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Phantoms are essentially required to generate boundary data for studying the inverse solver performance in electrical impedance
tomography (EIT). A MATLAB-based boundary data simulator (BDS) is developed to generate accurate boundary data using
neighbouring current pattern for assessing the EIT inverse solvers. Domain diameter, inhomogeneity number, inhomogeneity
geometry (shape, size, and position), background conductivity, and inhomogeneity conductivity are all set as BDS input variables.
Dierent sets of boundary data are generated by changing the input variables of the BDS, and resistivity images are reconstructed
using electrical impedance tomography and diuse optical tomography reconstruction so�ware (EIDORS). Results show that the
BDS generates accurate boundary data for dierent types of single or multiple objects which are e�cient enough to reconstruct
the resistivity images for assessing the inverse solver. It is noticed that for the BDS with 2048 elements, the boundary data for all
inhomogeneities with a diameter larger than 13.3% of that of the phantom are accurate enough to reconstruct the resistivity images
in EIDORS-2D. By comparing the reconstructed image with an original geometry made in BDS, it would be easier to study the
inverse solver performance and the origin of the boundary data error can be identi�ed.

1. Introduction

Electrical impedance tomography (EIT) [1, 2] reconstructs
the spatial distribution of electrical conductivity or resistivity
of a closed conducting domain (Ω) from the surface poten-
tials developed by a constant current injection through the
surface electrodes surrounding the domain to be imaged.
Before carrying out the practical measurements on patients,
it is advised to test an EIT system with a tissue mimicking
model of known properties [3] called practical phantoms
[4–10]. Hence, phantoms are o�en required to assess the
performance of EIT systems for their validation, calibration,
and comparison purposes. Two-dimensional (2D) EIT (2D-
EIT) assumes that the electrical current �ows in a 2D
space which is actually three-dimensional inside real volume
conductors. Hence, the development of a perfect 2D practical
phantom is a great challenge as the real electrodes always
have a de�nite surface area, and hence the injected current
signal cannot be con�ned in a 2D plane in bathing solu-
tion [5]. Researchers have developed a number of practical

phantoms which are three-dimensional objects, and those
phantoms are designed and developed, generally, for their
own EIT systems. Practical phantoms containing electrolyte
(or other conducting medium) [4–10] are three-dimensional
in shape and hence they will have some data error due to the
three dimensional current conduction. Also, the phantoms
containing electrolytes (e.g., NaCl solution or saline) [5, 7, 8]
are di�cult to transport and are prone to errors since the
evaporation of the water gives rise to changes in conductivity
[9]. In addition, temperature variations have a marked eect
on the conductivity because the temperature coe�cient is
large [11]. �erefore, the practical phantoms will have a poor
stability and a gradually increasing data error over time.
Network ormesh phantoms [12, 13] are compact, more stable,
rugged, portable, easy to move, consistent over time, and
less temperature dependent. But these phantoms need a
huge number of identical electronic components properly
designed in a mesh mimicking the conductivity distribution
of a practical biological tissue. Furthermore, for a large
tissue structure, a mesh phantom requires a huge number
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of very precision components. �e reproduction of these
kinds of phantoms having dierent properties is o�en time-
consuming [14]. �e option for changing the position and
property of an inhomogeneity is limited by the phantom
structure and the number of elements in mesh phantom
but the practical phantoms allow us to put several types of
object in dierent positions in the bathing solution, but they
produce several errors contributing to the poor signal to noise
ratio (SNR) in boundary data.

Reconstructed image quality in impedance tomography
depends on the errors associated with practical phantom,
electronic hardware, and inverse solver performance. Image
quality is largely aected by the practical phantom design
parameters such as phantom geometry, electrode geometry,
electrode materials, and the nature and behavior of the
inhomogeneity and bathing solution. SNR is also reduced
by the error contributed by current injector, data acquisition
system, and signal conditioner circuits. In practical phan-
toms, the voltage data developed by a three-dimensional
current conduction are collected form surface electrodes
connected to an analog instrumentation.�erefore, it is quite
confusing to identify the source of the errors responsible
for poor image quality in a 2D-EIT system. In order to
overcome the di�culties and limitations of practical and
mesh phantoms, a MATLAB-based boundary data simulator
(BDS) is developed to generate accurate 2D boundary data
for assessing the EIT inverse solvers. BDS is an absolute 2D
data simulator which is required to generate the errorless 2D
boundary data to study and modify the inverse solver of a
2D EIT system. As the BDS is a computer program, it is free
from the instrumentation errors and allows us to generate
voltage pro�le with dierent types of phantom geometry,
inhomogeneity and background conductivity pro�le, and
inhomogeneity geometry (shape, size, and position). More-
over, it is absolutely stable, compact, easy to use, and easy
to handle and modify for further development. Boundary
data for dierent phantom geometries are generated in
BDS, and resistivity images are reconstructed in standard
reconstruction algorithm. BDS is studied to conform its
suitability to use for boundary data generation with dierent
phantom con�gurations which are required to assess the EIT
inverse solvers.

