
A MATLAB Differentiation Matrix Suite

J. A. C. WEIDEMAN
University of Stellenbosch
and
S. C. REDDY
Oregon State University

A software suite consisting of 17 MATLAB functions for solving differential equations by the
spectral collocation (i.e., pseudospectral) method is presented. It includes functions for
computing derivatives of arbitrary order corresponding to Chebyshev, Hermite, Laguerre,
Fourier, and sinc interpolants. Auxiliary functions are included for incorporating boundary
conditions, performing interpolation using barycentric formulas, and computing roots of
orthogonal polynomials. It is demonstrated how to use the package for solving eigenvalue,
boundary value, and initial value problems arising in the fields of special functions, quantum
mechanics, nonlinear waves, and hydrodynamic stability.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential
Equations—Boundary value problems; G.1.8 [Numerical Analysis]: Partial Differential
Equations—Spectral methods

General Terms: Algorithms

Additional Key Words and Phrases: MATLAB, spectral collocation methods, pseudospectral
methods, differentiation matrices

1. INTRODUCTION
This paper is about the confluence of two powerful ideas, both developed in
the last two or three decades. The first is the concept of a differentiation
matrix that has proven to be a very useful tool in the numerical solution of
differential equations [Canuto et al. 1988; Fornberg 1996]. The second is
the matrix-based approach to scientific computing that was introduced in
the MATLAB (Matrix Laboratory) software package [The MathWorks

Work by J.A.C. Weideman was supported in part by NSF grant DMS-9404599.
Authors’ addresses: J. A. C. Weideman, Department of Applied Mathematics, University of
Stellenbosch, Private Bag XI, Matieland, 7602, South Africa; email: weideman@na-net.ornl.gov;
S. C. Reddy, Department of Mathematics, Oregon State University, Corvallis, OR 97331;
email: reddy@math.orst.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 0098-3500/00/1200–0465 $5.00

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000, Pages 465–519.

1998]. The basic unit in the MATLAB programming language is the matrix,
and this makes MATLAB the ideal tool for working with differentiation
matrices.

Differentiation matrices are derived from the spectral collocation (also
known as pseudospectral) method for solving differential equations of
boundary value type. This method is discussed in some detail below but for
more complete descriptions we refer to Canuto et al. [1988], Fornberg
[1996], Funaro [1992], and Gottlieb et al. [1984]. In the spectral collocation
method the unknown solution to the differential equation is expanded as a
global interpolant, such as a trigonometric or polynomial interpolant. In
other methods, such as finite elements or finite differences, the underlying
expansion involves local interpolants such as piecewise polynomials. In
practice this means that the accuracy of the spectral method is superior: for
problems with smooth solutions convergence rates of O~e2cN! or O~e2c ÎN!
are routinely achieved, where N is the number of degrees of freedom in the
expansion [Canuto et al. 1988; Stenger 1993; Tadmor 1986]. In contrast,
finite elements or finite differences yield convergence rates that are only
algebraic in N, typically O~N 22! or O~N 24!.

There is, however, a price to be paid for using a spectral method instead
of a finite element or a finite difference method: full matrices replace
sparse matrices; stability restrictions may become more severe; and com-
puter implementations, particularly for problems posed on irregular do-
mains, may not be straightforward. Nevertheless, provided the solution is
smooth the rapid convergence of the spectral method often compensates for
these shortcomings.

The Differentiation Matrix Suite introduced here consists of 17 MATLAB
functions, summarized in the Appendix, that enable the user to generate
spectral differentiation matrices based on Chebyshev, Fourier, Hermite,
and other interpolants. These functions enable one to solve, with just a few
lines of additional code, a variety of problems in scientific computation. We
picked the five important differential equations listed in Table I as exam-
ples. Each of these problems is solved in tutorial-style to illustrate the
usage of our codes.

To introduce the idea of a differentiation matrix we recall that the
spectral collocation method for solving differential equations is based on
weighted interpolants of the form [Canuto et al. 1988; Fornberg 1996;
Welfert 1997]

Table I. Examples

Example Domain Problem Type Solution Procedure Application

Error Function @0, `! Boundary value Chebyshev Probability
Mathieu periodic Eigenvalue Fourier Dynamical Systems
Schrödinger @0, `! Eigenvalue Laguerre Quantum Mechanics
Sine-Gordon ~2`, `! Evolution Fourier, Hermite, sinc Nonlinear Waves
Orr-Sommerfeld @21, 1# Eigenvalue Chebyshev Fluid Mechanics

466 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

f~x! ' pN21~x! 5 O
j51

N a~x!

a~xj!
fj~x!fj. (1)

Here $xj% j51
N is a set of distinct interpolation nodes; a~x! is a weight

function; fj 5 f~xj!; and the set of interpolating functions $f j~x!% j51
N satis-

fies f j~xk! 5 d jk (the Kronecker delta). This means that pN21~x! defined by
(1) is an interpolant of the function f~x! in the sense that

f~xk! 5 pN21~xk!, k 5 1, . . . , N.

A list of commonly used nodes, weights, and interpolating functions are
tabulated in Section 3 below. These include the Chebyshev, Hermite, and
Laguerre expansions, in which case the interpolating functions $f j~x!% are
polynomials of degree N 2 1.1 Two well-known nonpolynomial cases are
also included in our list, namely the trigonometric (Fourier) and sinc
(cardinal) interpolants.

Associated with an interpolant such as (1) is the concept of a collocation
derivative operator. This operator is generated by taking , derivatives of
(1) and evaluating the result at the nodes $ xk%:

f~,!~xk! ' O
j51

N d,

dx,Fa~x!

a~xj!
fj~x!G

x5xk

fj, k 5 1, . . . , N.

The derivative operator may be represented by a matrix D ~,!, the differen-
tiation matrix, with entries

Dk, j
~,! 5

d,

dx,Fa~x!

a~xj!
fj~x!G

x5xk

. (2)

The numerical differentiation process may therefore be performed as the
matrix-vector product

f~,! 5 D~,!f, (3)

where f (resp. f~,!) is the vector of function values (resp. approximate
derivative values) at the nodes $ xk%.

When solving differential equations, the derivatives are approximated by
the discrete derivative operators (3). A linear two-point boundary value
problem may thus be converted to a linear system. A differential eigenvalue
problem may likewise be converted to a matrix eigenvalue problem. Solving

1In the standard notation, one considers interpolating polynomials of degree N and sums, as
in (1), to have lower limit j 5 0 and upper limit N. Since MATLAB does not have a zero index
we begin sums with j 5 1, and consequently our notation will involve polynomials of degree
N 2 1.

A MATLAB Differentiation Matrix Suite • 467

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

linear systems and computing the eigenvalues of matrices are one-line
commands in MATLAB, involving the backslash operator and the function
eig respectively. Examples of the procedure are given in Sections 4 and 5.

After solving the matrix problem, approximations to the function values
at the nodes become available. It is often necessary to compute approxima-
tions at arbitrary points in the domain, however, so some form of interpo-
lation is required. MATLAB has a built-in function polyfit.m for polyno-
mial interpolation, but this function is intended for data fitting and may
not be the most efficient for the calculations we have in mind. For the same
reason the direct calculation of the interpolant (1) is not recommended. In
most cases the interpolant may be expressed in the so-called barycentric
form, which allows a more efficient implementation, and will therefore be
used here. For a discussion of barycentric interpolation formulas, and in
particular their superior stability properties, we refer to Henrici [1982,
Sect. 5.4] (polynomial) and to Henrici [1986, Sect. 13.6] (trigonometric).

The software suite introduced here consists of a set of MATLAB functions
that enable the user to compute differentiation matrices D ~,!, plus associ-
ated nodes $ xk%, for (a) all the important special cases (Chebyshev, Leg-
endre, Laguerre, Hermite, Fourier, sinc), and (b) an arbitrary number of
derivatives , 5 1, . . . , M. Auxiliary codes include functions for comput-
ing the roots of some orthogonal polynomials (Legendre, Laguerre, Her-
mite), as well as barycentric interpolation formulas (Chebyshev, Fourier),
plus functions for implementing special boundary conditions. A summary of
all the functions in the suite is given in the Appendix.

This paper emphasizes the matrix-based implementation of the spectral
collocation method. It is well known, however, that certain methods—
Fourier, Chebyshev, sinc—can also be implemented by using the Fast
Fourier Transform (FFT). By applying the FFT technique the matrix-vector
product (3) can be computed in O~N log N ! operations rather than the
O~N 2! operations that the direct computation of such a product requires.
There are, however, situations where one might prefer the matrix approach
in spite of its inferior asymptotic operation count.

First, for small values of N the matrix approach is in fact faster than the
FFT implementation. Also, for the FFT to be optimally efficient N has to be
a power of 2; otherwise the matrix approach may not be much slower in
practice even for large N. Second, the FFT approach places a limitation on
the type of algorithm that can be used for solving the linear system or
eigenvalue problem that arises after discretization of the differential equa-
tion. Only iterative algorithms based on matrix-vector products, such as
conjugate gradients or GMRES for linear systems and the Lanczos or
Arnoldi iterations for eigenvalues, can be used. These are not built-in codes
in MATLAB, so users will have to supply their own. (For these reasons the
solution procedures sketched in Section 5 apply only to the matrix ap-
proach.)

