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ABSTRACT 

We present a matheuristic, an integer programming based heuristic, for the Liner Shipping 

Network Design Problem. The heuristic applies a greedy construction heuristic based on an 

interpretation of the liner shipping network design problem as a multiple quadratic knapsack 

problem. The construction heuristic is combined with an improvement heuristic with a 

neighborhood defined by the solution space of a mixed integer program. The mixed integer 

program optimizes the removal and insertion of several port calls on a liner shipping service. 

The objective function is based on evaluation functions for revenue and transshipment of 

cargo along with in/decrease of vessel- and operational cost for the current solution. The 

evaluation functions may be used by heuristics in general to evaluate changes to a network 

design without solving a large scale multicommodity flow problem. 

 

Keywords: liner shipping, matheuristic, network design, mathematical programming 

1  INTRODUCTION 

Liner shipping is the mass transit system of the ocean ways with regular scheduled services of 

varying capacity between geographical regions. Liner shipping and containerized 

transportation of goods over sea is a key component in todays supply chains.  Approximately 

400 liner shipping services are operated by a vessel fleet of close to 6000 container vessels 

(WSC2011). The liner shipping industry carries about 60% of goods by value transported 

internationally by sea (WSC2011).  The significance and magnitude of the liner shipping 

network makes the network design an important transportation problem. The network has 

high fixed asset costs in terms of the container vessels deployed and hence capacity utilization 

is crucial to a competitive liner shipping operation.  At the same time maritime transport is 

accountable for an estimated 2.7% of the worlds CO2 emissions, whereof 25% is attributable 

to container ships alone (WSC2009). Fuel cost is the largest variable cost of operating a liner 

shipping network (Stopford 1998). Operations research can have a huge impact on the trade 

of liner shipping as maximising the revenue while considering variable operational cost may 

ensure a better capacity utilization in the network. Improved capacity utilization will increase 

profit for liner shipping companies, and give competitive freight rates for global goods. In due 

time operations research may optimize on reducing the speed of the container fleet to decrease 

the CO2 emissions from liner shipping in general as seen in the case of tramp shipping 

(Norstad et al. 2009).  

 The liner shipping network design problem (LSNDP) is to construct a set of non-

simple cyclic services to form a capacitated network. The network design maximises the 
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revenue of container transport considering the cost of vessels deployed to services, overall 

fuel consumption, port call costs and cargo handling costs. Operations research literature on 

the LSNDP is scarce (Løfstedt et al. 2011) compared to related maritime shipping 

transportation problems, but a surge in publications over recent years show increased interest 

in the LSNDP.  The works of (Agarwal et al. 2008, Alvarez 2009, Reinhardt and Pisinger 

2011, Plum 2010, Løfstedt et al. 2011) reveal that the LSNDP is a very complex optimization 

problem, where current mathematical formulations and state-of-the-art exact solution methods 

cannot scale to realistic sized problem instances. One heuristic approach has been applied to 

large scale instances in (Alvarez 2009, Brouer et al. 2011). A core concept in liner shipping is 

the transhipment of containers. More than 50% of cargoes are transported on more than one 

service from origin to destination. This means that the LSNDP has an underlying 

multicommodity flow problem (MCF).  (Alvarez 2009) identifies the excessive time used for 

solving the MCF to evaluate a given network configuration as a bottleneck in local search 

methods. As a result, within reasonable computation time the tabu search by (Alvarez, 2009) 

only performs a limited search of the solution space of large scale instances. 