2. Methods

2.1. Mathematical Modelling of EIT. EIT image reconstruc-
tion is a nonlinear inverse problem [15] in which the electrical
conductivity distribution of a closed domain (Ω) in a volume
conductor is reconstructed from the surface potential data
developed at the boundary (�Ω) by injecting a constant
current signal. A low frequency and low magnitude constant
sinusoidal current is injected through an array of electrodes
attached to the boundary, and the boundary potentials are
measured using a data acquisition system. �e voltage data
collected from surface electrodes are then used by an image
reconstruction algorithm [15] which reconstructs the con-
ductivity distribution of the domain under test (DUT). �e
reconstruction algorithm computes the boundary potential

for a known current injection and known conductivity values
and tries to compute the conductivity distribution for which
the dierence between themeasured boundary potential (��)
and the calculated (��) is minimum.�e reconstruction algo-
rithm is developed with two parts: forward solver (FS) [5, 15–
17] and inverse solver (IS) [15–17]. Forward solver calculates
the boundary potential data for a known current injection
and known conductivity values. Inverse solver computes the
conductivity distribution for which the boundary voltage
dierence (Δ� = �� − ��) becomes minimum.

�eDUTwill have the distinct conductivity values at each
points de�ned by their corresponding coordinates (�, �). Due
to a constant current injection, a potential pro�le is developed
within DUT, and its potential pro�le without any internal
energy sources depends on the conductivity pro�le. Hence,
a relationship, called EIT governing equation, between the
electrical conductivity (�) of the points within the DUT and
their corresponding potential values (Φ) can be established.
�e governing equation in EIT [1, 2] can be derived from the
Maxwell’s equation and can be represented as

∇ ⋅ �∇Φ = 0. (1)

To calculate the domain potential developed for a con-
stant current injected to the DUT with a known conductivity
distribution, the above equation is essentially to be solved. As
the EIT governing equation is a nonlinear partial dierential
equation, the direct or analytical technique fails to solve it.
�erefore, to calculate the domain potential, the equation is
solved by developing a mathematical model called “forward
model” which is derived from (1) using a numerical technique
like �nite element method (FEM) [18].

�e EIT governing equation has an in�nite number
of solutions, and hence the FEM formulation of the EIT
technique is essentially required to be provided by some
boundary conditions [18–20] to restrict its solutions space.
�e boundary conditions are imposed into the FEM formu-
lation of EIT by specifying the value of certain parameters
(voltage or current). �e parameters de�ning the boundary
conditions may be either the potentials at the surface or the
current density crossing the boundary or mixed conditions.

�e boundary conditions, in which the parameters are
the potential at the surface, are called the Dirichlet boundary
conditions and are represented as [1, 5, 19, 20]

Φ = Φ�, (2a)

where � = 1, . . . ,  are the measured potentials on the
electrodes.

�e boundary conditions, in which the parameters are
current density crossing the boundary, are known as the
Neumann boundary conditions [1, 5, 19, 20] which are given
by

∫
�Ω

��Φ
�� =

{{
{{
{

+� on the source electrode

−� on the sink electrode

0 otherwise,
(2b)

where �Ω is the boundary, and � is the outward unit normal
vector on an electrode surface.
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In EIT, the FEM technique is used to derive the forward
model from the governing equation in the form of a matrix
equation establishing the relationship between the injected
current and the developed potential within a DUT. �e
relationship can be assumed as the transfer function of the
systemwhich ismathematically represented as amatrix called
global stiness matrix (GSM) [18] or transformation matrix
constructed with the elemental conductivities (�) and nodal
coordinates (�, �). In EIT, FEM discretizes the DUT by a
�nite element mesh containing �nite number of elements of
de�ned geometry and �nite number of node. FEM applied
on the governing equation to derive the forward model of
a DUT in the form of a matrix equation using the � and
nodal coordinates. In the EIT forwardmodel, the relationship
established between the current injection matrix [�] (matrix
of the applied signal) and the nodal potential matrix [Φ]
(matrix of the developed signal) through the transformation
matrix [�(�)] is mathematically represented as

[Φ] = [� (�)]−1 [�] . (3)

Now, in FEM formulation in EIT, when the currentmatri-
ces [�] and [�(�)] are known, and the nodal potential matrix
[Φ] is unknown, the forward model or the mathematical
problem is termed as the “forward problem”.�e procedure of
calculating the [Φ] by solving the forward problem (3) with
known [�(�)] and known [�] is termed as “forward solution”.
In EIT, the forward solver �rst computes the potential dis-
tribution with the assumed initial conductivity distribution
(�0) with a known constant current simulation, and then
the inverse solver reconstructs the conductivity distribution
from the measured boundary potential data for a same
constant current injection through surface electrodes. �e
EIT reconstruction algorithm tries tomathematically �nd the
elemental conductivity values (conductivity distribution) for
which the dierence between the estimated nodal potentials
(��) computed in the FS and the potentials measured (��) on
the surface electrodes (for a same current injection values)
becomes minimum.

�e inverse solver of the EIT reconstruction algorithm
is developed with a mathematical minimization algorithm
(MMA) [19–22] such as Gauss-Newton-based mathematical
minimization algorithm (GN-MMA). InGN-MMA, the con-
ductivity update vector ([Δ�]) is calculated and the boundary
data mismatch vector (Δ� = �� − ��) is minimized by
an iteration technique like the modi�ed Newton-Raphson
iteration technique (NRIT) [19–22]. �e [Δ�] matrix is
the desired variation in the elemental conductivity values
in [�] matrix for which the forward solver calculates the
boundary potentials more similar to the measured value in
next iteration using NRIT. �erefore, the algorithm starts
with an initial elemental conductivity vector ([�0]), and it is
then updated to ([�1] = [�0] + [Δ�]) in the next iteration.
Using this [�1], FS calculates a new potential distribution
in DUT and a new voltage mismatch vector [Δ�1] is thus
obtained and compared with the previous voltage mismatch
vector [Δ�0]. If the Δ�1 is not found as the minimum, the
iteration process is continued till the kth iteration using the
conductivity update vector ([Δ��]) developed by GN-MMA.