In spite of the advantages of the matrix-based approach in the MATLAB
setting, we have included three transform-based functions in our suite for

468 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

educational purposes and for the sake of completeness. These functions
correspond to the Fourier, Chebyshev, and sinc methods, which are all
based on the FFT. (We point out that asymptotically fast algorithms for
polynomial interpolation and differentiation at arbitrary points have been
proposed in Dutt et al. [1996]. These algorithms are not based on the FFT,
and have not been included in our suite.)

A few comments about our MATLAB coding style are in order. It is well
known that efficient coding in MATLAB means vectorization, and the use
of built-in (compiled) functions wherever possible. Conditionals and loops,
particularly nested loops, are to be avoided. We have tried to adhere to this
guideline, even if it meant a more cryptic code. To compensate for this, we
made an effort to elucidate the logic of our codes in the text of this paper.

The execution times of MATLAB functions need not be proportional to
the number of floating-point operations performed. A code with an optimal
operation count may be slow in practice due to the reasons given above.
When faced with this situation, we chose the implementation which exe-
cutes quicker even if it meant a higher operation count.

Many of the functions in the suite will not run in versions of MATLAB
older than Version 5. This is primarily because of two reasons. First,
Version 5 is the first version of MATLAB that allows arrays with more than
two indices. Our functions typically generate arrays of dimension N 3 N
3 M where the third index is reserved for the order of the derivative.
Second, MATLAB 5 has a variable of type logical , not found in earlier
versions, which is utilized in several of the codes.

We are aware of two other general software packages for spectral
computations, both in Fortran. The first is Funaro [1993], and the second is
PseudoPack 2000 [Costa and Don 1999]. Funaro’s package computes first
and second derivatives and has support for general Jacobi polynomials,
many quadrature formulas, and routines for computing expansion coeffi-
cients. PseudoPack can compute up to fourth-order Fourier, Chebyshev,
and Legendre collocation derivatives. Additional features include routines
for filtering, coordinate mapping, and differentiation of functions of two
and three variables. The listings of various Fortran programs may be found
in Canuto et al. [1988] and Fornberg [1996]. Examples of spectral compu-
tations using MATLAB are also given in Trefethen [2000], where the reader
will find many applications that complement the ones listed in Table I.

Concerning higher derivatives, we remark that often the second- and
higher-derivative matrices are equal to the first-derivative matrix raised to
the appropriate power. But this is not always the case—for a sufficient
condition, involving the weight function a~x!, we refer to Welfert [1997].
Even when this is the case, it is not a good idea to compute higher-
derivative matrices by computing powers of the first-derivative matrix. The
computation of powers of a full matrix requires O~N 3! operations, com-
pared to the O~N 2! for the recursive algorithm described in the next
section. Not only is this recursion faster, it also introduces less roundoff
error compared to the computation of matrix powers.

A MATLAB Differentiation Matrix Suite • 469

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

We should point out that we are not advocating the use of the spectral
collocation method as a panacea for solving all differential equations. First,
we note that there are alternatives to the collocation approach, most
notably the tau and Galerkin methods. But the collocation method is
typically easier to implement, particularly for nonconstant coefficient or
nonlinear problems. (For a comparison of the collocation, Galerkin, and tau
methods we refer to Fornberg [1996].) Second, in some applications it is
advantageous to convert differential equations into integral equations
which are then solved numerically; for example see Greengard [1991] and
Greengard and Rokhlin [1991]. The suite presented here does not make
provision for this approach. Third, all spectral methods (be it collocation,
tau, or Galerkin) are known to suffer from certain stability problems
[Weideman and Trefethen 1988], and they are not easily adaptable to
irregular domains [Canuto et al. 1988]. Our suite does not circumvent any
of these problems. But as was pointed out above, provided the solution is
sufficiently smooth the superior convergence rate of the spectral method
compensates for its defects.

The primary attraction of the software suite introduced here is the ease
of use of the MATLAB functions. The modular nature of these functions
enables the user to combine them in a plug-and-play manner to solve a
variety of problems. Moreover, the MATLAB environment allows interac-
tive access to linear algebra routines, ODE solvers, and graphics. Taking
into account the time required to write and verify computer code, we
believe that the methodology presented here is very attractive.

This software suite should also be useful for educational purposes. It
could be used for a course on spectral methods or any other course where
differential equations are to be solved.

The outline of the paper is as follows. In Section 2 we review the main
algorithm on which most of the functions for computing differentiation
matrices are based. Section 3 is a summary of the formulas used in our
codes. Section 4 incorporates boundary conditions. The examples are pre-
sented in Section 5.

The codes are available at http://ucs.orst.edu/˜weidemaj/differ.html
and http://www.mathworks.com/support/ftp/diffeqv5.shtml . The
second site is the Differential Equations category of the Mathworks user
contributed (MATLAB 5) M-file repository.

2. AN ALGORITHM FOR POLYNOMIAL DIFFERENTIATION

In this section we consider the important special case in which the set of
interpolating functions $f j~x!% consists of polynomials of degree N 2 1.
The two main functions in our suite, poldif.m and chebdif.m , deal with
this situation. The former function computes differentiation matrices for
arbitrary sets of points and weights; the latter function is restricted to
Chebyshev nodes and constant weights.

The computation of spectral collocation differentiation matrices for deriv-
atives of arbitrary order has been considered by Huang and Sloan [1994]

470 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

(constant weights) and Welfert [1997] (arbitrary a~x!). The algorithm
implemented in poldif.m and chebdif.m follows these references closely.
At a certain point we had to adopt a different approach, however, which
was necessitated by the rules of efficient programming in MATLAB.

Until further notice $ xj% is a set of N distinct but otherwise arbitrary
nodes. The interpolant (1) is given by

pN21~x! 5 O
j51

N a~x!

a~xj!
fj~x!fj,

where $f j~x!% are the Lagrangian interpolating polynomials defined by

fj~x! 5 P
m51
mÞj

N Sx 2 xm

xj 2 xm
D, j 5 1, . . . , N.

The function a~x! is an arbitrary, positive weight, with at least M contin-
uous derivatives. The differentiation matrices D ~,!, , 5 1, . . . , M, that
we wish to compute are defined by (2).

We distinguish between the computation of the diagonal and the off-
diagonal entries of D ~,!, starting with the latter. The following recursion for
k Þ j was derived in Welfert [1997]:

Dk, j
~,! 5

,

xk 2 xj
Sck

cj

Dk, k
~,21! 2 Dk, j

~,21!D, , 5 1, . . . , M. (4)

Here D ~0! is the identity matrix, and the constants cj are defined by

cj 5 a~xj! P
m51
mÞj

N

~xj 2 xm!, j 5 1, . . . , N. (5)

There are two approaches to computing the diagonal entries, one being
the recursive procedure suggested in Welfert [1997]. The alternative is to
note that the diagonal entries are uniquely determined by the off-diagonal
entries. In particular, the differentiation matrices should at least differen-
tiate the weight function a~x! perfectly (in exact arithmetic, that is).
Therefore

D~,!a 5 a~,!,

where a is the vector of function values a~xk!, and a~,! is the vector of
values a ~,!~xk!. Once the off-diagonal entries have been computed by (4),
everything in this equation is known but the main diagonal of D ~,!. Hence
the diagonal entries may be solved for.

A MATLAB Differentiation Matrix Suite • 471

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

This direct approach to computing the diagonals of Chebyshev differenti-
ation matrices was recommended in Baltensperger and Berrut [1999] and
Bayliss et al. [1994], and therefore we have used it in our function
chebdif.m . This approach is ill-conditioned, however, when a~x! is a
function for which max

k
a~xk! / min

k
a~xk! is large. This occurs, for example,

in the Hermite case ~a~x! 5 e2x2/ 2!, as well as the Laguerre case ~a~x! 5
e2x/ 2!. We have therefore used the recursive procedure of Welfert [1997] in
our more general code poldif.m .

The details of the recursion are presented here for the first diagonal
entry D1, 1

~,! . (Below we shall generalize to arbitrary Dj, j
~,! .) Define c1~x!,

. . . , cN~x! by

c1~x! 5
a~x!

a~x1!

cn~x! 5 S x 2 xn

x1 2 xn
Dcn21~x!, n 5 2, . . . , N. (6)

One observes that cN~x! is the interpolating function ~a~x! / a~x1!!f1~x!. In
general cn~x! is the interpolant for the nodes $ xk%1

n, since cn~x1! 5 1 and
cn~xk! 5 0 for k 5 2, . . . , n.

By taking , derivatives of (6), and using Leibniz’s rule for the higher
derivatives of products, one obtains

c n
~,!~x1! 5

,

x1 2 xn

c n21
~,21!~x1! 1 c n21

~,! ~x1!, n 5 2, . . . , N, , 5 1, . . . , M. (7)

The Fortran code given in Welfert [1997] implements this recursion for
computing the diagonal entries c N

~,!~x1!, , 5 1, . . . , M. This code, with its
three nested loops, cannot be efficiently implemented in MATLAB, and we
considered it necessary to vectorize it.

To this end, apply (7) to the term c n21
~,! ~x! in (7), and continue this

procedure. Noting that c 1
~,!~x1! 5 a ~,!~x1! / a~x1!, one obtains

c n
~,!~x1! 5

a~,!~x1!

a~x1!
1 , O

m52

n c m21
~,21!~x1!

x1 2 xm

.

