM
khmm′ = {(i, i ′) :

i ∈ IK
k ∩ Ih ∩ IM

m , i ′ ∈ IK
k ∩ Ih ∩ IM

m′} that contains a pair of tasks that potentially can

be merged and let the set IIM = ∪m′∈M ∪m∈M:m<m′ ∪h∈HCM ∪k∈K IIM
khmm′ include all

such pairs of tasks. For m′ ∈ M, m ∈ M : m < m′, h ∈ HCM, k ∈ K, (i, i ′) ∈ IIM
khmm′ ,

introduce the binary variable

yM
i i ′ =

{

1, if task i starts before task i ′,

0, if task i ′ starts before task i,

and note that the case yM
i i ′

= 1 includes the possibility that i and i ′ are merged, even if they

not necessarily are. For m′ ∈ M, m ∈ M : m < m′ introduce the constraints

xi + ei − einit
i ′ wmm′ − (td

i − t r
i ′)(1 − yM

i i ′) ≤ xi ′ ≤ xi + ei − einit
i ′

+
∑

i ′′∈IM
m′′∩Ih∩IK

k , m′′∈M:m<m′′<m′

(ei ′′ − einit
i ′′ )wmm′′

+(td
i ′ − ei ′ − t r

i − ei + einit
i ′ )(1 − wmm′),

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, (14)

xi ′ + ei ′ − (td
i ′ − t r

i )yM
i i ′ ≤ xi , (i, i ′) ∈ IIM

khmm′ , k ∈ K, h ∈ HCM, (15)

wmm′ ≤ yM
i i ′ , (i, i ′) ∈ IIM

khmm′ , k ∈ K, h ∈ HCM, (16)

of which the first two relate the start times of the tasks to the order between the tasks, with the

first one taking into account the merging. Note that constraint (14) and constraint (15) together

make sure that the tasks do not overlap, except in the sense of merging. Constraint (16) forces

CN-tasks of co-allocated CN-messages to be in the same order as the messages.

2.6.4 CN-task order

For a pair of CN-messages m and m′, where m, m′ ∈ M, that are received by the same CM,

the relative order between the CN-tasks of type 3 must be the same as that between message

m and m′. This order is enforced by the constraint

yS
mm′ = yM

i i ′ , (i, i ′) ∈ IIM
3hmm′ , h ∈ HCM, m′ ∈ M, m ∈ M : m < m′. (17)

2.7 CM-scheduling

This section describes the different aspects of CM-scheduling used in the constraint genera-

tion procedure.

2.7.1 Relaxed CM-scheduling

That the CM-scheduling is relaxed refers to that this model component does not contain

anything that prevents tasks from overlapping, except in the case of tasks that potentially can

be merged. What restricts how the tasks on the CMs can be placed are constraints from other

model components and the assignment of sub-intervals to tasks, as introduced in Sect. 2.3.

This section presents how the formulation with respect to the assignment of sub-intervals
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to tasks can be strengthened to cut off solutions that cannot be feasible when the tasks are

required not to overlap.

For a feasible schedule, it holds that for any interval of time, the length of this interval is

at least that of the sum of the execution requirements of the tasks (or the part of the tasks)

that execute within it. This property can be used to strengthen the formulation of the Relaxed

problem by introducing capacity restrictions for some relevant choices of intervals. We here

consider intervals that are formed by combining a sub-interval release time of a task and a

sub-interval deadline of a task. Introduce for h ∈ HCM, capacity constraints indexed by the set

Rh and let I
cap
r , r ∈ Rh , be the indices of a set of tasks such that for its sub-intervals, indexed

by the set Qir , it holds that maxi∈I
cap
r

maxq∈Qir
td
iq − mini∈I

cap
r

minq∈Qir
t r
iq <

∑

i∈I
cap
r

ei .

The constraint
∑

i∈I
cap
r

∑

q∈Qir

eiαiq −
∑

(i,i ′)∈IIM
khmm′∩I

cap
r , k∈K, m′∈M, m∈M:m<m′

einit
i ′ wmm′

≤ max
i∈I

cap
r

max
q∈Qir

td
iq − min

i∈I
cap
r

min
q∈Qir

t r
iq , r ∈ Rh, h ∈ HCM, (18)

yields the restriction that the total execution requirement of the tasks placed within such an

interval does not exceed its length,

For Constraint (18) to be valid also in the case when CN-tasks are merged, it is assumed

that they reduce the capacity required by the tasks placed in the section by the initialisation

length if they are merged, even if they are not placed in the section. This adjustment somewhat

weakens the constraint.

2.7.2 Sub-interval restriction

In a solution to the Relaxed problem, let the notation q̄i , q̄i ∈ Qi , refer to the sub-interval

that task i is assigned, and restrict the release time and deadline of task i to t r
i q̄i

and td
i q̄i

,

respectively, i ∈ Ih , h ∈ HCM. These restrictions allow the set of tasks that are at risk to

overlap to be substantially reduced and this is exploited in the Subproblem.

2.7.3 CM-sequencing

Every set of tasks that have been placed such that they are at risk to overlap on CM h ∈ H is

referred to as a sequence. Let Sh denote the set of sequences on CM h, and note that tasks that

are in different sequences cannot overlap with respect to their release times and deadlines.

Let the set IIO
s index all pairs of tasks in sequence s ∈ Sh .

For s ∈ Sh , h ∈ HCM, introduce the binary variable

βs =

{

1, if there is no overlap between tasks in sequence s,

0, otherwise,

and for (i, i ′) ∈ IIO
s , the binary variable

yi i ′ =

{

1, if task i finishes before task i ′ starts,

0, no requirements on the relation between task i and task i ′.