Using, NRIT the [�]matrix is iteratively updated to [��+1] =[��] + [Δ��] and repetitively tries to �nd out the minimum
value of [Δ�].

Hence, in the EIT inverse solver, it is understood that
the desired elemental conductivity matrix is obtained by
a minimization algorithm (MMA) which is composed of
Gauss-Newton method and Newton-Raphson iteration in
which the technique iteratively tries to �nd out an optimum
conductivity distribution [��] forwhich the voltagemismatch
vector is minimized [Δ�]. At a particular iteration in this
MMA, the elemental conductivity matrix is calculated when
the current matrices [�] and [Φ] or [Δ� = �� − ��] are
known. �is process is logically an opposite process to the
forward problem. �us, when the current matrices [�] and
[Φ] are known, and the elemental conductivity matrix [�]
is unknown, the model or the problem is called the “inverse
problem.” �e procedure of calculating the [�] or [Δ�] using
with known [Δ�] and the known [�] is termed as “inverse
solution.”

2.2. Image Reconstruction with GN-MMA and NRIT. Electri-
cal conductivity imaging is a highly nonlinear and ill-posed
inverse problem [19–22]. In EIT, a minimization algorithm is
used to obtain an optimized elemental conductivity value [�]
for which the voltage mismatch vector [Δ�] becomes mini-
mum. In the image reconstruction process, the minimization
algorithm [17, 18] �rst de�nes an objective function (�) from
the computational predicted data [��] and the experimental
measured data [��] and runs iteratively to minimize it. Gen-
erally, in the EIT image reconstruction algorithm, the inverse
solver searches for a least square solution of the minimized
object the function (�) using by a Gauss-Newtonmethod and
the NRIT-based iterative approximation techniques.

If � is a function mapping a t-dimensional (t is the
number of element in the FEMmesh) impedance distribution
into a set of M (number of the experimental measurement
data ([��]) available) approximate measured voltages, then
the Gauss-Newton-method-based minimization algorithm
[19–26] tries to �nd a least square solution of the minimized
object function (s) [19–26] which is de�ned as:

� = 1
2
������ − �����2 = 1

2(�� − �)� (�� − �) . (4)

Now, dierentiating (4) with respect to the conductivity
�, it reduces to

�	 = −[�	]� [�� − �] = − �Δ�, (5)

where the matrix  = �	 is known as Jacobin matrix [19–22],
which may be calculated by a method as described in [19, 22]
or by the adjoint method [23] represented by (6)

 = ∮
Ω
∇Φ
 ⋅ ∇Φ�"Ω, (6)

where Φ
 is the forward solution for a particular source
location, andΦ� is the forward solution for the adjoint source
location (source at the detector location and detector at the
source location).
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Dierentiating (5) with respect to � again, the equation
reduces to

�		 = [�	]� [�	] − [�		]� [�� − �] . (7)

By Gauss-Newton method, the conductivity update vec-
tor [Δ�] is given by

Δ� = − �	
�		 =

 �Δ�
[�	]� [�	] − [�		]�Δ�. (8)

�us, the conductivity update vector is given by

Δ� = [[�	]� [�	] − [$]�Δ�]−1 �Δ�, (9)

where the higher-order term $ = [�		] is known as the
Hessian matrix [24]. In (9) by neglecting $, the update
conductivity vector reduces to

Δ� = [[�	]� [�	]]−1 � [∇�] . (10)

In general, using NRIT method, the conductivity update
vector expressed as in (10) can be represented for kth iteration
(where & is a positive integer) as

Δ�� = [[ �]� [ �]]−1[ �]� [Δ��] , (11)

where [Δ��] and [ �] are the voltage mismatch matrix and
Jacobian matrix, respectively.

�e [�	]�matrix in (11) is always ill conditioned [19–24],
and hence small measurement errors will make the solution
of (11) changes greatly. In order to make the system well
posed, the regularization method [19–26] is incorporated
into the reconstruction algorithm by rede�ning the object
function [19–26] with regularization parameters as

�� = 1
2
������ − �����2 + 1

2'‖-�‖2, (12)

where �� is the constrained least-square error of the regu-
larized reconstructions, - is the regularization operator, and
' (the positive scalar) is called the regularization coe�cient
[19–26]

�� = 1
2(�� − �)� (�� − �) + 1

2'(-�)� (-�) . (13)

Dierentiating the inject function in (12) with respect
to the elemental conductivity: the following relations are
obtained

�	� = −(�	)� (�� − �) + '(-)� (-�) , (14)

�		� = (�	)� (�	) − (�		)� (�� − �) + '-�-. (15)

Now, using Gauss-Newton- (GN-) method-based min-
imization process, the conductivity update vector [Δ�] is
obtained as

Δ� = �	�
�		� = (�	)� (�� − �) − '(-)� (-�)

(�	)� (�	) − (�		)� (�� − �) + '-�-. (16)

Neglecting the Hessian matrix [24] in (15)