For an arbitrary diagonal entry ~ j, j!, this generalizes to

c n, j
~,! ~xj! 5 bj

~,! 1 , O
m51
mÞj

n c m21, j
~,21! ~xj!

xj 2 xm

, j, n 5 1, . . . , N, , 5 1, . . . , M, (8)

where we have defined

472 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

bj
~,! 5

a~,!~xj!

a~xj!
, j 5 1, . . . , N, , 5 1, . . . , M. (9)

The quantities c N, j
~,! ~xj! are the ~ j, j! diagonal entries of D ~,!, , 5 1, . . . ,

M, that we wish to compute.
We are now in a position to describe the function poldif.m that

implements the two recursions (4) and (8). Define the N 3 N matrix Z by

Zk, j 5 5 1

xk 2 xj

k Þ j

0 k 5 j, k, j 5 1, . . . , N,

and the two ~N 2 1! 3 N matrices Y ~,! and X by

Y k, j
~,! 5 c k, j

~,! ~xj!, k 5 1, . . . , N 2 1, j 5 1, . . . , N,

and

Xk, j 5 5
1

xj 2 xk11

k $ j

1

xj 2 xk

k , j, k 5 1, . . . , N 2 1, j 5 1, . . . , N.

(Observe that X is the same as Z T, except that the zero diagonal entry of
each column of Z T has been removed.) Also define the M 3 N matrix B by

B,, j 5 bj
~,!, j 5 1, . . . , N, , 5 1, . . . , M,

where the latter quantity is given by (9).
With Y initialized to an ~N 2 1! 3 N matrix of 1’s, the following

MATLAB recursion implements the formula (8) for the diagonal entries:
Y 5 cumsum([B(ell,:); ell*Y(1:N-1,:).*X])

A built-in function in MATLAB, cumsum, computes cumulative sums over
the columns of the (matrix) argument. The dot multiplication .* is the
symbol for componentwise multiplication of two matrices in MATLAB.

The recursion for the off-diagonal entries, Eq. (4), may be implemented
as

D 5 ell*Z.*(C.*(repmat(diag(D),1,N)) - D)

where D is initialized to the N 3 N identity matrix, and C is the N 3 N
matrix with entries

Ck, j 5
ck

cj

, k, j 5 1, . . . , N.

A MATLAB Differentiation Matrix Suite • 473

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

In the above code repmat is a MATLAB function used for replicating a
matrix. The command repmat(diag(D),1,N) creates an N 3 N matrix
with the first diagonal entry of D on the first row, the second diagonal entry
of D on the next row, etc.

The main loop of poldif.m is reproduced in Table II. Observe that in
deriving (8), and by exploiting MATLAB’s vector capabilities, we have
reduced the generation of the differentiation matrices to a single for loop.
The variable DM is an N 3 N 3 M matrix that is used to store the
differentiation matrices D ~1!, . . . , D ~M !. L is the logical identity matrix of
order N 3 N.

The usage of the function poldif.m is described in Section 3.1. Its
computational efficiency, which involves questions of operation count and
numerical stability, may be summarized as follows.

We follow the convention that each floating-point addition and each
floating-point multiplication count as one flop. Each call to cumsum involves
N 2 flops, and thus each update for the diagonal entries requires about 3N 2

flops. Each update for the off-diagonal entries involves precisely 4N 2 flops.
Thus the loop shown in Table II executes a total of about 7MN 2 flops.
There is also an overhead cost for computing the matrices Z and C. Since
the matrix Z is skew-symmetric, it suffices to compute the upper (or lower)
triangular part for a total operation count of about N 2. It turns out,
however, to be faster in MATLAB to compute the full matrix, for an
operation count of about 2N 2. The computation of the quantities cj requires
about N 2 multiplications, and the computation of the matrix C requires an
additional N 2 divisions. The overall operation count of poldif.m is there-
fore roughly ~7M 1 4!N 2.

As for the stability of poldif.m and chebdif.m , we have conducted the
following investigation. We used the function chebdif.m to construct
differentiation matrices D ~,! on Chebyshev points. This was done in MAT-
LAB’s double-precision arithmetic (with machine epsilon e 5 2252 ' 2.2
3 10216). We then computed the same matrices in quadruple precision in
Fortran using the algorithm of Welfert [1997]. The function poldif.m was
tested in a similar manner, by computing Hermite and Laguerre differen-
tiation matrices as explained below in Sections 3.3 and 3.4.

Table II. Main Loop of poldif.m . The variables are defined in the text.

for ell 5 1:M
Y 5 cumsum([B(ell,:); ell*Y(1:N-1,:).*X]); % Recursion for diagonals
D 5 ell*Z.*(C.*(repmat(diag(D),1,N) - D); % Recursion for off-diagonals
D(L) 5 Y(N,:); % Correct the diagonal of D

DM(:,:,ell) 5 D; % Store current D in DM
end

474 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

To measure the error, we computed the relative error in the Frobenius
norm,

Rel. Err. 5
iD̃~,! 2 D~,!iF

iD̃~,!iF

, , 5 1, . . . , 4, (10)

where the tilde refers to the matrices computed in quadruple precision. The
results are summarized in Table III for the Chebyshev and Hermite
differentiation matrices. (The Laguerre results were similar to the Hermite
case and are not displayed here.)

The results of Table III confirm that chebdif.m and poldif.m represent
stable algorithms for computing differentiation matrices. It should be kept
in mind, however, that the application of these matrices to data vectors can
be numerically unstable, particularly for higher derivatives [Breuer and
Everson 1992; Don and Solomonoff 1994; Fornberg 1996].

We conclude this section by discussing the computation of the nodes $ xk%.
In some cases (such as the set of Chebyshev points defined in Eq. (13)
below) explicit formulas are available, but this is the exception rather than
the rule. We have included three MATLAB functions in our suite for
computing the zeros of the Legendre, Laguerre, and Hermite polynomials
(called legroots.m , lagroots.m , and herroots.m respectively).

The basis of these three functions is the three-term recurrence relation

qn11~x! 5 ~x 2 an!qn~x! 2 bn
2qn21~x!, n 5 0, 1, 2, . . . (11)

with

q0~x! 5 1, q21~x! 5 0.

It is well known that the roots of the orthogonal polynomial qN~x! are given
by the eigenvalues of the N 3 N tridiagonal Jacobi matrix

J 5 1
a0 b1

b1 a1 b2· · · bN21

bN21 aN21

2.

Table III. The table shows the values of d, rounded to the nearest integer, where Rel. Err.
5 102d and the relative error is defined by (10).

Chebyshev Hermite

N , 5 1 , 5 2 , 5 3 , 5 4 N , 5 1 , 5 2 , 5 3 , 5 4

8 16 15 15 14 8 14 15 14 15
16 16 15 15 15 16 14 14 14 14
32 16 16 15 14 32 14 14 14 14
64 16 15 15 14 64 13 14 13 14

A MATLAB Differentiation Matrix Suite • 475

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

The coefficients ~an, bn! are given in the table.

Using MATLAB’s convenient syntax the Jacobi matrix can easily be
generated. For example, in the Legendre case this requires no more than
three lines of code:

..n 5 [1:N-1];

..b 5 n./sqrt(4*n.ˆ2-1);

..J 5 diag(b,1) 1 diag(b,-1);

Once J has been created MATLAB’s built-in eig routine can be used to
compute its eigenvalues:

..r 5 eig(J);

The eig function employs the QR algorithm, as good a method as any for
computing these roots. Our function legroots.m (and similarly la-
groots.m and herroots.m) consists essentially of the above instructions.
But it utilizes the fact that J is sparse, and it also sorts the roots in
increasing order of magnitude.

The functions legroots.m , lagroots.m , and herroots.m may be used
in conjunction with poldif.m to generate the corresponding differentiation
matrices. The Laguerre and Hermite cases will be discussed in more detail
in the next section. As for the Legendre case, assuming a constant weight
the following two lines of code will generate first- and second-derivative
matrices of order N 3 N on Legendre points

.. x 5 legroots(N);

.. D 5 poldif(x,2);

3. SUMMARY OF FORMULAS AND CODES

In this section we summarize the main formulas implemented in our
MATLAB functions. We also discuss the calling command for each function.

We remark that many of the formulas listed below differ from the
conventional notation seen in the literature. This is a consequence of the
fact that array indices in MATLAB start at 1 and not 0 (see footnote 1). For
example, the Chebyshev points listed in Eq. (13) below are more commonly
denoted by xk 5 cos~kp / N !, k 5 0, . . . , N.

3.1 Arbitrary Interval

Arbitrary Polynomial

MATLAB files: poldif.m , polint.m 2

2Note that polint stands for polynomial interpolation, not polynomial integration. Likewise
chebint and fourint discussed below refer to Chebyshev and Fourier interpolation.

Legendre Laguerre Hermite
an 0 2n 1 1 0
bn n / Î4n221 n2 1 / 2n

476 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Interval: Arbitrary

@a, b#.

Nodes: Arbitrary, but distinct

x1, x2, . . . , xN.

Weight Function: Arbitrary positive function, M times continuously dif-
ferentiable

a~x!.