For sequence s ∈ Sh , h ∈ HCM introduce the CM-sequencing constraints

[CM-seq]s βs ≤ yi i ′ + yi ′i ≤ 1, (i, i ′) ∈ IIO
s , (19)
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xi + ei − (td
i − t r

i ′)(1 − yi i ′) ≤ xi ′ , (i, i ′) ∈ IIO
s , (20)

xi ′ + ei ′ − (td
i ′ − t r

i )(1 − yi ′i ) ≤ xi , (i, i ′) ∈ IIO
s . (21)

If βs = 1 for sequence s, the tasks in this sequence are forced not to overlap by requiring

that one task starts before the other by constraint (19), and that the start times of the tasks

comply with this order by constraints (20) and (21). Otherwise if βs = 0 for a sequence s,

the tasks in this sequence are allowed to overlap.

In order to prefer to schedule tasks such that they do not overlap, we introduce the objective

function of the Subproblem as

max
∑

h∈HCM

∑

s∈Sh

βs . (22)

If a Subproblem solution is found where none of the sequences have tasks that overlap, a

valid schedule is found. Otherwise the values of the βs variables indicate which sequences

contain overlapping tasks.

2.7.4 Generated sequences

A sequence that is not free from overlaps between tasks in a solution to the Subproblem

can be used for feedback to improve future solutions. If a sequence is chosen to be used as

feedback, it is referred to as a generated sequence. Let the set Sgen index such sequences. For

each generated sequence s ∈ Sgen, the CM-sequencing constraint [CM-seq]s is combined

with the requirement that βs = 1, thereby forcing the tasks in generated sequence s not to

overlap. The generated sequences constraints are added both to the Relaxed problem and to

the Subproblem.

2.8 Objective functions for the relaxed problem

In the original problem formulation, any feasible solution is considered equally good. In the

constraint generation procedure, however, objective functions are used to guide the search.

This section introduces the two objective functions that are used in the Relaxed problem. The

first objective, called the sub-interval space objective, is used in the first Relaxed problem to

obtain a solution where tasks preferably are put in sub-intervals where they have a lot of space.

The second objective, called the stabilise objective, is used in subsequent Relaxed problems,

and it aims at assigning as many tasks as possible to the sub-interval of the previous Relaxed

problem solution. To use different types of objective function in the first and subsequent

Relaxed problems has turned out to be important to obtain computational efficiency.

2.8.1 Sub-interval space objective

The sub-interval space objective tries to assign tasks to sub-intervals where they have a lot of

space. Each sub-interval q ∈ Qi is given a reward miq if task i ∈ Ih , h ∈ HCM, is assigned

to it. For each sub-interval q ∈ Qi of task i ∈ Ih , h ∈ HCM, the reward is calculates as

miq = min

(

td
iq − t r

iq − pi

mobj maxq ′∈Qi
(td

iq ′ − t r
iq ′ − pi )

, 1

)

, (23)
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where mobj, 0 ≤ mobj ≤ 1, is a parameter used to set a threshold for when a sub-interval is

considered to have a lot of space or not. The objective function is then be stated as

max
∑

h∈HCM

∑

i∈Ih

∑

q∈Qi

miqαiq . (24)

2.8.2 Stabilise objective

The stabilise objective maximises the number of tasks that are placed in the same sub-interval

as in the solution to the previous Relaxed problem. Let q̄i denote the sub-interval that task

i was assigned to during the previous iteration of the Relaxed problem, i ∈ I. The stabilise

objective can then be stated as

max
∑

i∈I

αi q̄i
. (25)

2.9 Implementation of the constraint generation procedure

The pseudo-code for the exact procedure can be found in Algorithm 1. Before the constraint

generation procedure, we apply pre-processing components as described in Blikstad et al.

(2018).

Data: A scheduling instance

Result: A valid schedule or a conclusion of infeasibility

Conduct pre-processing

while At least one generated sequence is new do
Solve the Relaxed problem

if Relaxed problem is infeasible then
Conclude that the problem is infeasible

Break
end

Restrict all non-fixed CM-tasks to their assigned sub-intervals

Solve the Subproblem

if There are tasks that overlap then
Add at least one generated sequence to the Relaxed problem and to the Subproblem

end

end

Algorithm 1: Overview of the exact solution approach

3 Matheuristic solution approach

The exact approach presented in the previous section is the backbone also for the matheurstic

to be introduced in this section. The matheuristic components comprise of an ALNS search

for solving the Relaxed problem and a constructive heuristic for creating an initial solution to

be used by the ALNS. Pseudo-code for this matheuristic approach is found in Algorithm 2.
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Data: A scheduling instance

Result: A valid schedule

Conduct pre-processing

Find an initial solution to the Repair model

while At least one generated sequence is new do

while Solution has penalty or any of the last k iterations were successful do

for i ← 1 to n do
Select a destroy operator at random

Select a repair operator based on the current solution and whether or not to diversify

Construct a Repair model based on the destroy operator, the repair operator, and the

previous solution

Solve the Repair model

end

Determine whether or not to diversify

end

Restrict all non-fixed CM-tasks to their assigned sub-intervals in the current solution

Solve the Subproblem

if There are tasks that overlap then
Add at least one generated sequence to the Repair problem and to the Subproblem

end

end

Algorithm 2: Overview of the matheuristic

3.1 Outline of the ALNS

In the model used in the ALNS, many constraints are treated as soft and a violation of a

constraint is penalised in the objective. By associating different weights with the penalty

and the objective function of the Relaxed problem, it is possible to choose between focus on

feasibility or objective value.

During the ALNS, a solution is defined by that each task is assigned to one of its sub-

intervals and that all other variables of the relaxed problem have values obtained from solving

the penalised model by a MIP-solver. A destroy operation releases some of the tasks from

their sub-intervals and makes them eligible for re-assignment. This re-assignment is done in

the repair operation by applying a MIP-solver to a repair model, which is the penalised model

with weighted objective, where only the released tasks can be re-assigned new sub-intervals.

The master level heuristic guiding our search is based on local search with the alteration

that different repair operators use different objective functions.