Δ� = �	�
�		� = (�	)� (�� − �) − '(-)� (-�)

(�	)� (�	) + '-�- . (17)

Replacing �	 by  and -�- by � (identity matrix) (21)
reduces to

Δ� =  � (�� − �) − '��
 � + '� , (18)

where the matrix  = �	 is the Jacobin as stated earlier.
�us, the conductivity update vector ([Δ�]) is found as

Δ� = ( � + '�)−1 ( � (�� − �) − '��) . (19)

Sometimes, the last term ('��) is neglected [22], and the
conductivity update vector [Δ�] is calculated as

Δ� = ( � + '�)−1 � (�� − �) . (20)

In general, the EIT image reconstruction algorithm pro-
vides a solution of the conductivity distribution of the DUT
for the kth iteration as

��+1 = �� + (( � + '�)−1 ( � (�� − �) − '��))
�
. (21)

�e EIT algorithm starts with the solution of FP obtained
from the EIT governing equation, and the [��] is calculated
for a known current injection matrix [�] and an initial guess
(known or assumed) conductivity matrix [�0]. �e voltage
mismatch matrix [Δ�] is estimated, and then it is used to
calculate the conductivity update matrix [Δ�] using GN-
MMA and is added to the initial conductivity matrix ([�]) to
update it to a new conductivity matrix [�1 = � + Δ�] using
NRIT. New update matrix [�1] is used in forward solver to
obtain a new calculated boundary data matrix [��1] which
provides a new voltage mismatch matrix [Δ�1]. �erefore,
the NRIT algorithms iteratively calculate the [Δ�] using GN-
MMA to �nd out an optimized [�]matrix for which the [Δ�]
reaches its minimum value. �us, the EIT reconstruction
algorithm is found to work in the following sequences:

(1) forward solver calculates the boundary potential
matrix [��] for a known current injection matrix [�]
and an initial guess (known) conductivitymatrix [�0],

(2) measured voltage data matrix [��] is compared with
[��] to estimate the [Δ�] as [Δ� = �� − ��],

(3) Jacobian ( ) is computed,

(4) conductivity update vector [Δ�] is calculated by
Gauss-Newton-based minimization algorithm,

(5) [�] matrix is updated to a new conductivity matrix
[�1 = � + Δ�] by adding [Δ�] to [�] using Newton-
Raphson iteration technique (NRIT),

(6) new update matrix [�1] is used in forward solver to
calculate the new voltage mismatch matrix [Δ�1],
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(7) check whether the [Δ�1] is minimum or not or
compare the [Δ�] with a speci�ed error limit (6) if
provided,

(8) stop the algorithm if Δ� ≤ 6 condition is achieved,
otherwise repeat the steps 1 to 7 until the speci�ed
stopping criteria (Δ� ≤ 6) is achieved.

2.3. Boundary Data Simulator (BDS). A two-dimensional
boundary data simulator (BDS) is developed in MATLAB
R2010a [27] using �nite elementmethod (FEM) [15] to gener-
ate accurate boundary data for studying the EIT reconstruc-
tion algorithms. �e MATLAB-based BDS is developed as
an absolute 2D data simulator for EIT image reconstruction
studies, and it is used suitably to generate the errorless
2D boundary data to study and modify the inverse solver
of a 2D EIT system. As BDS is developed in a computer
so�ware, it is found free from errors produced by the EIT
instrumentation and phantom. BDS also allows us to gen-
erate boundary potential data for dierent type of phantom
geometry, inhomogeneity geometry (shape, size, and posi-
tion), inhomogeneity conductivity pro�les, and background
conductivity pro�les. Moreover, it is developed as a compact,
absolutely stable, and easy to use and handle for EIT studies. It
is developed in such a way that it can be modi�ed for further
modi�cations.

BDS is developed with MATLAB-based computer pro-
gram consisting of four-part imaging domain simulator
(IDS), EIT model developer (EMD), current injection sim-
ulator (CIS), and boundary data calculator (BDC). Imag-
ing domain simulator (IDS) in BDS simulates a domain
with inhomogeneity with their corresponding conductivity
distributions. EIT model developer (EMD) derives a math-
ematical model of the forward solver by applying FEM
on the governing equation of the DUT in the form of a
matrix equation. Current injection simulator (CIS) simulates
a constant current injection through the de�nite points at
the domain boundary with neighbouring current injection
protocol [1, 2, 28–30]. �e boundary data calculator (BDC)
solves the governing equation by solving the forward model
and calculates the potentials at all electrodes at the domain
boundary.

Imaging domain simulator (IDS) �rst de�nes a DUT
with a desired area (8�) de�ned by a required diameter and
de�ned with a particular coordinate system. Imaging domain
simulator applies the FEM to discretize the domain with a 2D
�nite element mesh containing �nite element of triangular
elements (9) and �nite number of nodes (�). In IDS, a circular
domain (Ω) to be imaged is de�ned with a required radius
(:�) using the Cartesian coordinate system (Figure 1(a)), and
the domain is discretized with a �nite element (FE) mesh
(Figure 1(b)). �e mesh is symmetrically composed of the
�rst-order triangular elements with linear shape functions
[18, 31]. �e FE mesh is generated with the pdetool of
MATLAB R2010a in such a way that it can be re�ned further
to increase the number of elements as per the requirement.
All the coordinates and parameters assigned to the �nite
elements and the nodes are stored in correspondingmatrices.
Boundary nodes are identi�ed, and the sixteen nodes among