 In this paper, we present a matheuristic for solving the LSNDP. Matheuristics are an 

emerging field within optimization and are defined as methods exploiting the synergies of 

mathematical programming and metaheuristics by (Maniezzo et al. 2009). The domain is 

wide and includes the use of mathematical programming techniques in a heuristic variant as 

well as deploying mathematical programming methods within a metaheuristic framework 

(Maniezzo et al. 2009). In the present paper we use mathematical programming to explore our 

neighborhood defined as the solution space of a mixed integer program designed to capture 

the complex interaction of the cargo allocation between routes. One of the first approaches of 

using this technique was (Franceschi et al., 2006) for the Distance-Constrained CVRP. The 

method has also been explored for the Split Delivery VRP by Chen et al (2007), the Split 

Delivery VRP with minimum delivery amounts by Gulczynski et al. (2010), by (Archetti et 

al. 2010) for the The Split Delivery Capacitated Team Orienteering Problem and lately in 

Gulczynski et al. (2011) for the Periodic VRP. In all cases the matheuristic solution method 

combining local search with an integer program as neighborhood has proven very successful 

compared to other state-of-the-art heuristics. 

 We make three contributions: We present a construction heuristic based on an 

interpretation of the LSNDP as a multiple quadratic knapsack problem. Secondly, an 

improvement heuristic is applied to the solution of the construction heuristic. The 

improvement heuristic is a large neighborhood search defined by the solution space of a 

mixed integer program inserting and removing port calls from a single service. Thirdly, the 

heuristic makes use of estimation functions for the change in a large MCF in order to avoid 

the bottleneck of solving a large scale MCF. Once moves are applied to a service the 

neighborhood of subsequent services are based on an optimal solution of the MCF in order to 

decrease the error of the evaluation functions. The MCF is resolved using an advanced warm 

start basis and column generation decreasing solution times by up to a factor 40. 

 The outline of the paper is as follows. In Section 1.1 we review the literature on liner 

shipping network design. Section 2 describes the individual components of our matheuristic. 

Section 3 concludes with preliminary computational results and draws perspectives on our 

projected plans for future work. 

 

1.1 Literature on the LSNDP 

Brouer et al. (2011) give an introduction to the LSNDP focusing on mathematical modelling 

of the business domain and the introduction of a benchmark suite of LSNDP problems. Ronen 

et. al (2004) review the field of operations research within shipping in general and a good 
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introduction to the LSNDP may be found in Christiansen et. Al (2007). Recently Kjeldsen 

(2011) published a classification scheme for routing and scheduling problems within liner 

shipping reviewing and classifying 24 references. The LSNDP was initially studied by Rana 

and Vickson (1991) as a MIP for a multiple container-ship problem without transshipment 

and where vessels return to the origin node empty. Benders decomposition principle divides 

the MIP into an integer network subproblem (INS) and a cargo allocation problem (CAS). 

Results are reported for 10-20 ports and three vessels. In recent literature several variants of 

the LSNDP have been presented. Fagerholt (2004) develops a model and solution method for 

a regional carrier along the Norwegian coast. The model assumes the carrier loads at a single 

port and finds optimal routes of vessels to service the unloading facilities. The problem may 

be dealt with as a VRP problem, given that a designated depot is known and transhipments 

are not allowed. The solution method is based on complete enumeration solved by a MIP 

solver. Similarly, Karlaftis et al. (2009) solve a problem for the region of the Aegean sea 

using a genetic algorithm. These models do not deal with transhipments at multiple ports and 

the resulting interaction between different services. 

 The simultaneous ship scheduling and cargo routing problem (SSSCR) by Agarwal  

and Ergun (2008) is based on a time-space network with each port represented on 7 

consecutive weekdays. This construction allows non-simple cycles with multiple visits to a 

port on different weekdays. Computational results are reported for three different heuristics 

exploiting the separability of solving the route generation problem and the MCF. Results are 

reported for 6, 10, 15 and 20 ports with up to 100 ships and 114 demands. An important 

limitation of the SSSCR is that it allows transhipments at no cost.  

 Reinhardt and Pisinger (2011) presents the LSNDP for a multiple container ship 

problem with separate routings for each vessel accounting for transhipment costs between 

routes. The model allows butterfly routes, where two visits are allowed to a single port on a 

service. A branch-and-cut algorithm is applied to the problem and computational results are 

reported for 15 ports and up to 6 vessels. 