The destroy operators are designed to identify tasks that cause costs in the current solution,

or to select tasks at random. For the destroy operators that identify tasks that cause costs,

a subset of the most costly tasks is selected to be released and these are referred to as key

tasks. Since the re-assignment of key tasks might be restricted by constraints involving tasks

related to them, further tasks, referred to as related tasks, are also released.

Which repair operator the ALNS uses depends on whether the current solution is feasible

or not with respect to the Relaxed problem. This is inspired by the concept of strategic

oscillation, see Glover (1977) and Glover and Hao (2011). The selection of repair operator

is done at each iteration and is part of the adaptiveness of the algorithm.

The search is divided into time epochs and each of these consists of a number of iterations.

At the end of a time epoch, it is decided if the ALNS should exit or not. If the search is

continued, it is further decided if a diversify repair operator shall be applied, or if the search

should continue as before. This also contribute to an adaptive search behaviour.
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3.2 Repair model

This section describes the MIP model, referred to as the Repair model, that is used in each

iteration of the ALNS. It is a major difficulty to find a feasible solution to the Relaxed

problem, and therefore the Repair model is a reformulation of the Relaxed problem where

a majority of the constraints are treated as soft and violations of them are penalised in the

objective function. For this purpose, we introduce the penalty variables

– γ CN-slot: violation of CN-slot capacity,

– γ CN-time: violation of time restriction for CN-tasks,

– γ CN-merge: violation of merging of CN-tasks,

– γ cap: violation of relaxed CM-scheduling,

– γ gen: violation of generated sequences,

that measure the violation of feasibility of each constraint type. The total violation of feasibil-

ity of each constraint type along with the maximum violation of each constraint type are given

a weight. Let γ infeas denote the weighted sum of the total and maximum violation of each

constraint type. Three types of constraints are always obeyed during the ALNS: the assign-

ment of each task to a sub-interval constraints [constraints (27)–(29)], the AM-scheduling

constraints (Sect. 2.5), and the Precedence relations constraints (Sect. 2.4).

In order to balance the need for feasibility of a solution with the Relaxed problem objective,

the weights winfeas and wobj are introduced for the Relaxed problem objective and the total

weighted constraint violation, respectively. The weights are decided by the repair operator

and are used in objective function of the Repair model

min winfeasγ infeas + wobjδobj, (26)

where δobj denotes the Relaxed problem objective.

In each iteration of the ALNS, a set of tasks Irel is released from their current sub-intervals

and allowed to be re-assigned new sub-intervals. Each remaining task i ∈ I \ Irel is fixed to

its sub-interval q̄i of the previous solution. The set of tasks to be released is determined by

the destroy operator and defines, together with the repair operator, the neighbourhood to be

searched. In the Repair model, the common AM- and CM-scheduling constraints in Sect. 2.3

are replaced with

∑

q∈Qi

αiq = 1, i ∈ I, (27)

ᾱiq = 1, i ∈ I \ Irel, (28)
∑

q∈Qi

t r
iqαiq ≤ xi ≤

∑

q∈Qi

td
iqαiq − ei , i ∈ I. (29)

Note that the Repair model is free to decide the start times for the tasks within their assigned

sub-intervals, see constraint (29).

3.3 Destroy operators

Given a solution to the Repair model, a destroy operator constructs the set of tasks Irel that

can be assigned to a new sub-interval in the next ALNS iteration. The ALNS utilises multiple

destroy operators. In each iteration, one of the destroy operators is selected at random, with

equal probabilities for all operators. The destroy operators are categorised into two types:
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precedence relations operator and random operator. The details of each type are described in

the following sections.

3.3.1 Precedence relations operator

The precedence relations operator is based on the idea of related removal, introduced in Shaw

(1998). Given a solution to the Repair model, tasks that cause a cost in the current solution

are chosen. Such tasks are referred to as key tasks. From the set of key tasks, the precedence

relations operator orders related tasks in increasing distance from the key tasks. The distance

between two tasks is defined as the length of the shortest sequence of dependencies through

which the tasks are connected, or as infinity if no such sequence exists. The set of key tasks

together with the related tasks with the shortest distance to the key tasks are then released

from their current sub-interval.

3.3.2 Random operator

The random operator simply selects tasks at random to be released from their current sub-

interval. In Ropke and Pisinger (2006), this operator is recommended to be included in the

ALNS to improve diversification.

3.4 Repair operators

The repair operator controls the balance between the of focus on feasibility and the Relaxed

problem objective by assigning values to the weights in the Repair model objective.

3.4.1 Feasibility repair

The feasibility repair focuses on achieving feasibility by setting wobj = 0 and winfeas = 1.

The objective function of the Repair model then becomes

min γ infeas. (30)

3.4.2 Diversify repair

The diversify repair tries to improve the solution with respect to the Relaxed problem objec-

tive. This is done by choosing a small value for the weight of the constraint violations winfeas

and setting wobj = 1. The objective of the Repair model then becomes

min winfeasγ infeas + δobj. (31)

3.4.3 Objective repair

The objective repair is used when the current solution is a feasible solution to the Relaxed

problem. The repair operator tries to improve the Relaxed problem objective while main-

taining feasibility with respect to the Relaxed problem. The objective function of the Repair

model is

min γ obj, (32)
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with the additional constraint

γ infeas = 0. (33)

3.5 Adaptation

The adaptation part of the ALNS is done at two levels: in each iteration and at the end of

each time epoch (which corresponds to a given number of iterations). The primary decisions

of the adaptation are to determine if the focus should be on feasibility or the relaxed problem

objective and to evaluate if the ALNS is stuck in a local optima, and if so, determine what

the corresponding action should be.

With respect to local optimality, we evaluate, at the end of each time epoch, if any of the

last 5 iterations were successful. If not, we act as follows:

– If the current solution is feasible: we exit the ALNS and enter the Subproblem;

– If the current solution is infeasible: we apply the diversify repair operator.

If one or more of the last 5 iterations were successful, we continue the search as usual. The

decision to focus on feasibility or on the relaxed problem objective is made at each iteration

by selecting different repair operators. This is done according to the following scheme:

– If the current solution is feasible: we apply the objective repair operator;

– If the current solution is infeasible: we apply the feasibility repair operator.