the boundary nodes are assigned as the electrodes called the
electrode nodes. Inside the domain one (or more) smaller
region (regions) is (are) de�ned as the inhomogeneity (inho-
mogeneities) positioned at a particular place.�e center point
(;) of the inhomogeneity with the required shape and size is
positioned inside the phantom domain by de�ning its center
with a polar coordinate (<, >) as shown in Figure 1(a). Single
or multiple inhomogeneities are de�ned with their desired
areas (8�) inside the DUT, and elements within the inhomo-
geneity and the background are identi�ed. �e background
area is de�ned as the area of the domain surrounding the
inhomogeneity (8� = 8�−8�), and the elements within the
background area (8�) are identi�ed.�e elements within the
inhomogeneity are assigned with a particular conductivity
called inhomogeneity conductivity, (��) while the rest of the
elements are assigned with a dierent conductivity called
background conductivity (��) as shown in Figure 1(b). �e
assigned conductivity values of all the elements are assumed
to be featured at their corresponding centroids.

EIT model developer (EMD) develops the mathematical
model of the forward solver by applying FEM on the gov-
erning equation and derive the forward model of a DUT
in the form of a matrix equation (3) using the elemental
conductivities and nodal coordinates. �e EMD establishes
a relationship between the current injection matrix, [�]
(matrix of the applied signal), and the nodal potential matrix,
[Φ] (matrix of the developed signal), through the transfor-
mation matrix [�(�)] which is mathematically represented
by (3).�e global stiness matrix [�(�)] in EIT is actually an
admittance matrix [23] that is formed [16] using the nodal
coordinates of all the elements with their corresponding
conductivities. �us, the [�(�)] inforward model represents
the transfer function of the EIT system obtained from the
governing equation by FEM formulation [19].

�e current injection simulator (CIS) is used to simulate
a constant current injection through the sixteen nodes called
simulated electrodes (SE) on the domain boundary with
neighbouring current injection protocol. �e CIS works in a
“for” loop to execute all the projections [1, 28, 30, 32] of cur-
rent injection process. In BDS, a constant current injection is
simulated into the DUT surrounded by the sixteen simulated
current electrodes (SE�) with all the possible combination
of SE� pairs, and the potential data are calculated on all
the electrodes called voltage electrodes (SE�) in BDC. �e
current injection through a particular current electrode pair
(say SE�1 and SE�2) and corresponding voltage data collection
from all the possible voltage electrodes (SE�1, SE�2, SE�3,
SE�4, SE�15, SE�16, SE�7, SE�8, SE�9, SE�10, SE�11, SE�12,
SE�13, SE�14, SE�15 and SE�16) is known as a simulated cur-
rent projection (SCP). Hence, in an N-electrode EIT system,
there will be N-dierent current projections each of which
will inject current through a particular current electrode
pair and collectm voltage (dierential/grounded) data where
m may be either equal to N or less than N depending on
the EIT data collection strategy called the current pattern
[1, 28, 30, 32]. �erefore, a complete scan (containing all the
current projections) conducted on the DUT yields  × ?
voltage data. As the BDS is studied for sixteen electrode
system, the CIS runs for sixteen times and provides sixteen
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Figure 1: (a)A circular phantomdomain (Ω)with an inhomogeneity de�ned by polar coordinate (< and >); (b) a phantomdomain (discretized
by an FE mesh with 2048 elements and 1089 nodes) with a circular inhomogeneity (:� = 75mm, <� = 25mm, < = 37.5mm, > = 45∘, �� =0.005 S/m, and �� = 0.21 S/m).

current projections (SCP�1, SCP�2, SCP�3, SCP�4, SCP�15,
SCP�16, SCP�7, SCP�8, SCP�9, SCP�10, SCP�11, SCP�12,
SCP�13, SCP�14, SCP�15, and SCP�16). �erefore, a complete
data collection procedure (called a complete scan) in the
BDS collects m voltage data from the voltage electrodes or
voltage electrode pairs in all the sixteen current projections
and computes 16 × ? voltage data.

Boundary data calculator (BDC) calculates the potentials
(developed for a constant current injection by CIS) at all
electrode points (electrode nodes) at the domain boundary
in each current projection for a particular current pattern.
�e current injection matrix [32] is formed in CIS using
the Neumann type boundary conditions, and the potential
matrix is calculated from (3) using the matrix inversion
technique working on L-U factorization [33] process. �e
BDS is developed to run in an another “for” loop form times
to calculate them electrode potentials from voltage electrodes
or voltage electrode pairs at each of the steps of the loop.
�is second “for” loop runs within the �rst “for” loop for m
times and collects m voltage data for each step of �rst “for”
loop and hence collects 16 ×? voltage data as �rst “for” loop
runs for sixteen times. Moreover, as the EIT reconstruction
process needs a complete scan, the BDS runs in each current
projection and computes sixteen electrode potentials at each
projection. �e domain potential is calculated from the
forward model (3), and the potential values of all the nodes
are stored in a nodal potential matrix [33, 34] denoted by
[FNP]. Boundary potential data are separated from [FNP]
and stored in a dierent matrix called boundary potential
matrix [FBP].�e electrode potential data are extracted from
the nodal potential matrix [FNP] and are stored in a separate
matrix called electrode potential matrix [FEP]. In sixteen
electrode EIT system, the [FEP] is formed as a columnmatrix

and contains the 16 × ? electrode potentials (dierential or
grounded) obtained for all the projections.