Interpolant:

pN21~x! 5 O
j51

N a~x!

a~xj!
fj~x!fj.

The $f j~x!% are given by Lagrange’s formula

fj~x! 5 P
m51
mÞj

N Sx 2 xm

xj 2 xm
D, j 5 1, . . . , N,

or equivalently,

fj~x! 5
vN~x!

v9N~xj!~x 2 xj!
,

where

vN~x! 5 P
m51

N

~x 2 xm!.

Barycentric Form of Interpolant [Henrici 1982, Sect. 5.4]: (Computed by
polint.m .)

pN21~x! 5

a~x!O
j51

N wj

x 2 xj

fj

a~xj!

O
j51

N wj

x 2 xj

, (12)

where

wj
21 5 P

m51
mÞj

N

~xj 2 xm!.

A MATLAB Differentiation Matrix Suite • 477

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Differentiation Matrices: (Computed by poldif.m .)

Dk, j
~,! 5

d,

dx,Fa~x!

a~xj!
fj~x!G

x5xk

.

In general

D~,! Þ ~D~1!!,.

Transform Formulas: See note (d) below.

Accuracy: No general error analysis applicable to arbitrary $ xk% has been
undertaken.

Notes:
(a) Although poldif.m computes the spectral differentiation matrix for

arbitrary nodes $ xk%, approximation theory dictates that the $ xk%
cannot be just any set of nodes. The best choices are the roots of
orthogonal polynomials such as the Chebyshev, Laguerre, and Her-
mite polynomials discussed below.

(b) For efficient execution in MATLAB, the barycentric interpolation
formulas (12) and (15) below were coded as matrix-vector multiplica-
tions.

(c) For each set of nodes $ xk% the weights $wj% that appear in (12) may be
computed once and for all. Our code polint.m does not make
provision for this, however, and it is up to the user to incorporate this
(trivial) modification if the interpolation is to be performed on many
different occasions.

(d) Asymptotically fast algorithms for polynomial interpolation, differen-
tiation, and integration have been suggested in Dutt et al. [1996].
Based on the fast multipole method, these algorithms evaluate a
polynomial of degree N at N arbitrary points in O~N log e! opera-
tions. Here e is a user-specified tolerance, for unlike the Fast Cheby-
shev Transform discussed below, the multipole-based algorithms do
not represent the underlying polynomial exactly (disregarding round-
off error) but only to within an error e. These algorithms have not
been included in our suite.

Calling Commands:
(a) The code poldif.m implements the algorithm of Section 2. Its calling

command is
..D 5 poldif(x, malpha, beta);

The input parameter x is a vector of length N containing the set of
distinct nodes. The parameter malpha could be:
(i) An integer M, which is the highest derivative required. In this

case a constant weight function a~x! is assumed, and the input
parameter beta is omitted.

478 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

(ii) A vector of length N, containing the values of the weight function
sampled at the nodes, i.e., ak 5 a~xk!. The parameter beta is
then an M 3 N array containing the quantities bk

~,! defined by
(9).

In both cases (i) and (ii) it is assumed that 0 , M , N 2 1. On
output D is an N 3 N 3 M array containing the differentiation
matrices D ~,!, , 5 1, . . . , M.

(b) The code polint.m implements the barycentric formula (12). Its
calling command is either

..p 5 polint(xk, fk, x);

when a constant weight is assumed, or
..p 5 polint(xk, fk, x, alphaxk, alphax);

in the case of a nonconstant a~x!. In both cases the input vectors xk ,
fk are the coordinates ~xk, f~xk!!, k 5 1, . . . , N. The vector x , of
arbitrary length, contains the ordinates where the interpolant is to be
evaluated. The vectors alphaxk and alphax are the values of the
weight function sampled at xk and x respectively. On output the
vector p contains the corresponding values of the interpolant pN21~x!
as computed by formula (12).

3.2 Bounded Interval

Chebyshev

MATLAB files: chebdif.m , chebint.m

Interval:

@21, 1#.

Nodes: (Computed by chebdif.m .)

xk 5 cosS~k 2 1!p

N 2 1 D, k 5 1, . . . , N. (13)

(These are the Chebyshev points of the second kind, or equivalently, the
extreme points on @21, 1# of TN21~x!, the Chebyshev polynomial of
degree N 2 1.)

Weight Function:

a~x! 5 1.

Interpolant [Canuto et al. 1988, p. 69]:

pN21~x! 5 O
j51

N

fj~x!fj,

A MATLAB Differentiation Matrix Suite • 479

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

where

fj~x! 5
~21! j

cj

1 2 x2

~N 2 1!2

T9N21~x!

x 2 xj

. (14)

Here c1 5 cN 5 2 and c2 5 . . . 5 cN21 5 1. (These constants are not the
same as the cj defined in Eq. (5); they differ by a factor ~21! j~N 2 1! / 2N22.)

Barycentric Form of Interpolant [Henrici 1982, p. 252]: (Computed by
chebint.m .)

pN21~x! 5

O
j51

N ~21! jfj

cj~x 2 xj!

O
j51

N ~21! j

cj~x 2 xj!

. (15)

Differentiation Matrices [Canuto et al. 1988, p. 69]: (Computed by cheb-
dif.m .)

Dk, j
~1! 5 5

ck

cj

~21! j1k

~xk 2 xj!
j Þ k

2
1

2

xk

~1 2 xk
2!

j 5 k Þ 1, N

2~N 2 1!211

6
j 5 k 5 1

2
2~N 2 1!2 1 1

6
j 5 k 5 N.

D~,! 5 ~D~1!!,, , 5 1, 2,

Transform Formulas [Canuto et al. 1988, p. 68]: (Implemented by cheb-
difft.m .)

pN21~xk! 5 O
j50

N21

ajTj~xk! f p9N21~xk! 5 O
j50

N21

bjTj~xk!, (16)

where

bN21 5 0, bN22 5 2~N 2 1!aN21, b0 5
1

2
b2 1 a1,

and

bj 5 bj12 1 2~ j 1 1!aj11, j 5 N 2 3, . . . , 1.

480 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

(Apply repeatedly for derivatives of higher order.)

Accuracy: For an error analysis, see Tadmor [1986].

Notes:
(a) The canonical interval is @21, 1#. If the differential equation is posed

on @a, b# it should first be converted to @21, 1# through the change
of variables x 43 ~1 / 2!~~b 2 a!x 1 ~b 1 a!!.

(b) Our suite contains two functions for Chebyshev differencing: cheb-
dif.m for computing differentiation matrices, and chebdifft.m for
computing derivatives using the FFT. Some implementation details
of these two codes are as follows.

(c) Making use of the identity cosu 5 sin~~p / 2! 2 u! the Chebyshev
nodes (13) may be expressed as

xk 5 sinSp~N 1 1 2 2k!

2~N 2 1!
D, k 5 1, . . . , N,

which is the formula implemented in chebdif.m . This formula has
the advantage that in floating-point arithmetic it yields nodes that
are perfectly symmetric about the origin, which is not the case for (13).

(d) The differences xk 2 xj that appear in the differentiation matrices
may be subject to floating-point cancellation errors for large N. The
computation of these differences may be avoided by the use of the
trigonometric identity [Don and Solomonoff 1994]:

cosS~k 2 1!p

N 2 1 D 2 cosS~ j 2 1!p

N 2 1 D 5 2sinS p~k 1 j!

2~N 2 1!
DsinS p~k 2 j!

2~N 2 1!
D.

An additional complication is the fact that sinu can be computed to
high relative accuracy when u ' 0, but sin~p 2 u! cannot. The
recommended remedy, referred to as the “flipping trick” in our codes,
is to compute only the top half of the differentiation matrix and to
obtain the lower half using symmetry relations; see Don and So-
lomonoff [1994].

(e) The function chebdif.m implements the algorithm discussed in
Section 2. The modifications mentioned under points (c) and (d) above
have been incorporated into the code.

(f) The function chebdifft.m implements the transform formulas (16),
by using the FFT. The discrete Chebyshev coefficients $aj% are given by

aj 5
2

~N 2 1!cj11
O

k51

N fk

ck

cos
jp~k21!

N 2 1
, j 5 0, . . . , N 2 1,

where the cj have been defined below (14). The values $ fk% can be
recovered using the discrete inverse Chebyshev transform:

A MATLAB Differentiation Matrix Suite • 481

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

fk 5 O
j50

N21

ajcos
pj~k 2 1!

N 2 1
, k 5 1, . . . , N.

It can be shown that

aj 5
1

~N 2 1!cj11
O

k51

2~N21!

f̃ke2ipj~k21!/ 2~N21!, j 5 0, . . . , N 2 1,

where

$f̃k%k51
2~N21! 5 $ f1, f2, . . . , fN21, fN, fN21, . . . , f2%,

and

fk 5
1

2
O
j50

2N23

ãj e2ipj~k21!/ 2~N21!, k 5 1, . . . , N,

where

$ãj%j50
2N23 5 $2a0, a1, . . . , aN22, 2aN21, aN22, . . . , a1%.

Both of these sums can be computed in O~N log N ! operations using
the FFT.