In the case we are at the end of a time epoch and has applied the diversify repair operator,

this adaptation is omitted.

3.6 Creating an initial solution to the ALNS

An initial solution to the ALNS is created by applying a constructive heuristic that takes into

account only some of the constraints. This is done by iteratively solving a MIP-model until

the constraints that are kept hard during the ALNS are respected.

The MIP-model that we use in the constructive heuristic is called the Partition model, see

Appendix B. The Partition model enforces a valid AM-schedule that respects all precedence

relations. The objective function is to maximise a reward that is based on the duration between

tasks on different AMs that communicate with each other. However, in a solution to this model,

tasks are not necessarily placed within sub-intervals. As a remedy to this, constraints that

assign tasks to sub-intervals, see Sect. 2.3, are added for the tasks that are not within feasible

sub-intervals. This process is repeated and the MIP-model is re-solved until a solution to the

Partition model is found in which all tasks are within allowed sub-intervals. This assignment

of tasks to sub-intervals is used as the initial solution in the ALNS.

4 Results

In this section, we present the computational performance of both the exact approach and

the matheuristic and compare these results to previous work.
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Table 1 The number of tasks, dependencies, messages, fixed tasks, AMs, and CMs of the Saab instances

Name Tasks Dependencies Messages Fixed tasks AMs CMs

Instance I 6538 1088 64 4220 2 2

Instance II 14,186 9784 96 7640 6 5

Instance III 19,919 12,616 96 10,500 8 7

Instance IV 20,461 30,245 240 4284 2 2

Instance V 26,268 30,374 1032 4932 3 3

Instance VI 45,026 48,862 2616 11,148 10 8

4.1 Instances

The instances used for the computational evaluation were derived together with the industrial

partner Saab. They are designed such that they are relevant for future avionic systems. One

of the sets, called Saab instances, contains six instances with specific properties that are

important for Saab, and these instances are therefore not made publicly available. The other

set contains 120 public instances2 and these have a wider range of industrially relevant

properties.

4.1.1 Saab instances

The original motivation of this work was to solve the instances provided by Saab and the

three smallest in this set, Instances I–III, were introduced in Blikstad et al. (2018). For these

instances, the number of dependencies differ compared to what was presented in Blikstad

et al. (2018) because of the modelling changes presented in this paper. Instances IV, V and

VI are new and represent instances that are beyond the scope of what could be solved in

previous work. The number of tasks, dependencies, messages, fixed tasks, AMs and CMs

can be found in Table 1. Note that even if the total number of tasks is of the same magnitude

for Instances III–V, there is a difference in how many modules the tasks are distributed on.

Since Instances IV–V have fewer modules, they are more challenging to solve. Instance VI

is clearly the most challenging due to its large number of tasks and messages.

4.1.2 Public instances

The public instances are divided into the four categories A–D, with 30 instances in each

category. Table 2 provides, for each instance category, the mean values of the number of

tasks, dependencies, messages, fixed tasks, AMs, and CMs, respectively. The relationships

between the number of tasks, messages, fixed tasks, dependencies, and modules are illustrated

in Fig. 4.

Category A contains instances of about the same size and difficulty as the smallest of the

Saab instances, while both Category B and C contains instances designed to be of medium

difficulty. Instances in Category D are constructed to be very challenging due to the large

numbers of tasks and messages. Worth noting is that the public instances have been con-

structed in such a way that we do not know if a feasible schedule exists or not. Especially for

Category D, we consider each occurrence of solving an instance to be an accomplishment

2 https://gitlab.liu.se/eliro15/avionics_inst/tree/master.
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Table 2 Mean values of key attributes of the different categories of public instances

Category Tasks Dependencies Messages Fixed tasks AMs CMs

Category A 4932 9516 172 1359 2.3 2.0

Category B 11,699 22,170 447 1989 2.3 2.0

Category C 20,037 37,707 908 3452 4.8 4.1

Category D 41,655 79,503 1923 6392 9.4 8.2

,

,

,

,

,

,

,

,

,

,

,
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,,

Fig. 4 Relations between the number of tasks, dependencies, messages, fixed tasks, and modules in the public

instances

and together with the instance data,3 we provide the information if an instance has ever been

solved. The largest instance in this set contains 54,731 tasks and 2530 messages and this has

been solved.

Instances in Category B–D have the important characteristic that they are unbalanced with

respect to that certain CMs are assigned more tasks and handle more messages compared to

other CMs in the system. The instances in Category A are not given this property, to keep

them simpler.

3 https://gitlab.liu.se/eliro15/avionics_inst/tree/master.
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Table 3 The time-out for the

scheduling tool on the different

instances

Time-out Saab instances Public instances

6 h Instance I–III Category A

36 h Instance IV–V Category B

48 h – Category C

72 h Instance VI Category D

4.2 Test settings

We evaluate the performance of the exact approach and the matheuristic by running the

scheduling tool on a number of instances, using as similar settings as possible for the exact

approach and the matheuristic. Because of the importance of the Saab instances, we ran both

the exact approach and the matheuristic five times, initialised with different seeds. For the

public instances, the exact approach and the matheuristic were given one attempt each. The

remaining parts of this section describe the computational environment and the settings of

the exact approach and the matheuristic.

4.2.1 Software and hardware specifications

The scheduling tool has been implemented using Python 3.7 and the MIP models are solved

using Gurobi 8.1.1. All the tests are carried out on a computer with two Intel Xeon Gold 6130

Processors (16 cores, 2.1 GHz) and 384 GB RAM. The scheduling tool is single threaded

except from the calls to Gurobi, which is allowed to use all cores.