2.4. Neighbouring or Adjacent Current Injection Method. In
neighbouring or adjacent current injection method, �rst
reported by Brown and Segar [35], the current is applied
through two neighbouring or adjacent electrodes, and the
dierential voltages is measured successively from all other
adjacent electrode pairs excluding the pairs containing one
or both of the current electrodes. For a sixteen electrode
EIT system with domain under test surrounded by equally
spaced sixteen electrodes (E1, E2, E3, E4, E5, E6, E7, E8, E9,
E10, E11, E12, E13, E14, E15, and E16), the neighbouringmethod
injects current through the current electrode pairs for sixteen
current projections (Figure 2), and the dierential voltages
are measured across the voltage electrode pairs using four
electrode method in each projection.

As shown in Figure 2(a) in the �rst current projection
(P1) of adjacent method, the current is injected through
electrode 1 (E1) and electrode 2 (E2), and the thirteen
dierential voltage data (�1, �2, �3, . . . , �13) are measured
successively between the thirteen electrode pairs E3-E4, E4-
E5, . . ., and E15-E16, respectively (Figure 2(a)). As reported by
Brown and Segar, in neighbouring current injection method,
the current density within the DUT is found highest between
the current electrodes (E1 and E2 for P1); the current density
then decreases rapidly as a function of distance [35]. Similarly,
in current projection 2 (P2), the current signal is injected
through electrodes 2 (E2) and 3 (E3), and an another set
of thirteen dierential voltage data (�1, �2, �3, . . . , �13) are
collected between the thirteen electrode pairs E4-E5, E5-
E6, . . ., E16-E1, and so on. Lastly, in the current projec-
tion 16 (P16), the last set of thirteen dierential voltage
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Figure 2: Current injection and boundary data collection in neighbouring current injection method; (a) data collection method as suggested
by Brown and Segar and (b) data collection strategy as suggested by Cheng et al.

data (�1, �2, �3, . . . , �13) are collected between the thirteen-
electrode pairs E2-E3, E3-E4, . . ., and E14-E15 by injecting
the current through the electrodes E16 and E1. �us, the
neighbouring current injectionmethod in a sixteen electrode
EIT system data collection procedure consists of sixteen
current projections (P1,P2,P3, . . . ,P15, and P16), and each of
the current projection yields thirteen dierential voltage data
(�1, �2, �3, . . . , �13). �erefore, a complete data collection
scan with the neighbouring current injection method in a
sixteen electrode EIT system yields 16 × 13 = 208 voltage
measurements.

�ough in neighbouring method, EIT boundary data are
not collected across the electrode pairs containing one or
two current electrode for contact impedance problem [35],
but sometimes it is advantageous to collect the boundary
data from all the electrodes including the current electrodes
to obtain the greatest sensitivity to the resistivity changes
in the domain as reported by Cheng et al. [36]. In the
present study, the boundary potentials are calculated at all the
electrodes (Figure 2(b)) with respect to a virtual ground point
selected within theDUT.Hence, in a complete data collection
scan, the potentials on all the electrodes are collected in
all the sixteen current projection and are stored in [FEP].
�erefore, the [FEP] is found as a column matrix containing
16 × 16 voltage data all collected with respect to the virtual
ground point of the DUT. Hence, in the present study, with
neighbouring current injection method, the [FEP] is found
as a 256×1matrix containing 256 electrode potentials. In the
present study, 1mA current injection is simulated through the
electrodes of the simulated domain containing sixteen nodal
electrodes using adjacent or neighboring current injection
protocol (Figure 2(b)). �e potentials on all the sixteen elec-
trodes are calculated using boundary data calculator (BDC)
for all the current projections, and the electrode potential
matrix [FEP] is used as the calculate boundary potential

matrix [��] to reconstruct the conductivity distribution of
DUT.

�e BDS is designed in such a way that a huge number
of voltage data sets can be generated using dierent types of
phantoms with their dierent design parameters. Boundary
potential data [��] are generated for dierent type of phantom
con�gurations, and the boundary data have been tested
with electrical impedance tomography and diuse optical
tomography reconstruction so�ware (EIDORS) [37, 38] for
2D-EIT. A large number of data sets are generated by
changing the values of one or more phantom parameters like:
phantom diameter (H = 2:�), inhomogeneity radius (<�),
inhomogeneity geometry (shape, size, and position), inho-
mogeneity number (�), bathing solution conductivity (��),
and inhomogeneity conductivity (��). 1mA current injection
is simulated to the domain boundary, and corresponding
boundary data sets are used for image reconstruction in
EIDORS. Data generation in BDS and image reconstruction
in EIDORS are studied for dierent inhomogeneity geome-
tries in DUT. Reconstruction is also studied for dierent
iterations and for multiple inhomogeneity reconstruction to
evaluate the BDS.