 Alvarez (2009) presented the joint routing and fleet deployment model for the 

LSNDP. The model accounts for transhipment costs and the option of laying up or forward 

leasing vessels not in use. The model is separable into a service generating problem and a 

MCF. The overall objective is to maximise the revenue of cargo transported, while 

considering operational cost of the fleet-, fuel-, transshipment-, and port call-cost. The model 

is the first to incorporate routings with different speeds in order to optimize on the fuel 

consumption in the network.  Exact solutions are obtained for a six port instance using a MIP 

solver. Alvarez (2009) describes a tabu search heuristic to solve the problem which is applied 

to a 120 port instance with a full demand matrix. 

Recently, Meng and Wang (2011) presented a mixed integer programming model with the 

objectives to select among a set of predefined candidate shipping routes, and to select ship 

deployment to the chosen routes while considering the cargo allocation of full and empty 

containers regarding the weekly frequency constraint. The model is solved using CPLEX and 

numerical results are presented for 60 candidate shipping lines, eight vessel types and 600 

commodities. 
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Figure 1: flowchart of the matheuristic 

2   A MATHEURISTIC FOR THE LNSDP 

An instance of the LNSDP consists of a set of ports P, a set of demands K, where each 

demand has an origin, Ok ∈ P, and a destination, Dk ∈ P, a set of vessel classes A and a 

number of available vessels Na for each class. Each vessel v belongs to a given vessel class a 

specifying its capacity Ca, minimum and maximum speed limits, bunker consumption and a 

weekly sailing distance Wd
a 

.The weekly sailing distance is based on the design speed of the 

vessel, where 
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fuel consumption is optimized. Finally, a distance table of the direct distance dpq between all 

pairs of ports p,q ∈ P is given. 

 A solution to the LSNDP is a set of services S. A service is a non-simple cyclic route 

visiting a set of ports P' ⊆ P. The rotation time is the time needed to complete the cyclic route 

including a day for each port call en route for cargo handling. Depending on the vessel class a 

minimum, T
a

MIN, and maximum, T
a

max, rotation time in weeks may be defined. It is common 

in liner shipping to offer a regular service with a weekly frequency. The weekly frequency of 

port calls is obtained by deploying to a service multiple vessels sailing one week apart. Let 

N
a

s be the number of vessels of vessel class a ∈ A deployed to service s ∈ S to maintain a 

weekly frequency.  A service carries a set of demands ks ⊆ K either by serving both Ok and 

Dk or by serving either Ok or Dk and a designated transhipment port Gk  valid for transhipping 

demand k ∈ K. 

2.1 Algorithmic overview 

The matheuristic creates an initial solution using a greedy construction heuristic. The 

construction heuristic returns a set of services,S, that are iteratively improved using an IP for 

each service to indicate a set of port insertions and removal of each individual service. A local 

search on the composition of the set of services S is wrapped around the loops improving the 

individual services. An algorithmic overview is illustrated in figure 1. 

2.2 Generating an initial solution using a greedy construction heuristic 

We obtain an initial solution to the LSNDP by constructing a set of services in which, we 

place a set of predefined port calls in order to transport the demand. The method is inspired by 

the multiple quadratic knapsack problem, where a service corresponds to a knapsack and the 

items are port calls. It is quadratic in the sense that profit is obtained by adding port pairs to 

the services in order to transport demand. The service set problem is based on a subdivision of 

the available fleet into a set of services S constituted by subsets Sa ⊆ S according to vessel 

classes. It is desirable to have services of varying duration within an interval [T
a

MIN; T
a

max]. 

A random integer h ∈ [T
a

MIN; T
a

max] is selected and a service s with n
a

s=h of h weeks 

duration (an h-week rotation requires h vessels) is added to the set of services S. Set v=Na. 