4.2.2 Common settings for the exact approach and the matheuristic

This section describes the settings that are the same for the exact approach and the matheuris-

tic. In both solution approaches, we use the sub-interval space objective function with the

parameter mobj = 0.2 in the first Relaxed problem. For the Subproblem, there is a maximum

running time of 4 h. In order to use the time of the scheduling tool efficiently, we also used

a progressive set of time-outs to, in some cases, exit the Subproblem faster. These time-outs

depend on the value of the current solution and the relative MIP-gap. Sometimes an early

exit in the Subproblem will yield many generated sequences, and to limit the effect from this,

we do not add all sequences. When not all sequences are added, we choose the ones with the

least amount of tasks first, and quit when
∑

s∈Sgen |IIO
s | > 90,000. The time-limits for the

entire scheduling tool are given in Table 3.

4.2.3 Settings for the exact approach

In the exact approach, the Relaxed problem will exit when a relative MIP-gap of 10% is

reached in the first iteration, and when 0% is reached in the successive iterations. Since it

can be difficult to fulfil these requirements, we have an additional way to exit. If a feasible

solution has been found, Gurobi gets a time-limit of 30 min to find an improved solution,

otherwise we exit the search. However, if an improved solution is found within this time-limit,

it is reset to 30 min and the search is continued.
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Table 4 An overview of the destroy operators used in the ALNS along with their settings

Operator Key task selection strategy No. dependency steps No. unlocked tasks

Precedence 1 Worst 2 8000

Precedence 2 Worst 4 8000

Precedence 3 Random 2 8000

Random – – 8000

4.2.4 Matheuristic specific settings

The ALNS is divided into time epochs of 8 iterations. The time-limit for Gurobi is 18 min in

each iteration, with a more aggressive time-out if improved solutions within certain relative

MIP-gaps have been found. We consider an ALNS iteration to be successful if there is a

0.1% decrease of the weighted penalty in a repair with respect to feasibility, or if there is any

improvement in the objective value in the other repair operators.

In the ALNS, we use 4 different destroy operators derived from the two types of oper-

ators described in Sect. 3.3. Each of the destroy operators unlocks 4000 tasks. We use one

random-based operator and three variants of the precedence relations-based destroy operator

as given in Table 4. Two of precedence relations-based destroy operators identify related

tasks reachable by following two dependencies. One of them selects the key tasks as those

associated with the highest cost, while the other selects the key tasks at random among tasks

with costs. The last precedence related destroy operator identifies related tasks reachable by

following four dependencies and selects key tasks associated with the highest cost.

4.3 Performance evaluation of the exact approach and thematheuristic

The main computational results are presented through plots illustrating the number of

instances solved within a certain time. The results for the Saab instances are given in Fig. 5.

For Instances I–III, both the exact approach and the matheuristic find a schedule for all five

seeds. For Instances IV–VI, the matheuristic finds a schedule for all seeds while the exact

approach fails in all cases. By studying the results in detail, we noted that the exact approach

failed for Instance V–VI because it failed to find a feasible solution to the first Relaxed prob-

lem. For Instances I–III, the computational times are shorter for the exact approach than for

the matheuristic.

To compare to previous work, we study the computational times for Instance III in Blikstad

et al. (2018), where a restriction of our current problem statement was addressed, and in

Rönnberg (2018), which address the same problem statement as here. In Blikstad et al.

(2018), the computational times range between 0.6 and 14.5 h, and in Rönnberg (2018)

it is 5.2 h. These times shall be compared to that the worst of times here is < 0.1 h. All

improvements can, however, not be contributed to the model enhancements, since we use

different hardware and Gurobi versions, but we still consider the outcome of the model

improvements to be significant.

The results for public instances of Categories A and B are illustrated in Fig. 6. Instances

in Category A pose no challenge for neither the exact approach nor the matheuristic and a

solution is found for all runs within the time-limit of the scheduling tool. For Category B,

the exact approach and the matheuristic solves about the same number of instances within

the time-limit, but with slightly faster running times by the matheuristic.
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Fig. 5 The number of runs for Saab instances I–III and IV–V, respectively, that are solved within a given time

by the exact approach (blue dotted line), matheuristic (red dashed line), or either of them (black solid line).

Note that to the left the dotted and solid line coincides, while to the right the dashed and the solid line coincides

Fig. 6 The number of instances of Category A and B, respectively, that are solved within a given time by the

exact approach (blue dotted line), matheuristic (red dashed line), or either of them (black solid line)

The results for instances of Categories C and D are illustrated in Fig. 7. For Category C,

the matheuristic has solved 28 instances compared to the 15 by the exact approach at the

final time-limit of 48 h. Among the 15 instances that were solved by the exact approach, 14

were also solved by the matheuristic.

Category D contains the most challenging instances and here we can, as for Saab

instances IV–VI, see a clear benefit from the matheuristic. After about 34 h, when the exact

approach solved its first instance, the matheuristic had already solved 26 instances. To fur-

ther analyse the outcome for these instances, we let the scheduling tool complete its 72 h.

During the remainder of the 72 h, the exact approach solved 6 additional instances and the

matheuristic solved another 2. Worth noting is that all instances solved by the exact approach

were also solved by the matheuristic, but with shorter computational times.

As seen in Fig. 4, there is a wide range in the number of tasks for instances in Category

D. The largest instance contains 54,731 tasks and was only solved by the matheuristic. The

largest instance solved by the exact approach has 36,996 tasks.

During our computational evaluations we noted that the matheuristic typically needs to

generate more sequences than the exact approach in order to find a feasible schedule. Statistics
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Fig. 7 The number of instances of Category C and D, respectively, that are solved within a given time by the

exact approach (blue dotted line), matheuristic (red dashed line), or either of them (black solid line)

Table 5 The average number of constraint generation iterations and the number of generated sequences of the

exact approach and the matheuristic on the Saab instances and the public instances

Category No. iterations No. generated sequences

Exact Matheuristic Exact Matheuristic

Instance I–III 1.7 1.8 2.0 18.9

Instance IV–VI 2.0 3.7 26.0 54.7

Category A 1.4 1.8 2.2 10.9

Category B 3.0 4.1 38.8 71.3

Category C 3.2 4.2 53.3 93.2

Category D 1.9 5.5 23.6 145.4

for this is found in Table 5. We believe that the difference is due to that the exact approach

produces better solutions to start the constraint generation from and that this is possible

because the Relaxed problem has many solutions with the same objective value, even if

the solutions are rather different in other respects. Even though the solutions obtained by

Gurobi and the ALNS have similar objective values, it somehow seems that the structure of

the solutions produced by Gurobi are better than those from the ALNS with respect to the

constraint generation procedure. We have, however, not been able to understand the reasons

for this.