3. Results and Discussion

Image reconstruction quality in EIT depends on the bound-
ary data accuracy which is dependent on the geometric
accuracy of the inhomogeneity developed in BDS. Dimen-
sional accuracy of the inhomogeneity depends on the number
of �nite elements in the FE mesh or mesh re�nement
number (mr) as shown in Figure 3. As the mr increases,
the number of elements in the FE mesh is increased, and
hence the geometric accuracy of the inhomogeneity increases
which gives more accurate boundary data and better image
reconstruction (Figure 3). But the BDS with a highly re�ned
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Figure 3: Circular inhomogeneity (:� = 75mm, < = 0, <� = 37.5mm, �� = 0.005 S/m, and �� = 0.21 S/m) with FEM mesh with dierent
number of �nite elements: (a) 512 elements and 289 nodes, (b) 2048 elements and 1089 nodes, (c) 8192 elements and 4225 nodes, and (d)
32768 elements and 16641 nodes.

mesh needs a high PC memory and large computation time.
In this paper, themesh re�nement is found suitable asmr =
4 as per the con�guration of the PC (2.4GHz/1.5 GBRAM/ P-
IV) used. It is observed that the FE mesh with mr = 4
(containing 2048 elements and 1089 nodes) gives almost an
accurate geometry (Figure 3) to the desired inhomogeneity
and generates a reconstructible data set in less than 10
seconds. EIDORS reconstructs the resistivity images from
the BDS data sets using regularized image reconstruction
technique.

Results show that the resistivity or conductivity can be
successfully reconstructed from the boundary data generated
by our BDS using a circular domain (:� = 75mm) with a

circular inhomogeneity (< = 37.5 mm, <� = 25mm, > = 45∘,

�� = 0.005 S/m, and �� = 0.21 S/m) in the 9th iteration
(Figure 4). It is also observed that the reconstructed shape
of the inhomogeneity is similar to that of the original one
(Figure 4(a)), and the reconstructed conductivity pro�le in
Figure 4(b) is almost similar to that of the original object in
Figure 4(a).

Iteration studies shows that in dierent reconstruction
steps called iterations (Figure 5), the reconstructed images
become more localized from iteration to iteration and the
reconstruction errors (appeared by the red color at phantom
periphery) are gradually reduced (Figure 5).

It is observed that the resistivity is successfully recon-
structed from the boundary data in the 9th iteration (Figures
5(i) and 5(j)), though the shape of all the reconstructed
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Figure 4: (a) Simulated domain with a circular object (:� = 75mm, < = 37.5, > = 45∘, <� = 25mm, �� = 0.005 S/m, and �� = 0.21 S/m); (b)
reconstructed image of (a).

images in 9th–12th iterations is almost similar to that of the
original one (shown by dotted circles in Figure 5). As the
reconstructed resistivity pro�le similar to that of the original
is obtained only in the 9th iteration, the 9th iteration is taken
as the optimum reconstruction. In 13th and 14th iterations,
the resistivity is overestimated, and the images are lost. �e
optimum iteration number depends on the data accuracy and
reconstruction algorithm, and hence the BDS can be used
to generate the boundary data sets required for assessing the
inverse solver in EIT.

Voltage data are also generated for a domain (:� =
75mm) with the circular inhomogeneities (<� = 25mm, �� =0.005, S/m, and �� = 0.21 S/m) positioned at dierent places
using the BDS (Figure 6). It is observed that the reconstructed
image is more circular for an inhomogeneity positioned at
the phantom centre where < = 0 and > = 0∘ (Figure 6(a)).
On the other hand, for < ̸= 0, that is, for the inhomogeneities
near domain boundary (Figure 6(b)), reconstructed images
are not perfectly circular because of the comparatively less
accurate shape of the original object obtained for < ̸= 0. For a
less number ofmesh re�nements, the geometry of the original
side objects is not exactly circular itself (Figure 4), and hence
the corresponding boundary data have lower accuracy. An FE
meshwith largemr can easily produce an accurate geometry
for the boundary objects (objects near domain boundary)
with proper shape, which gives a boundary data without
geometric error and automatically improves the image shape.

Boundary data sets are also generated with a circular
domain (:� = 75mm and �� = 0.21 S/m) with a circular
inhomogeneity (�� = 0.005 S/m) with dierent diameters
(2<�) and all positioned at the phantom center (< = 0). �e
boundary data are calculated and used for reconstructing
the resistivity images. Results show that for the domain
discretized with mr = 4, the data sets, generated with
a diameter larger than 13.3% of the phantom diameter,

are accurate enough (Figures 7(a)–7(f)) to reconstruct the
resistivity images in EIDORS-2D. It is clearly observed that
for mr = 4, the triangular elements within the inhomo-
geneity with smaller <� are unable to shape themselves into
a proper circle (Figure 7(g)). Hence, the data obtained for the
inhomogeneity with a diameter of 20mm has low accuracy
(Figure 7(g)), and hence the resistivity image (Figure 7(h)) is
found with low resolution showed and some reconstruction
error (appeared in the red color at phantom periphery).
Increasing the FE elements in BDS, the boundary data error
can be minimized, and the improved resistivity image can be
achieved even for smaller inhomogeneities with a diameter
less than 13.3% of :�.

Boundary potential data are also generated for domains
(:� = 75mm) containing multiple circular inhomogeneities
(<� = 25mm, < = 37.5mm, �� = 0.005 S/m, and �� =
0.21 S/m) placed at dierent positions inside the domain
(Figure 8). Figure 8(a) shows a domain with two circular
inhomogeneities (180∘ apart from each other) which are
placed at a central distance (<) of 37.5mm. Similarly, another
domain with three circular inhomogeneities (120∘ apart from
each other) placed inside the phantom domain is shown in
Figure 8(c). All the inhomogeneities in both the domains are
positioned at a central distance (<) of 37.5mm. 1mA current
is simulated with the neighbouring current pattern, and the
boundary data are collected for resistivity reconstruction. It
is noticed that the resistivity images (Figures 8(b) and 8(d))
of inhomogeneities in both the domains are reconstructed
successfully.