After creation of a new service s ∈ Sa v is updated to v=v-h. This process is repeated until v ≤ 

T
a

max. If v ≥ T
a

min the final service is created with h=v ∈ [T
a

MIN; T
a

max] otherwise we add h 

vessels to the previously created service s' possibly exceeding T
a

max. If n
a

s´ ≥ 2...T
a

MIN we 

split the service into two services each with n
a

s=h/2. After this procedure, a set of services S 

is defined, a vessel class a and a number of vessels n
a

s is assigned to each service s. The 

subdivision of the fleet into services means that the initial solution has sunk fixed asset cost 

by assigning the entire fleet to services. Next we define a set of port calls to place in the 

services.  Each port can be defined as a main port or an outport. The initial solution is limited 

to the creation of simple cycles. A port call may be placed only once in each service, but in 

mp services. Outports are set with mp=3, whereas main ports have mp=10. There is no 

constraint requiring all port calls placed in the set of services.  

 The profit of transporting a demand from port i ∈ P to j ∈ P is the revenue rk obtained 

by the transport subtracted the loading and unloading cost cl
i
 and cu

i
 (respectively) of the 

container en route. A demand transported with no transhipments will have net revenue ρOkDk  

=(rk- cl
Ok

- cu
Dk

)  for one unit of k. As described in the introduction more than 50% of the 

demands are transhipped resulting in a MCF. In order to cater for transhipments without 

considering a MCF the demand matrix is transformed such that each demand is represented 

by a direct demand and a demand transhipped at a designated transhipment port Gk, where 

ρOkGk=(1/2rk- cl
Ok

- cu
Gk

) and ρOkDk=(1/2rk- cl
Gk

- cu
Dk

). This is a simplifying assumption 

fixing a single transhipment port for each demand to incorporate interaction between services 
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in the construction heuristic. The subsequent improvement heuristic will have no restrictions 

on transhipment facilities. A port call cost, cp
a
, is associated with a port call depending on the 

vessel class and a sailing cost is associated with each port pair, cpq
a
. 

The construction heuristic is a greedy parallel insertion heuristic. The services are 

seeded with a random number l ∈ {1;3} of ports p ∈ P. The seeding is either by random or by 

selecting a port p ∈ P and a transhipment port q ∈ P matched to p. The construction heuristic 

is based on parallel insertion by a football teaming principle i.e. the services take turn at 

choosing the next port to call. We apply parallel insertion in order to disperse the attractive 

port call combinations throughout the network. A greedy choice of the most revenue 

generating port call is made between all feasible port calls with regards to route duration. 

Feasibility of a given port call is estimated using best insertion in order to respect the weekly 

frequency constraint, requiring the distance of a route D(s)≤Wd
a( s )

ns
a( s )

, where a(s) is the 

vessel class a ∈ A deployed to service s ∈ S. The actual routing with regards to distance and 

capacity utilization is improved using a local search based on simulated annealing and two-

opt after assignment of port calls to services by the greedy construction heuristic. The initial 

solution may have unplaced port calls and excess vessels for services s, where 

D(s)≤Wd
a( s )

(ns
a( s)
−1) . Port calls as well as vessels may be included in the solution of the 

subsequent improvement heuristic. Finally, we apply standard column generation to the MCF 

of transporting the cargo on the resulting liner shipping network of the initial solution. The 

solution and dual variables to the MCF is used to calculate the estimation function values of 

the improvement heuristic. 

2.2 Improvement heuristic 

Given a solution to the LSNDP x' with services S' serving demands K' ⊆ K we introduce an 

integer program to estimate the effect of removing and adding port calls.  We define P
s
. the 

set of nodes in the service s ∈ S', N
s

 P \ P
s
; the set of neighbours of a service s ∈ S' 

defined as nodes within a certain geographical distance of nodes in P
s
 and variables: 

 λi=1 if item i ∈ P
s
 is removed from service s ∈ S', 0 otherwise 

 γi=1 if item i ∈ N
s
 P

s
  is inserted in service s ∈ S', 0 otherwise. If i ∈ P

s
 the port 

call represents a reinsertion resulting in a non-simple cycle for the service s.  