4.4 Evaluation of the ALNS design

A characteristic of our ALNS is that it makes few iterations over large neighbourhoods

rather than many iterations over small ones. Table 6 presents the average number of ALNS

iterations made in different phases of the matheuristic. Early practical evaluations showed

that we benefit from this choice and we believe that this is because of the complex constraint

structure of the problem.

To study the impact of having the different destroy operators, we conducted additional tests

on Category D and Saab instances IV–VI. In each test, we used only a single destroy operator

and compared the result to our standard matheuristic. In all tests, all other settings were as
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Table 6 The average number of ALNS iterations on the Saab instances and the public instances

Category Total First relaxed problem Subsequent relaxed problems

Feas. sol. Obj. val. Feas. sol. Obj. val.

Instance I–III 18.1 1.9 9.9 0.6 5.8

Instance IV–VI 73.1 6.1 29.1 3.7 34.2

Category A 14.7 1.3 7.3 0.8 5.4

Category B 86.8 7.3 17.6 7.2 54.7

Category C 121.2 25.2 21.3 16.6 58.2

Category D 276.7 26.5 69.8 85.5 95.0

The details of what contribute to the total number of iterations is presented for the first and subsequent Relaxed

problems, respectively, and divided with respect to if they contribute to improving feasibility (feas. sol.) or

objective value (obj. val.)

Table 7 The number of solved instances of Category D and the number of solved seeds for Instances IV–VI

that was solved by the standard ALNS compared to the cases where only one of the four destroy operators

was used

Category Standard Precedence 1 Precedence 2 Precedence 3 Random

Instance IV 5/5 4/5 1/5 5/5 5/5

Instance V 5/5 5/5 3/5 5/5 5/5

Instance VI 5/5 5/5 4/5 4/5 5/5

Category D 28/30 10/30 15/30 23/30 2/30

described in Sect. 4.2. Table 7 presents the number of instances or seeds that were solved

when only a single destroy operator was used, together with the results from the standard

matheuristic. The operator Precedence 3 performed well on Category D by solving 23 out

of 30 instances. However, it failed all attempts to solve Instances IV–VI and these instances

were solved for every seed by both the Random operator and the standard matheuristic. In

all, we see a gain by having multiple destroy operators compared to having a single one since

it enables us to catch different aspects of the problem structure and the instances that we

consider.

5 Conclusions

This paper contributes by proposing approaches for solving large-scale instances of avionic

scheduling problems. This is achieved by improving the model formulations used in a previ-

ously suggested constraint generation procedure and by including an ALNS to extend it into

a matheuristic approach. We can now solve three practically relevant instances that were out

of reach for the previous procedure. To facilitate further testing of our implemented methods,

the paper also introduces a large set of publicly available avionics scheduling instances. The

most challenging category contains instances with up to 54,731 tasks and 2530 messages and

the largest instance among these could be solved using the matheuristic approach.

The bottleneck in the exact procedure is the difficulty to obtain feasible solutions to the

Relaxed problem, and the ALNS is designed to overcome this. To balance the search for

feasibility and profitable objective value of the Relaxed problem, a penalty model is used to
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handle when constraints are violated. The search is made over the assignment of sub-intervals

to tasks, but each such assignment corresponds to several possible solutions to this penalty

model; in order to evaluate an assignment, a complete solution to the penalty model is needed.

For this reason, the repair operation is to apply a MIP solver to a Repair model, which is

obtained from the penalty model when only the tasks released by the destroy operation are

available for re-assignment to new sub-intervals.

Each iteration of our ALNS is expensive since each neighbour, with respect to an assign-

ment of sub-intervals to tasks, depends on that the MIP-solver also assigns values to all other

variables of the Repair model. Further, we believe that because of the complex constraint

structure, it is profitable to have large neighbourhoods also with respect to the number of

released tasks and to compensate for these by having rather few iterations and a master

level heuristic of a local search type. Also, an important aspect of the ALNS design is the

alternating behaviour obtained by changing the repair operations in a systematic way.

For future work it can be of relevance to try to find smaller neighbourhoods that can be

searched more efficiently and to evaluate if it is profitable to make more iterations over such

neighbourhoods instead of, as in the current method, search large neighbourhoods with few

iterations. A further possibility along these lines is to use heuristics for the repair operations.

Another line of future research is to improve the computational efficiency with respect to the

subproblem and to try to dynamically add information to strengthen the Relaxed problem

without having to solve the subproblem.
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A Repair model

The Repair model is used to define the neighbourhood in an iteration of the ALNS search.

The Repair model is a reformulation of the Relaxed problem, see Sect. 2, where a majority

of the constraints are treated as soft, and each task must be assigned to a sub-interval.

The weighted violation of each type of constraint

– γ CN-slot: violation of CN-slot capacity,

– γ CN-time: violation of time restriction for CN-tasks,

– γ CN-merge: violation of merging of CN-tasks,

– γ cap: violation of relaxed CM-scheduling,

– γ gen: violation of generated sequences,

is defined by constraints (38)–(43). The sum of all weighted constraint violations γ infeas, is

defined by constraint (37).

To model the different Relaxed problem objectives, we introduce the coefficient

ciq = the reward of assigning sub-interval q to task i, q ∈ Qi , i ∈ I, (34)

123

http://creativecommons.org/licenses/by/4.0/


454 Annals of Operations Research (2021) 302:425–459

to define the value of the current Relaxed problem objective with constraint (36).