Calling Commands:
(a) The calling command for chebdif.m is

..[x, D] 5 chebdif(N, M);

On input the integer N is the size of the required differentiation
matrices, and the integer M is the highest derivative needed. On
output the vector x , of length N, contains the Chebyshev points (13),
and D is an N 3 N 3 M array containing differentiation matrices
D ~,!, , 5 1, . . . , M. It is assumed that 0 , M # N 2 1.

(b) The calling command for chebint.m is
..p 5 chebint(f, x);

On input the vector f , of length N, contains the values of the function
f~x! at the Chebyshev points (13). The vector x , of arbitrary length,
contains the ordinates where the interpolant is to be evaluated. On
output the vector p contains the corresponding values of the interpo-
lant pN21~x! as computed by the formula (15).

(c) The calling command for chebdifft.m is
..Dmf 5 chebdifft(f, M);

On input the vector f , of length N, contains the values of the function
f~x! at the Chebyshev points (13). M is the order of the required
derivative. On output the vector Dmf contains the values of the Mth
derivative of f~x! at the corresponding points.

482 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

3.3 Real Line

Hermite

MATLAB files: herdif.m , herroots.m

Interval:

~2`, `!.

Nodes: (Computed by herroots.m .)
x1, . . . , xN are the roots of HN~x!, the Hermite polynomial of degree N,
indexed in ascending order. Note: 2x1 5 xN 5 O~ ÎN! as N 3 `; see
Abramowitz and Stegun [1964, Ch. 22].

Weight Function:

a~x! 5 e2x2/ 2.

Interpolant:

pN21~x! 5 O
j51

N e2x2/ 2

e2xj
2/ 2

fj~x!fj,

where

fj~x! 5
HN~x!

H9N~xj!~x 2 xj!
.

Barycentric Form of Interpolant: Similar to (12).

Differentiation Matrices: (Computed by herdif.m .) For a formula we
refer to Funaro [1992, Ch. 7]. Note that

D~,! Þ ~D~1!!,.

Transform Formulas: There exists no fast algorithm for Hermite expan-
sions similar to the Fast Chebyshev Algorithm described in Section 3.2
above. The algorithm for arbitrary polynomials alluded to in Section 3.1
could be considered, but this has not been done here.

Accuracy: Has not been analyzed in general; for special cases see Boyd
[1984; 1989] and Tang [1993].

Implementation Notes:
(a) The real line ~2`, `! may be mapped to itself by the change of

variable x 5 bx̃, where b is any positive real number. By the chain
rule

df

dx̃
5 b

df

dx
,

d2f

dx̃2
5 b2

d2f

dx2
, etc. (17)

A MATLAB Differentiation Matrix Suite • 483

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

One observes that the first-derivative matrix corresponding to b 5 1
should be multiplied by b, the second-derivative matrix by b2, etc. At
the same time the nodes are rescaled to xk / b. It means that the
Hermite differentiation process is exact for functions of the form

e2
1
2b2x2

p~x!

where p~x! is any polynomial of degree N 2 1 or less (assuming
exact arithmetic of course). The freedom offered by the parameter b
may be exploited to optimize the accuracy of the Hermite differencing
process; see Tang [1993].

(b) To apply the algorithm of Section 2 to compute Hermite differentia-
tion matrices, it is necessary to compute the quantities b j

~,! defined by
(9). Using the three-term recurrence relation for the Hermite polyno-
mials (11), plus the Rodriguez formula

Hn~x! 5
~21!n

2n
ex2 dn

dxn
e2x2

,

it is possible to show that for j 5 1, . . . , N

bj
~,! 5 2 xjbj

~,21! 2 ~, 2 1!bj
~,22!, , 5 1, . . . , M, (18)

where b j
~21! 5 0, b j

~0! 5 1. The factor ~, 2 1! on the right is a sign
that the recurrence is unstable, but in most applications M is no
larger than 2, perhaps 4, so this need not be a concern.

(c) herdif.m computes the Hermite points by calling herroots.m . It
then computes the quantities b j

~,! via the recurrence (18). A call to
poldif.m completes the computation of the differentiation matrices.

(d) Our suite does not include a function herint.m for weighted barycen-
tric interpolation at Hermite points. The function polint.m should
be used for this purpose. (The same remarks apply to the Laguerre
case below.)

Calling Commands:
(a) The calling command for herdif.m is

..[x, D] 5 herdif(N, M, b);

On input the integer N is the size of the required differentiation
matrices, and the integer M is the highest derivative needed. The
scalar b is the scaling parameter b defined by (17). On output the
vector x , of length N, contains the Hermite points scaled by b. D is an
N 3 N 3 M array containing the differentiation matrices D ~,!, , 5
1, . . . , M.

(b) The calling command for herroots.m is
..r 5 herroots(N);

The input integer N is the degree of the Hermite polynomial, and the
output vector r contains its N roots.

484 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Sinc

MATLAB files: sincdif.m

Interval:
~2`, `!.

Nodes: (Computed by sincdif.m .) Equidistant points with spacing h,
symmetric with respect to the origin

xk 5 Sk 2
N 1 1

2 Dh, k 5 1, . . . , N. (19)

Weight Function:

a~x! 5 1.

Interpolant [Stenger 1993]:

sN~x! 5 O
j51

N

fj~x!fj,

where

fj~x! 5
sin~p~x 2 xj!/h!

p~x 2 xj!/h
.

Barycentric Form of Interpolant: See Berrut [1989].

Differentiation Matrices [Stenger 1993]: (Computed by sincdif.m).

D~1! 5
1

h 1
0 1 2

1

2
· · ·

~21!N

N 2 1
21 0 1
1

2
21 0 2

1

2
· · · 1

~21!N21

N 2 1
· · ·

1

2
21 0

2
D~2! 5

1

h2 1
2p 2

3
2 2

1

2
· · ·

2~21!N

~N 2 1!2

2
2p 2

3
2

2
1

2
2

2p 2

3
2

1

2
· · · 2

2~21!N

~N 2 1!2
· · · 2

1

2
2

2p 2

3

2 (20)

A MATLAB Differentiation Matrix Suite • 485

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Note that all sinc derivative matrices are Toeplitz, i.e., constant along
diagonals. In general

D~,! Þ ~D~1!!,.

Transform Formulas: See note (d) below.

Accuracy: See Stenger [1993].

Notes:
(a) Like the Hermite method and the Laguerre method discussed below,

the sinc method contains a free parameter, namely the step size h.
For optimal estimates of this parameter for certain classes of functions,
see Stenger [1993]. The typical estimate is h 5 C / ÎN for some C.

(b) The sinc method, in its original form, is intended for solving problems
on the real line ~2`, `!. With the aid of the mapping functions
introduced in Stenger [1993] the method may also be applied to the
intervals @0, `! and @a, b#. It should not be difficult to extend the
present set of codes to do this.

(c) Our suite contains two functions for sinc differencing: sincdif.m for
computing differentiation matrices, and sincdifft.m for computing
derivatives using the FFT. Some implementation details of these two
codes are as follows.

(d) Since all sinc differentiation matrices are Toeplitz, they are deter-
mined uniquely by their first rows and columns. Moreover, matrices
representing an even (resp. odd) derivative are symmetric (resp.
skew-symmetric). It therefore suffices to generate the first columns of
the differentiation matrices only. This can be done recursively, as
follows. By making a change of variable t 5 px / h one gets

d,

dx,

sin~px/h!

px/h
5 Sp

hD
,

s,~t!

where

s,~t! 5
d,

dt,

sin t

t
.

A recurrence relation for computing s,~t! is given by Wimp [1984, p.
16]:

s,~t! 5 t21~2 ,s,21~t! 1 Im~i,21eit!!, , 5 1, . . . , M. (21)

The first column of each differentiation matrix D ~,!, , 5 1, . . . , M,
is therefore given by

Dk, 1
~,! 5 Sp

hD
,

s,~~k 2 1!p!, k 5 1, . . . , N.

486 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Like the recurrence (18), the recurrence (21) is unstable for large M,
but for the same reason given in the Hermite case this does not cause
problems in practice.
The code sincdif.m implements the recurrence (21), and uses MAT-
LAB’s built-in Toeplitz function to generate the differentiation matrices.

(e) Since sinc derivative matrices are Toeplitz, it is possible to compute
the matrix-vector product (3) asymptotically fast, in O~N log N !
operations. A circulant matrix of dimension at least 2N 3 2N is
constructed, which contains the Toeplitz matrix as its first N 3 N
block. The data vector is padded with zeros so that it has the same
row dimension as the circulant matrix. The product of any circulant
matrix and a vector can be computed rapidly using the FFT. The
product of the Toeplitz matrix and the original data vector is then
easily recovered. The function sincdifft.m implements this idea.
For more details, see for example Strang [1986].

Calling Commands:
(a) The calling command for sincdif.m is

..[x, D] 5 sincdif(N, M, h);

On input the integer N is the size of the required differentiation
matrices, and the integer M is the highest derivative needed. The
scalar h is the mesh spacing h. On output the vector x contains the N
sinc points (19). D is an N 3 N 3 M array containing differentiation
matrices D ~,!, , 5 1, . . . , M.

(b) The calling command for sincdifft.m is
..Dmf 5 sincdifft(f, M, h);

On input the vector f , of length N, contains the values of the function
f~x! at the sinc points (19). M is the order of the required derivative.
On output the vector Dmf contains the values of the Mth derivative of
f~x! at the corresponding points.