Results show that the boundary data simulator can be
e�ciently used to generate boundary potential data for a
huge number of phantom con�gurations in less than 10
seconds. BDS is so�ware-based virtual EIT phantom, and
hence it has a number of advantages over the practical
and mesh phantoms. �e literatures [39–41] presenting the
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Figure 5: Reconstructed images of a simulated domain with a circular inhomogeneity (:� = 75mm, < = 37.5, > = 45∘, <� = 25mm,
�� = 0.005 S/m, and �� = 0.21 S/m) for dierent number of iterations in inverse solver in EIDORS-2D: (a) 1st iteration, (b) 2nd iteration, (c)
3rd iteration, (d) 4th iteration, (e) 5th iteration, (f) 6th iteration, (g) 7th iteration, (h) 8th iteration, (i) 9th iteration, (j) 10th iteration, (k) 11th
iteration, (l) 12th iteration, (m) 13th iteration, and (n) 14th iteration.

phantom simulations are limited, and they only discuss
the so�ware phantoms developed for their own systems.
BDS is a so�ware-based versatile boundary data simulator
which generates boundary data suitable for studying the
reconstruction algorithm required for several EIT systems,
and hence it is better suited for assessing the performance of
the inverse solver of 2D electrical impedance tomography.

4. Conclusions

AMATLAB boundary data simulator (BDS) is developed for
studying the resistivity reconstruction in inverse solvers of
2D-EIT. BDS is developed with four parts: imaging domain
simulator (IDS), EIT model developer (EMD), current injec-
tion simulator (CIS), and boundary data calculator (BDC).
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Figure 6: Image reconstruction of a simulated domain with a circular inhomogeneity (:� = 75mm, <� = 30mm, �� = 0.005 S/m, and

�� = 0.21 S/m) at dierent positions (<, >): (a) simulated domain with inhomogeneity at < = 0mm and > = 0∘, (b) reconstructed image of the
domain shown in Figures (a) and (c) simulated domain with inhomogeneity at < = 37.5mm and > = 0∘, and (d) reconstructed image of the
domain shown in Figure (c).

Imaging domain simulator (IDS) simulates a domain with
single or multiple inhomogeneities of dierent geometries
de�ned with their corresponding conductivity distributions,
whereas the EIT model developer (EMD) derives a for-
ward model using FEM to solve the governing equation
of the DUT. Current injection simulator (CIS) simulates a
constant current injection through the simulated electrodes
positioned at the domain boundary with the neighbouring
current injection protocol. �e boundary data calculator
(BDC) solves the forward model to solve the governing
equation and calculates the potentials at all the simulated
electrodes. Boundary data are generatedwith dierent type of
domains simulated in BDS by changing its input parameters.
Resistivity images are reconstructed from the boundary data

using standard EIT reconstruction so�ware called EIDORS,
and the BDS is evaluated. It is observed that the BDS with
FE mesh with 2048 elements can simulate an inhomogeneity
of desired geometry with suitable accuracy. �e BDS with
2048 elements suitably generates the boundary data for
simulated domains containing the objects with dierent
geometrieswhich are found e�cient for image reconstruction
in EIDORS. Results also show that the conductivity or
resistivity pro�les of the domains simulated in BDS are
successfully reconstructed from their corresponding bound-
ary data generated for dierent type of single and multiple
inhomogeneities. By changing the inhomogeneity position,
diameter, and number in BDS, boundary data are successfully
generated as well as the resistivity images are reconstructed
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Figure 7: Image reconstruction of circular inhomogeneities (:� = 75mm, < = 0,�� = 0.005 S/m, and�� = 0.21 S/m)with dierent diameters:
(a) original object with <� = 40mm, (b) reconstructed image of the object shown in (a), (c) original object with <� = 30mm, (d) reconstructed
image of the object shown in (c), (e) original object with <� = 20mm, (f) reconstructed image of the object shown in (e), (g) original object
with <� = 10mm, and (h) reconstructed image of the object shown in (g).
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Figure 8: Image reconstruction of multiple inhomogeneities (�� = 0.21 S/m and �� = 0.005 S/m): (a) simulated domain with two circular
objects (<� = 25mm, 180∘ apart), (b) reconstructed image of the domain shown in (a), (c) simulated domain with three circular objects
(<� = 25mm, 120∘ apart), and (d) reconstructed image of the domain shown in (c).

successfully. Multiple inhomogeneity imaging shows that
the BDS suitably generates boundary data with the desired

accuracy, and the boundary data are found e�cient for

resistivity reconstruction in EIDORS. Results also show that

for the simulated domains discretized with mr = 4, the
boundary data sets generated for circular inhomogeneity

with a diameter larger than 13.3% of the phantom diameter

are accurate enough to reconstruct the resistivity images in

EIDORS. Increasing the FE elements in BDS, the boundary

data error can further be minimized, and the improved

resistivity image reconstruction can be obtained even for

smaller inhomogeneities. Hence, it is concluded that the BDS

generated a number of boundary data sets which can suitably

be used for inverse solver assessment in EIT.
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