The Repair model is formulated as

min winfeasγ infeas + wobjδobj, (35)

subject to

[Define relaxed problem objective variable]

δobj =
∑

i∈I

∑

q∈Qi

ciqαiq , (36)

[Define penalty variables]

γ infeas = γ cap + γ CN-time + γ CN-slot + γ CN-merge + γ gen, (37)

γ prec = wM-maxγ M-max + wM-minγ M-min +
∑

(i, j,k,l)∈D

(wmaxγ max
i jkl + wminγ min

i jkl ), (38)

γ cap = wM-capγ M-cap + wcap
∑

r∈Rh

∑

h∈HCM

γ
cap
r , (39)

γ CN-slot = wM-CN-slotγ M-CN-slot + wCN-slot
∑

n∈N

γ CN-slot
n , (40)

γ CN-time = wM-r-msgγ M-r-msg + wM-d-msgγ M-d-msg

+
∑

m∈M

∑

i∈IM
m ∩IK

3

(wr-msgγ
r-msg
ik + wd-msgγ

d-msg
ik ), (41)

γ gen = wM-genγ M-gen + wgen
∑

s∈Sgen

∑

(i,i ′)∈IIO
s

(γ
gen

i i ′
+ γ

gen

i ′i
), (42)

γ CN-merge = wM-CN-m-1γ M-CN-m-1 + wM-CN-m-2γ M-CN-m-2 + wM-CN-m-3γ M-CN-m-3

+
∑

m′∈M

∑

m∈M:m<m′

∑

h∈HCM

∑

k∈K

∑

(i,i ′)∈IIM
khmm′

(wCN-m-1γ CN-m-1
i i ′

+wCN-m-2γ CN-m-2
i i ′ + wCN-m-3γ CN-m-3

i i ′ ), (43)

[Common for AM- and CM-scheduling]

∑

q∈Qi

αiq = 1, i ∈ I, (44)

ᾱiq = 1, i ∈ I \ Irel, (45)
∑

q∈Qi

t r
iqαiq ≤ xi ≤

∑

q∈Qi

td
iqαiq − ei , i ∈ I, (46)

[Precedence relations]

ui jkl = x j + lp j − (xi + kpi ) + PyD
i jkl , (i, j, k, l) ∈ D, (47)

lmin
i jkl ≤ ui jkl ≤ lmax

i jkl , (i, j, k, l) ∈ D, (48)

[AM-scheduling]

xi + ei + l idle
i i ′ − (td

i + l idle
i i ′ − t r

i ′)(1 − yi i ′) ≤ xi ′ , (i, i ′) ∈ IIO
h , h ∈ HAM, (49)

xi ′ + ei ′ + l idle
i ′i − (td

i ′ + l idle
i ′i − t r

i )yi i ′ ≤ xi , (i, i ′) ∈ IIO
h , h ∈ HAM, (50)
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[CN-scheduling]

∑

n∈N

znm = 1, m ∈ M, (51)

∑

m∈M

l
msg
m znm ≤ lslot

n + γ CN-slot
n , n ∈ N , (52)

γ CN-slot
n ≤

∑

m∈M

l
msg
m − lslot

n , n ∈ N , (53)

γ CN-slot
n ≤ γ M-CN-slot

n , n ∈ N , (54)

[CN-message order]

∑

n∈N

nznm + 1 − wmm′ − (nmax
m − nmin

m′ + 1)(1 − yS
mm′) ≤

∑

n∈N

nzm′n

≤
∑

n∈N

nznm + (nmax
m′ − nmin

m )(1 − wmm′), m ∈ M : m < m′, m′ ∈ M, (55)

∑

n∈N

nzm′n + 1 − (nmax
m′ + 1 − nmin

m )yS
mm′ ≤

∑

n∈N

nznm, m ∈ M : m < m′, m′ ∈ M,

(56)

wmm′ ≤ yS
mm′ , m ∈ M : m < m′, m′ ∈ M, (57)

[Time restrictions for CN-tasks]
∑

n∈N

t
r-msg
nk znm − γ

r-msg
ik ≤ xi ≤

∑

n∈N

t
d-msg
nk znm − ei + γ

d-msg
ik , i ∈ IM

m ∩ IK
3 , m ∈ M,

(58)

γ
r-msg
ik ≤ γ M-r-msg, i ∈ IM

m ∩ IK
3 , m ∈ M, (59)

γ
d-msg
ik ≤ γ M-d-msg, i ∈ IM

m ∩ IK
3 , m ∈ M, (60)

0 ≤ γ
r-msg
ik ≤

∑

n∈N

t
r-msg
nk znm, i ∈ IM

m ∩ IK
3 , m ∈ M, (61)

0 ≤ γ
d-msg
ik ≤ P + ei −

∑

n∈N

t
d-msg
nk znm, i ∈ IM

m ∩ IK
3 , m ∈ M, (62)

αiq = znm, q ∈ Qi : t r
iq = t

r-msg
n2 , i ∈ IK

2 ∩ IM
m , m ∈ M, n ∈ N , (63)

[Merging of CN-tasks]

wmm′ ≤ yM
i i ′ , (i, i ′) ∈ IIM

khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′,

(64)

xi + ei − einit
i ′ wmm′ − γ CN-m-1

i i ′ − (td
i − t r

i ′)(1 − yM
i i ′) ≤ xi ′ ,

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (65)

xi ′ − γ CN-m-2
i i ′ ≤ xi + ei − einit

i ′ +
∑

i ′′∈IM
m′′∩Ih∩IK

k , m′′∈Mkh :m<m′′<m′

(ei ′′ − einit
i ′′ )wmm′′

+(td
i ′ − ei ′ − t r

i − ei + einit
i ′ )(1 − wmm′),

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (66)

xi ′ + ei ′ − γ CN-m-3
i i ′ − (td

i ′ − t r
i )yM

i i ′ ≤ xi ,
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(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (67)