3.4 Half Line

Laguerre

MATLAB files: lagdif.m , lagroots.m

Interval:

@0, `!.

Nodes: (Computed by lagroots.m .)
x1 5 0 , and x2, . . . , xN are the roots of LN21~x!, the Laguerre polyno-
mial of degree N 2 1, indexed in increasing order of magnitude. Note:
xN 5 O~N ! as N 3 `; see Abramowitz and Stegun [1964, Ch. 22].

Weight Function:

a~x! 5 e2x/ 2.

A MATLAB Differentiation Matrix Suite • 487

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Interpolant:

pN21~x! 5 O
j51

N e2x/ 2

e2xj/ 2
fj~x!fj,

where

fj~x! 5
xLN21~x!

~xLN21!9~xj!~x 2 xj!
.

Barycentric Form of Interpolant: Similar to (12).

Differentiation Matrices: (Computed by lagdif.m .) For a formula we
refer to Funaro [1992, Ch. 7]. Note that

D~,! 5 ~D~1!!,.

Transform Formulas: The comments related to the Hermite method (see
Section 3.3) are also applicable to the Laguerre method.

Accuracy: Has not been analyzed in any detail.

Notes:
(a) The interval @0, `! can be mapped to itself by the change of variable

x 5 bx̃, where b is any positive real number. Like the Hermite
method the Laguerre method therefore contains a free parameter—
cf. point (a) in the notes of the Hermite method. It means that the
Laguerre differentiation process is exact for functions of the form

e2
1
2bxp~x!,

where p~x! is any polynomial of degree N 2 1 or less.
(b) The quantities b j

~,! defined by (9) are given by

bj
~,! 5 S2

1

2D
,

, , 5 1, . . . , M, (22)

independent of j.
(c) The code lagdif.m computes the Laguerre points by calling lag-

roots.m . It adds a node at x 5 0 to facilitate the incorporation of
boundary conditions; see Section 5.3. It then computes the quantities
(9) defined by (22). A call to poldif.m completes the computation of
the differentiation matrices.

(d) It should be straightforward to generalize lagdif.m and lag-
roots.m to include the associated Laguerre polynomials Ln

~l!~x!; see
Abramowitz and Stegun [1964, Ch. 22]. To the best of our knowledge
it has not been investigated whether there is a significant advantage
to be gained by considering this more general basis set.

488 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Calling Commands:
(a) The calling command for lagdif.m is

..[x, D] 5 lagdif(N, M, b);

On input the integer N is the size of the required differentiation
matrices, and the integer M is the highest derivative needed. The
scalar b is the scaling parameter b discussed above. On output the
vector x , of length N, contains the Laguerre points scaled by b, plus a
node at x 5 0. D is an N 3 N 3 M array containing differentiation
matrices D ~,!, , 5 1, . . . , M.

(b) The calling command for lagroots.m is
..r 5 lagroots(N);

The input integer N is the degree of the Laguerre polynomial, and the
output vector r contains its N roots.

3.5 Periodic Domain

Fourier

MATLAB files: fourdif.m , fourint.m

Interval:

@0, 2p# ~periodicity assumed!.

Nodes: (Computed by fourdif.m .)

xk 5 ~k 2 1!h, h 5
2p

N
, k 5 1, . . . , N. (23)

Weight Function:

a~x! 5 1.

Interpolant [Gottlieb et al. 1984; Henrici 1986, Sect. 13.6]:

tN~x! 5 O
j51

N

fj~x!fj

where

fj~x! 5
1

N
sin

N

2
~x 2 xj! cot

1

2
~x 2 xj!, N even,

fj~x! 5
1

N
sin

N

2
~x 2 xj! csc

1

2
~x 2 xj!, N odd.

Barycentric Form of Interpolant [Henrici 1986, Sect. 13.6]: (Computed by
fourint.m .)

A MATLAB Differentiation Matrix Suite • 489

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

tN~x! 5

O
j51

N

~21! jfj cot
1

2
~x 2 xj!

O
j51

N

~21! j cot
1

2
~x 2 xj!

, N even, (24)

tN~x! 5

O
j51

N

~21! jfj csc
1

2
~x 2 xj!

O
j51

N

~21! j csc
1

2
~x 2 xj!

, N odd. (25)

Differentiation Matrices [Gottlieb et al. 1984]: (Computed by fourdif.m .)
N even, k, j 5 1, . . . , N:

Dkj
~1! 5 5 0 k 5 j

1

2
~21!k2j cot

~k 2 j!h

2
k Þ j

Dkj
~2! 5 5 2

p 2

3h2
2

1

6
k 5 j

2~21!k2j
1

2
csc2

~k 2 j!h

2
k Þ j.

(26)

N odd, k, j 5 1, . . . , N:

Dkj
~1! 5 5 0 k 5 j

1

2
~21!k2j csc

~k 2 j!h

2
k Þ j

Dkj
~2! 5 5 2

p 2

3h2
2

1

12
k 5 j

2 ~21!k2j
1

2
csc

~k 2 j!h

2
cot

~k 2 j!h

2
k Þ j.

(27)

If N is odd, then

D~,! 5 ~D~1!!,.

If N is even, this last formula only holds for odd ,.

Transform Formulas [Gottlieb et al. 1984; Henrici 1986, Sect. 13.6]:
N even, k 5 1, . . . , N:

490 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

tN~xk! 5 O
j52N/ 2

N/ 221

aj eijxk f tN
~,!~xk! 5 5 O

j52N/ 2

N/ 221

~ij!,aj eijxk, , even

O
j52N/ 211

N/ 221

~ij!,aj eijxk, , odd.

(28)

N odd, k 5 1, . . . , N:

tN~xk! 5 O
j52~N21!/ 2

~N21!/ 2

aj eijxk f tN
~,!~xk! 5 O

j52~N21!/ 2

~N21!/ 2

~ij!,aj eijxk. (29)

Accuracy: For an error analysis, see Tadmor [1986].

Notes:
(a) The canonical interval is @0, 2p#. If the differential equation is posed

on @a, b# it should first be converted to @0, 2p# through the linear
transformation x 43 a 1 ~1 / ~2p!!~b 2 a!x.

(b) Our suite contains two functions for Fourier differencing: fourdif.m
for computing differentiation matrices, and fourdifft.m for comput-
ing derivatives using the FFT. The latter is based on a straightfor-
ward implementation of (28)–(29) using MATLAB’s built-in FFT
routine.

(c) The function fourdif.m differs from the previous functions for
constructing differentiation matrices in one important respect: the
other functions compute the differentiation matrices D ~1!, . . . , D ~M !

recursively. In the Fourier case we could not find such a recursion in
the literature, and we follow a different approach:
In the first- and second-derivative cases formulas (26)–(27) are used
to compute the matrices explicitly. The first row and column of these
matrices are computed with the aid of a “flipping trick” analogous to
that discussed in point (d) in the notes of the Chebyshev method. The
toeplitz command is then used to create the matrices.
To compute higher derivatives we note that all Fourier differentiation
matrices are circulant. Therefore it suffices to construct the first
column of each. The first column of D ~m! is simply D ~m!v, where v is
the column vector with 1 in the first position and zeros elsewhere.
D ~m!v may be computed by applying the FFT-based method to the
vector v.

Calling Commands:
(a) The calling command of fourdif.m is

..[x, DM] 5 fourdif(N, M);

On input the integer N is the size of the required differentiation
matrix, and the integer M is the derivative needed. On output, the
vector x , of length N, contains the equispaced nodes given by (23),
and DM is the N 3 N containing the differentiation matrix D ~M !.

A MATLAB Differentiation Matrix Suite • 491

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Unlike the other functions in the suite, fourdif.m computes only the
single matrix D ~M !, not the sequence D ~1!, . . . , D ~M !.

(b) The calling command of fourint.m is
..t 5 fourint(f, x)

On input the vector f , of length N, contains the function values at the
equispaced nodes (23). The entries of the vector x , of arbitrary length,
are the ordinates where the interpolant is to be evaluated. On output
the vector t contains the corresponding values of the interpolant
tN~x! as computed by the formula (24) or (25).

(c) The calling command for fourdifft.m is
..Dmf 5 fourdifft(f, M);

On input the vector f , of length N, contains the values of the function
f~x! at the equispaced points (23). M is the order of the required
derivative. On output the vector Dmf contains the values of the Mth
derivative of f~x! at the corresponding points.

4. BOUNDARY CONDITIONS

We now turn our attention to implementing boundary conditions. In the
case of homogeneous Dirichlet boundary conditions of the form u~1! 5 0 or
u~21! 5 0, this amounts to nothing more than the deletion of appropriate
rows and columns of the differentiation matrix. Examples of this strategy
may be seen in Sections 5.1 and 5.3.

The treatment of boundary conditions that involve derivatives, such as
Neumann or more general Robin conditions, is more complicated. There
does not appear to be a unified approach in the literature, and we discuss
two approaches here. The first involves Hermite interpolation, which is an
extension of Lagrange interpolation that enables one to incorporate deriva-
tive values in addition to function values [Huang and Sloan 1992]. In the
second approach the boundary conditions are enforced explicitly by adding
additional equations to the main system [Canuto et al. 1988; Fornberg
1996].