 ωs ∈ Z
+
 an integer variable indicating the number of vessels service s is expanded 

with. ωs can be negative if less vessels are needed after removal of a port call. 

We want to make an integer program that removes and inserts port calls in S', while 

considering an estimation of the distance travelled on each service (the fleet deployment) and 

an estimation of the alternative flow of demands arising, when we remove/insert several 

port calls from/to S'. Routing the cargo is a MCF, but we cannot afford to evaluate the MCF 

in its entirety and hence we make some simplifying assumptions about rerouting the flow.  

When inserting a port call the estimated distance increase is calculated by use of a best 

insertion heuristic. For each service s ∈ S' we calculate the distance increase Δi
s
 for each i ∈ 

N
s
. Likewise we calculate the decrease of distance Γi

s
 for every i ∈ P

s
. For modelling the 

distance in-/de-crease of insertions/removals we define the following constants and sets:  

 Δi
s
: estimated distance increase for inserting item i in service s ∈ S according to a best 

insertion method. 

 Γi
s
: estimated distance decrease for removing item i from service s ∈ S joining its 

predecessor with its successor. 

  Es: set of edges used by the Hamiltonian cycle in service s ∈ S. 

 D(s): current distance of the Hamiltonian cycle in service s ∈ S. 

 Ma: number of undeployed vessels of class a in the current service set S'. 

 ns
a
: number of deployed vessels of class a to service s ∈ S'. 
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 Cv
a
: cost of deploying a vessel of type a ∈ A.  

Whenever a MIP is solved for some s ∈ S' we estimate the effect on the flow in the 

network. The quality of the flow solution depends on the number of transhipments performed 

overall in the network and the capacity installed compared to the demand for flow. We define 

the following estimation functions: 

 Θ(i): estimated value of inserting a node i ∈ N
s
 in the best insertion position identified 

when calculating the distance. 

 Υ(i): estimated value of removing a node i ∈ P
s
. 

 Ψ(i): estimated value of reinserting a node i ∈ P
s
 by best insertion limited to insertions 

two port calls away from the current position of i in s. 

In order to estimate the change of the network flow a graph G=(V,E) of the residual 

capacity is constructed, representing the solution x' with services S' and commodity 

allocation K' mapped onto the network by solving the MCF on S'.  

Let |s| denote the number of unique ports in s and let |P
s
|=m denote the number of port 

calls in a rotation r
s
 for s, |P

s
|=m ≥ |s|, r

s
 be a rotation defined by the port sequence 

p1
s
,p2

s
, . .. . ,pm

s

, V_p be the set of port vertices, V_r
s 
be a set of vertices representing the port 

call sequence for rotation r
s
. V_r= V_ r

s
 is the set of rotation vertices representing all port 

calls by all rotations and the set of vertices is defined as V=V_p V_r be the set of vertices.  

Let the set of edges 
E=El∪Ed∪Ev  be the set of edges, where 

 El ={(p,v)| p ∈ V_p, v ∈ V_ r
s
 } is the set of load edges representing a departure from 

port p to the rotation r
s
. 

 Ed ={(v,p)| v ∈ V_ r
s,
 p ∈ V_p } is the set of discharge edges representing an arrival 

at port p from the rotation r
s
. 

 E
v ={(v,u)| v,u ∈ V_r

s, 
v=p

s
h, u==p

s
{(h+1) mod m} } is the set of voyage edges 

representing a voyage between two consecutive port calls in r
s
.  

Let Ce be the capacity of edge e ∈ E, where Ce =
∞  for e ∈ 

El∪Ed  and Ce , e∈ 
E

v  be the 

residual capacity of edge e after flow assignment of the MCF onto S'. 

 ce be the edge cost, where ce=0, e ∈ E
v  (as the cost is on the vessel) and let ce =cl

p
, e 

∈ 
El  and ce =cu

p
, e ∈ 

Ed  be the cargo handling cost of loading or unloading a 

container at port p ∈ V_P, where p is either the source or the target of the edge 

respectively. 