0 ≤ γ CN-m-1
i i ′ ≤ td

i − t r
i ′ ,

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (68)

γ CN-m-1
i i ′ ≤ γ M-CN-m-1,

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (69)

0 ≤ γ CN-m-2
i i ′ td

i ′ − ei ′ − t r
i − ei + einit

i ′ ,

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (70)

γ CN-m-2
i i ′ ≤ γ M-CN-m-2,

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (71)

0 ≤ γ CN-m-3
i i ′ ≤ td

i − t r
i ′ ,

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (72)

γ CN-m-3
i i ′ ≤ γ M-CN-m-3,

(i, i ′) ∈ IIM
khmm′ , k ∈ K, h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (73)

[CN-task order]

yS
mm′ = yM

i i ′ , (i, i ′) ∈ IIM
3hmm′ , h ∈ HCM, m′ ∈ M, m ∈ M : m < m′, (74)

[Relaxed CM-scheduling]

∑

i∈I
cap
r

∑

q∈Qir

eiαiq −
∑

(i,i ′)∈IIM
khmm′∩I

cap
r , k∈K, m′∈M, m∈M:m<m′

einit
i ′ wmm′

≤ max
i∈I

cap
r

max
q∈Qir

td
iq − min

i∈I
cap
r

min
q∈Qir

t r
iq + γ

cap
r , r ∈ Rh, h ∈ HCM, (75)

0 ≤ γ
cap
r ≤

∑

i∈I
cap
r

ei − max
i∈I

cap
r

max
q∈Qir

td
iq − min

i∈I
cap
r

min
q∈Qir

t r
iq , r ∈ Rh, h ∈ HCM, (76)

γ
cap
r ≤ γ M-cap, r ∈ Rh, h ∈ HCM, (77)

[Generated sequences]

yi i ′ + yi ′i = 1, (i, i ′) ∈ IIO
s , s ∈ Sgen, (78)

xi + ei − γ
gen

i i ′
− (td

i − t r
i ′)(1 − yi i ′) ≤ xi ′ , (i, i ′) ∈ IIO

s , s ∈ Sgen, (79)

xi ′ + ei ′ − γ
gen

i ′i
− (td

i ′ − t r
i )(1 − yi ′i ) ≤ xi , (i, i ′) ∈ IIO

s , s ∈ Sgen, (80)

0 ≤ γ
gen

i i ′
≤ ei , (i, i ′) ∈ IIO

s , s ∈ Sgen, (81)

0 ≤ γ
gen

i ′i
≤ ei ′ , (i, i ′) ∈ IIO

s , s ∈ Sgen, (82)

γ
gen

i ′i
≤ γ M-gen, (i, i ′) ∈ IIO

s , s ∈ Sgen, (83)

γ
gen

i i ′
≤ γ M-gen, (i, i ′) ∈ IIO

s , s ∈ Sgen. (84)

B Partitionmodel

The purpose of the Partition model is to create a valid AM schedule that maximise the duration

between tasks on AMs that communicate with each other. The Partition model is a simplified
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model that includes the components AM-scheduling, Precedence relations, Common for

AM- and CM-scheduling along with a part for modelling the objective.

To avoid a solution where tasks are placed too far from their allowed interval, a set of tasks

Iassign is forced to be assigned to a sub-interval. In order to measure the duration between

tasks on AMs that communicate with each other, we create an artificial dependency between

each pair tasks on AMs that are connected through dependencies. Let Dpart denote the set

of artificial dependencies and choose the lower and upper bounds on the duration so that

they never will be active. To describe the objective function, introduce for each artificial

dependency (i, j, k, l) ∈ Dpart, an auxiliary variable

u
obj
i jkl = the reward for artificial dependency (i, j, k, l),

along with variable

uobj-min = the minimum reward for an artificial dependency.

Let the constants l1, l2, l3 and lobj-min be used to give different objective rewards depending

on the relation between the length and lower bound of the artificial dependencies.

The Partition model is

max
∑

(i, j,k,l)∈Dpart

u
obj
i jkl + lobj-minuobj-min, (85)

subject to

[Objective reward]

u
obj
i jkl ≤ ui jkl , (i, j, k, l) ∈ Dpart, (86)

u
obj
i jkl ≤ l1lmin

i jkl , (i, j, k, l) ∈ Dpart, (87)

u
obj
i jkl ≤ l2lmin

i jkl + l3ui jkl , (i, j, k, l) ∈ Dpart, (88)

uobj-min ≤ u
obj
i jkl , (i, j, k, l) ∈ Dpart, (89)

0 ≤ u
obj
i jkl , (i, j, k, l) ∈ Dpart, (90)

0 ≤ uobj-min, (91)

[Common for AM- and CM-scheduling]
∑

q∈Qi

αiq = 1, i ∈ Iassign, (92)

∑

q∈Qi

t r
iqαiq ≤ xi ≤

∑

q∈Qi

td
iqαiq − ei , i ∈ Iassign, (93)

t r
i ≤ xi ≤ td

i − ei , i ∈ I \ Iassign, (94)

[Precedence relations]

ui jkl ≤ upart-max, (i, j, k, l) ∈ Dpart, (95)

ui jkl = x j + lp j − (xi + kpi ) + PyD
i jkl , (i, j, k, l) ∈ D ∪ Dpart, (96)

lmin
i jkl ≤ ui jkl ≤ lmax

i jkl , (i, j, k, l) ∈ D ∪ Dpart, (97)

[AM-scheduling]

xi + ei + l idle
i i ′ − (td

i + l idle
i i ′ − t r

i ′)(1 − yi i ′) ≤ xi ′ , (i, i ′) ∈ IIO
h , h ∈ HAM, (98)
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xi ′ + ei ′ + l idle
i ′i − (td

i ′ + l idle
i ′i − t r

i )yi i ′ ≤ xi , (i, i ′) ∈ IIO
h , h ∈ HAM. (99)
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