The canonical interval is taken to be @21, 1#; as remarked above, an
arbitrary finite interval @a, b# can always be rescaled to @21, 1# via a
linear transformation. On the interval @21, 1# we use the Chebyshev
points (13) as nodes. The Lagrangian interpolation polynomials associated
with these points are denoted by $f j~x!%; cf. Eq. (14).

4.1 Second Derivatives

In this section we discuss the details of cheb2bc.m , a function that enables
one to solve the general two-point boundary value problem

u99~x! 1 q~x!u9~x! 1 r~x!u~x! 5 f~x!, 21 , x , 1, (30)

subject to the boundary conditions

492 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

a1u~1! 1 b1u9~1! 5 c1, a2u~21! 1 b2u9~21! 5 c2. (31)

We assume, of course, that a1 and b1 are not both 0, and likewise for a2

and b2.
The function cheb2bc.m generates a set of nodes $ xk%, which are essen-

tially the Chebyshev points with perhaps one or both boundary points
omitted. (When a Dirichlet condition is enforced at a boundary, that
particular node is omitted, since the function value is explicitly known

there.) The function also returns differentiation matrices D̃ ~1! and D̃ ~2!

which are the first- and second-derivative matrices with the boundary

conditions (31) incorporated. The matrices D̃ ~1! and D̃ ~2! may be computed
from the Chebyshev differentiation matrices D ~1! and D ~2!, which are
computed by chebdif.m . Details are given below.

Our approach is based on Hermite interpolation; we refer to Huang and
Sloan [1992, p. 52] for the general formulas regarding this type of interpo-
lation. The following steps are taken to solve (30)–(31):

(a) approximate u~x! by the Hermite polynomial interpolant p~x! that
satisfies the boundary conditions (31);

(b) require p~x! to satisfy the Eq. (30) at the interpolation points, thereby
converting the differential equation to a linear system;

(c) solve the linear system for the unknown function values.

The form of the Hermite interpolant in step (a) depends on the type of
boundary conditions. There are three cases to consider: Dirichlet/Dirichlet,
Dirichlet/Robin, and Robin/Robin.

Dirichlet/Dirichlet Conditions. Occurs when

b1 5 b2 5 0.

Nodes: Since function values are specified at both endpoints the nodes
are the interior Chebyshev points:

xk 5 cosS kp

N 2 1D, k 5 1, . . . , N 2 2.

Interpolant: The interpolant is a polynomial of degree N 2 1 that satis-
fies the interpolation conditions

pN21~xk! 5 uk, k 5 1, . . . , N 2 2,

as well as the boundary conditions

a1pN21~1! 5 c1, a2pN21~21! 5 c2.

It is given explicitly by

A MATLAB Differentiation Matrix Suite • 493

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

pN21~x! 5 f̃1~x! 1 f̃2~x! 1 O
j51

N22

ujf̃j~x!, (32)

where

f̃1~x! 5 Sc1

a1
Df1~x!,

f̃2~x! 5 Sc2

a2
DfN~x!,

f̃j~x! 5 fj11~x!, j 5 1, . . . , N 2 2.

(This interpolant is actually not of Hermite type, since derivative values
do not appear.)

Differentiation Matrices: Define

D̃k, j
~1! 5 f̃9j~xk!, D̃k, j

~2! 5 f̃99j~xk! k, j 5 1, . . . N 2 2.

Since f̃ j~x! 5 f j11~x!, the matrices D̃ ~1! and D̃ ~2! are submatrices of D ~1!

and D ~2!. The function cheb2bc.m computes D̃ ~1! and D̃ ~2! by calling
chebdif.m to compute D ~1! and D ~2! and then extracting the submatrices
corresponding to rows and columns 2, . . . , N 2 1.

Dirichlet/Robin Conditions. Occurs when

b1 Þ 0 and b2 5 0.

In this case there is a Dirichlet condition at x 5 21 and a Robin
condition at x 5 1.

Nodes: Since a function value is specified at x 5 21 the Chebyshev node
corresponding to k 5 N is dropped:

xk 5 cosS~k 2 1!p

N 2 1 D, k 5 1, . . . , N 2 1.

Interpolant: The interpolant is a polynomial of degree N that satisfies the
interpolation conditions

pN~xk! 5 uk, k 5 1, . . . , N 2 1,

as well as the boundary conditions

a1pN~1! 1 b1p9N~1! 5 c1, a2pN~21! 5 c2.

It is given explicitly by

494 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

pN~x! 5 f̃1~x! 1 f̃2~x! 1 O
j51

N21

ujf̃j~x!, (33)

where

f̃1~x! 5 Sc1

b1
D~x 2 1!f1~x!,

f̃2~x! 5 Sc2

a2
DS1 2 x

2 DfN~x!,

f̃1~x! 5 S1 2 Sf91~1! 1
a1

b1
D~x 2 1!Df1~x!,

f̃j~x! 5 S1 2 x

1 2 xj
Dfj~x!, j 5 2, . . . , N 2 1.

Differentiation Matrices: Define

D̃k, j
~1! 5 f̃9j~xk!, D̃k, j

~2! 5 f̃99j~xk!, k, j 5 1, . . . N 2 1.

The quantities f̃9j~xk! and f̃99j ~xk! may be expressed explicitly in terms of
the quantities f9j~xk! and f99j ~xk!, which are the entries of the standard
Chebyshev differentiation matrices D ~1! and D ~2! computed by chebdif.m .

The function cheb2bc.m computes D̃ ~1! and D̃ ~2! by calling chebdif.m to
compute D ~1! and D ~2! and then taking appropriate combinations of these
two matrices.

When the Dirichlet and Robin conditions are reversed, i.e., b1 5 0 and b2

Þ 0, formulas similar to the above are obtained. The function cheb2bc.m
also handles this case.

Robin/Robin Conditions. Occurs when

b1 Þ 0 and b2 Þ 0.

Nodes: Since function values are specified at neither endpoint the nodes
are the full set of Chebyshev points:

xk 5 cosS~k 2 1!p

N 2 1 D, k 5 1, . . . , N.

Interpolant: The interpolant is a polynomial of degree N 1 1 that satis-
fies the interpolation conditions

pN11~xk! 5 uk, k 5 1, . . . , N,

A MATLAB Differentiation Matrix Suite • 495

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

as well as the boundary conditions

a1pN11~1! 1 b1p9N11~1! 5 c1, a2pN11~21! 1 b2p9N11~21! 5 c2.

It is given explicitly by

pN11~x! 5 f̃1~x! 1 f̃2~x! 1 O
j51

N

ujf̃j~x!, (34)

where

f̃1~x! 5 Sc1

b1
DSx221

2 Df1~x!,

f̃2~x! 5 Sc2

b2
DS1 2 x2

2 DfN~x!,

f̃1~x! 5 F1 1 x

2
1 S1

2
1 f91~1! 1

a1

b1
DS1 2 x2

2 DGf1~x!,

f̃j~x! 5 S1 2 x2

1 2 xj
2Dfj~x!, j 5 2, . . . , N 2 1,

f̃N~x! 5 F1 2 x

2
1 S1

2
2 f9N~21! 2

a2

b2
DS1 2 x2

2 DGfN~x!.

Differentiation Matrices: Define

D̃k, j
~1! 5 f̃9j~xk!, D̃k, j

~2! 5 f̃99j ~xk!, k, j 5 1, . . . N.

As before the quantities f̃9j~xk! and f̃99j ~xk! may be expressed explicitly in

terms of the quantities f9j~xk! and f99j ~xk!. Hence D̃ ~1! and D̃ ~2! are
computed by combining D ~1! and D ~2!, both of which are computed by
chebdif.m .

The function cheb2bc.m computes the various matrices and boundary
condition vectors described above. The calling command is

..[x, D2t, D1t, phip, phim] 5 cheb2bc(N, g);

On input N is the integer N defined above in (32)–(34). The array g 5
[ap bp cp; am bm cm] contains the boundary condition coefficients, with
a1, b1, and c1 on the first row and a2, b2, and c2 on the second. On output

x is the node vector x. The matrices D1t and D2t contain D̃ ~1! and D̃ ~2!,

respectively. The first and second columns of phip contain f̃91~x! and

f̃991 ~x!, evaluated at the points in the node vector. Similarly, the first and

496 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

second columns of phim contain f̃92~x! and f̃992 ~x!, evaluated at points in

the node vector. Since f̃1~x! and f̃2~x! are both 0 at points in the node
vector, these function values are not returned by cheb2bc.m .

Using cheb2bc.m , it becomes a straightforward matter to solve the
two-point boundary value problem (30)–(31). Consider, for example,

u9922xu912u 5 4ex2

, 2u~1! 2 u9~1! 5 1, 2u~21! 1 u9~21! 5 21. (35)

Since Robin conditions are specified at each end point, we consider the
interpolating polynomial pN11~x! in (34). Requiring that this polynomial
satisfies the differential equation at each point of the node vector implies

c1~xk! 1 c2~xk! 1 O
j51

N

uj~f̃99j ~xk!22xkf̃9j~xk!12f̃j~xk!! 5 4exk
2

, (36)

for k 5 1, . . . , N, where

c1~xk! 5 f̃991 ~xk!22xkf̃91~xk!12f̃1~xk!,

and

c2~xk! 5 f̃992 ~xk!22xkf̃92~xk!12f̃2~xk!.