 
Figure 2: An example of a hub and spoke network with 1 hub, C, 

 and 5 spokes (A,B,D,E,F) and 3 rotations 
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The estimated value of insertion - Θ(i):When we insert a port call vertex i
s
 ∈ N

s
 with 

corresponding port vertex i ∈ V_p in the position between nodes h
s
 and l

s
 the demands of the 

set Ki={ k ∈ K| i= Ok v Dk} becomes eligible for transport using service s ∈ S'. Solving a 

shortest path problem on G' where V'_ r
s
  {i

s
}, and 

E'
v =

E
v  \{(h

s
l
s
)}  {(h

s
i
s
),(i

s
l
s
)}, 

E'l =
El   {(ii

s
)}, Ed

'

=
Ed   {(i

s
i)} will identify for each k ∈ Ki whether there is an 

(improved) path for k in G' in terms of transhipment costs (TC), the increase of revenue in 

demand transported (RK) and the capacity available.  If the capacity is not available the 

largest bottleneck can be identified and the largest or least profitable demand on this 

bottleneck may be rerouted in G' where the path is removed.  The estimated value Θ(i) should 

account for in-/de-crease in transhipment cost, in-/de-creased revenue of the flow, and 

increase in port call cost: Θ(i)= TC(G', Ki)-TC(G, Ki) + RK(G')-RK(G)- ci
s
. 

The estimated value of removal - Υ(i): When a port call vertex i
s
 ∈ P

s
 is removed 

between nodes h
s
 and l

s
, commodities of the set Ki transported on s must be rerouted or 

omitted. Define Ki
s
={ k ∈ Ki| k  is transported on  s}. Υ(i) estimates rerouting Ki

s
 in the 

remaining network by solving a shortest path problem on G'=(V_ r
s
 \{i

s
}, 

E
v \ {(h

s
i
s
),(i

s
l
s
)} 

{(h
s
l
s
)}). G' will identify for each k ∈ Ki

s
 whether there is an alternative path in the 

network. The estimated value Υ(i) should account for the in-/de-crease in transhipment cost 

TC for each commodity k ∈ Ki
s
 rerouted in G', and the decrease of revenue flow RK for 

omitted cargo and the decrease in port call cost. Υ(i)=TC(G', Ki)-TC(G, Ki) + RK(G')-

RK(G) - ci
s
. 

The estimated value of reinsertion - Ψ(i):When a node i ∈ P
s
 is reinserted the set Ki

s
 

may have alternative shorter paths on s. As a result the residual capacity of one or more edges 

in 
E

s  will increase. Ψ(i) estimates whether the edges with increased capacity will result in an 

improved solution to the MCF.  Let E
K i ⊆ E

s ⊆ E
v  be the set of edges with increased 

capacity and δe be the capacity increase. The dual value 
π e ∈ E

K i  in the solution of the 

MCF indicates the increase in revenue for each unit of additional capacity. The estimated 

value Ψ(i) accounts for the expected revenue increase and the increase in port call cost for 

reinserting i. Ψ(i)=
∑

e∈EK
i

δeπe +ci
s

. 

Lock sets: The MIP is solved for a single service with the remaining services fixed.  A 

solution to the MIP may result in several insertions and removals referred to as a move in the 

following. The estimation functions are based on performing a particular move without 

consideration for additional removals/insertions. In order to reduce the error of the estimation 

functions we define lock sets of a move constraining insertions/removals on port calls related 

to a move. When inserting a port call i, a set of new commodities Ki may be transported.  The 

origins and destinations of k ∈ Ki should not be removed. The estimation function relies on 

the residual capacity of the remaining network. Insertions before bottlenecks introduced by 

the routing of Ki should be avoided.  We define the set of Insertion locks on inserting i ∈ N
s
 

as L(i
+
). L(i

+
) places a lock on removal of origin/destination nodes (i ∈ P

s
 ) for k ∈ Ki, and 

lock on insertion of nodes (i ∈ N
s
) with best insertion position before bottlenecks introduced 

by routing Ki. 
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Figure 3: Insertion and removal moves for the matheuristic  

When we reinsert a port call we introduce a non-simple cycle. The estimated value of 

reinserting a port call is the reduced cost of increasing capacity between the port calls to i. We 

introduce Reinsertion Locks for reinserting i ∈ P
s
 as L(i

2
) locking removal of port calls 

between two identical port calls to i as well as the original port call to i. The total number of 

removals from a service is constrained to Fs. Fs is dependent on the number of port calls on a 

service at a low value to reduce the error of the distance decrease function  Γi
s
. 

2.3 MIP formulation 

The following MIP optimizes a single service and suggests a set of removals and insertions of 

port calls. The function a(s) returns the vessel class assigned to service s. 

 
 

 

The objective function (1) maximises the benefit obtained from removing and inserting 

several port calls accounting for the estimated change of revenue, transhipment cost, port call 

cost and fleet cost. The number of vessels needed to maintain weekly frequency 
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on the service after insertion/removal is estimated in Constraint (2). Constraint (3) ensures 

that the solution does not exceed the available fleet of vessels. Constraint (4) ensures that we 

can only remove Fs nodes from the service. The set of nodes that are affected by the insertion 

move are fixed by Constraints (5). Constraints (6) ensure that we cannot remove nodes 

between two identical port calls when we reinsert a port i already in P
s
. 

 
Algorithm 1 gives an overview of the matheuristic. The initial solution is constructed by the 

greedy parallel insertion GreedyLSNDP(I) of an instance I in line 1. The resulting MCF is 

solved in line 2. The improvement heuristic loops over the set of services S. The estimation 

functions and lock sets for s are calculated in lines 7-13. The MIP (1)-(9) for s is constructed 

and solved in lines 14-15. The solution is evaluated by resolving the new MCF in line 18. Δ 

MCF(S',K) is a column generation algorithm for the MCF using a warm start basis. The basis 

consists of all commodities and services not directly affected by the moves identified by the 

MIP. The algorithm ΔMCF(S',K) has been experimentally evaluated to decrease solution 

times by a factor 5-40 depending on the number of commodities affected by the move and 

also the number of moves applied. If the solution is improved the new solution is saved in 

lines 20-23 before the next MIP is calculated for the following s ∈ S'. The algorithm 
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terminates when an entire loop over the set of services S does not result in an improved 

solution. The loop structure over the set of services S' above depends on all preliminary 

moves made. A simulated annealing procedure allows non-improving moves to diversify the 

search. Algorithm1 is meant to be embedded in a simple local search scheme to adjust the 

number of services in the solution as seen in the flowchart of figure 1 on page 4.  

3  CONCLUSION 

Preliminary computational results for a version without the local search loop have been 

performed using the benchmark suite from Brouer et al. (2011). The preliminary 

computational results indicate that the method scales well. The IP models are small with less 

than 50 binary variables and few constraints. The size of the IPS do not increase significantly 

as the services only increase slightly in size for large instances and the IPS are solved by 

CPLEX in less than a second. Resolving the multicommodity flow takes 10-20 seconds for 

large instances. However, the solution quality without the local search on the composition of 

services leads to low capacity utilization for large parts of the network and some demands are 

not transported because the vessels deployed here can not be efficiently reallocated by 

deleting unpromising services. This causes the search to get trapped in a local minimum and 

to converge before finding a good solution. The algorithm is still promising as it is possible to 

search among many different solutions but it is necessary to implement further local search 

methods in order to get a  good composition of services to cover the demands. Future work 

will concentrate on this local search method to improve upon results. 
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