(Observe that the last term in each expression is in fact 0.)
Putting (36) in matrix form, we have

~D̃~2! 1 QD̃~1! 1 R!u 1 p 1 m 5 f.

Q and R are N 3 N diagonal matrices with 22xk and 2 on the diagonal,
respectively, and

uk 5 uk, pk 5 c1~xk!, mk 5 c2~xk!, fk 5 4exk
2

, k 5 1, . . . N.

The MATLAB code for solving (35) is given in Table IV.

Table IV. Solving the Boundary Value Problem (35)

..N 5 16;

..g 5 [2 -1 1; 2 1 -1]; % Boundary condition array

..[x, D2t, D1t, phip, phim] 5 cheb2bc(N, g); % Get nodes, matrices, and
% vectors

..f 5 4*exp(x.ˆ2);

..p 5 phip(:,2)-2*x.*phip(:,1); % psi 1

..m 5 phim(:,2)-2*x.*phim(:,1); % psi-

..D 5 D2t-diag(2*x)*D1t 12*eye(size(D1t)); % Discretization matrix

..u 5 D\(f-p-m); % Solve system

A MATLAB Differentiation Matrix Suite • 497

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

The function cheb2bc.m can also be employed to solve differential
eigenvalue problems. Consider, for example, the model problem:

u99 5 lu, u~1! 1 u9~1! 5 0, u~21! 5 0. (37)

Since Dirichlet/Robin conditions are applicable, we approximate u~x! by
the interpolating polynomial pN~x! in (33), noting that c1 5 c2 5 0. Re-
quiring pN~x! to satisfy the differential equation at points in the node
vector, we have

O
j51

N21

ujf̃99j ~xk! 5 luk, k 5 1, . . . , N 2 1.

In matrix form, this is

D̃~2!u 5 lu,

which may be solved by the MATLAB code in Table V.
There are other approaches to the solution of two-point boundary value

problems by spectral methods. Perhaps the most noteworthy is the integral
equation approach of Greengard [1991] and Greengard and Rokhlin [1991].
Huang and Sloan [1993] advocate the use of different interpolants for
approximating the first- and second-derivatives, an approach that seems to
yield higher accuracy for singularly perturbed problems. Another technique
for dealing with such problems has been proposed in Tang and Trummer
[1996].

4.2 Fourth Derivatives

We shall make no attempt to cover all possible boundary conditions that
appear in conjunction with fourth-order problems such as

u9999~x! 5 f~x!. (38)

We focus instead on the two sets of conditions that appear to be the most
relevant in physical situations, namely the clamped conditions

u~61! 5 u9~61! 5 0, (39)

and the hinged conditions

Table V. Solving the Eigenvalue Problem (37)

..N 5 16;

..g 5 [1 1 0; 1 0 0]; % Boundary condition array

..[x, D2t] 5 cheb2bc(N, g); % Get nodes and 2nd derivative matrix

..e 5 eg(D2t); % Compute eigenvalues

498 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

u~61! 5 u99~61! 5 0. (40)

Starting with the clamped boundary conditions, our task is to construct a
polynomial of degree N 1 1 that satisfies N 2 2 interpolation conditions

pN11~xk! 5 uk, (41)

as well as the four boundary conditions

pN11~61! 5 p9N11~61! 5 0. (42)

To this end, consider the set of Chebyshev nodes $ xk% with the endpoints
x 5 61 deleted, i.e.,

xk 5 cosS kp

N 2 1D, k 5 1, . . . , N 2 2. (43)

Let $f j% be the corresponding set of Lagrangian interpolating polynomials
of degree N 2 3, i.e.,

fj~x! 5 ~21!j
1 2 xj

2

~N 2 1!2

T9N21~x!

x 2 xj

, j 5 1, . . . , N 2 2.

Define $f̃ j% by

f̃j~x! 5 S1 2 x2

1 2 xj
2D2

fj~x!, j 5 1, . . . , N 2 2.

It is now readily checked that

pN11~x! 5 O
j51

N22

ujf̃j~x!

is a polynomial of degree N 1 1 that satisfies the interpolating conditions
(41), as well as the boundary conditions (42). The approximation to the
fourth-derivative operator is therefore defined by

p9999N11~xk! 5 O
j51

N22

ujf̃9999j ~xk!,

i.e., the differentiation matrix has entries

D̃k, j
~4! 5 f̃9999j ~xk!, k, j 5 1, . . . , N 2 2. (44)

A MATLAB Differentiation Matrix Suite • 499

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

It is possible to generate D̃ ~4! using the algorithm of Section 2. The
weight function is taken as a~x! 5 ~1 2 x2!2, and the nodes are the
interior Chebyshev points (43). This algorithm has been implemented in a
function cheb4c.m , the calling command of which is

..[x, D4] 5 cheb4c(N);

The function returns the nodes in (43) and the matrix D̃ ~4! in (44). The
modifications for enhanced accuracy mentioned in point (c) of the notes of
Section 3.2 have been incorporated into cheb4c.m . We postpone an appli-
cation of this function to Section 5.5, where it will be used to solve a
problem in hydrodynamic stability.

Turning to the hinged conditions (40), we observe that it may not be
possible to construct a unique Hermite polynomial interpolant that satis-
fies these boundary conditions. (Example: The polynomial p~x! 5 0 and all
multiples of the polynomial p~x! 5 3x5210x317x satisfy the interpolating
condition p~0! 5 0 as well as the hinged boundary conditions p~61! 5
p99~61! 5 0.) This nonuniqueness does not occur with clamped boundary
conditions. For a discussion of the connection between the uniqueness of
the solution to the interpolation problem and the question of well-posed
boundary conditions of Eq. (38) we refer to Sharma [1972].

For this reason we shall solve (38) subject to (40) with the method of
explicit enforcement of boundary conditions. The interpolating polynomial
is taken to be

pN21~x! 5 O
j52

N21

ujfj~x!, (45)

where $f j~x!% is again the Lagrangian basis set (14) corresponding to the
full set of Chebyshev nodes $ xj% as defined by (13). This interpolant
satisfies pN21~61! 5 0. We require the Eq. (38) to be satisfied at the
interior N 2 4 gridpoints:

O
j52

N21

ujf9999j ~xk! 5 f~xk!, k 5 3, . . . , N 2 2. (46)

The hinged boundary conditions imply

O
j52

N21

ujf99j ~x1! 5 0, O
j52

N21

ujf99j ~xN! 5 0. (47)

Equations (46)–(47) form a linear system of N 2 2 equations. In matrix
form, we have

D̃u 5 f,

500 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

where u 5 @u2· · ·uN21#
T, f 5 @0 f~x3!· · ·f~xN22! 0#T, and

D̃1, j 5 f99j ~x1!, j 5 2, . . . , N 2 1,

D̃k21, j 5 f9999j ~xk!, j 5 2, . . . , N 2 1, k 5 3, . . . , N 2 2,

D̃N22, j 5 f99j ~xN!, j 5 2, . . . , N 2 1.

The MATLAB code for solving Eq. (38) subject to the hinged conditions
(40) with right side f~x! 5 ex2

is given in Table VI.
In the case of an eigenvalue problem the procedure in Table VI must be

modified slightly. Consider, for example, the model problem

u9999 5 lu, u~61! 5 u99~61! 5 0. (48)

As before we use the interpolating polynomial (45), and require the
differential equation to be satisfied at the interior grid points, yielding

O
j52

N21

ujf9999j ~xk! 5 luk, k 5 3, . . . , N 2 2. (49)

To put the discrete Eqs. (47) and (49) in the form of an algebraic eigenvalue
problem we eliminate u2 and uN21. Define

M1 5 2F f993 ~x1! · · · f99N22~x1!

f993 ~xN! · · · f99N22~xN! G, M2 5 F f992 ~x1! f99N21~x1!

f992 ~xN! f99N21~xN! G,

and

M3 5 3
f99992 ~x3! f9999N21~x3!

f99992 ~x4! f9999N21~x4!···
···

f99992 ~xN22! f9999N21~xN22!
4.

The differential eigenvalue problem now becomes the algebraic eigenvalue
problem

Table VI. Solving the Boundary Value Problem (38) Subject to (40)

..N 5 16;

..[x, Dm] 5 chebdif(N,4); % Get derivative matrices

..D2 5 Dm(:,:,2); % 2nd derivative

..D4 5 Dm(:,:,4); % 4th derivative

..D 5 [D2(1,2:N-1); D4(3:N-2,2:N-1); D2(N,2:N-1)]; % Create D

..f 5 [0; exp(x(3:N-2).ˆ2); 0]; % Create rhs vector

..u 5 D\f; % Solve system

A MATLAB Differentiation Matrix Suite • 501

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

D̃~4!u 5 lu,

where u 5 @u3. . . uN22#
T and

D̃~4! 5 D~4! 1 M3M 2
21M1.

Here D ~4! is the interior ~N 2 4! 3 ~N 2 4! submatrix, corresponding to
rows and columns 3 to N 2 2, of the standard fourth-derivative Chebyshev
matrix D ~4!, which is computed by chebdif.m .

The MATLAB code for solving the eigenvalue problem (48) is given in
Table VII.

5. APPLICATIONS

In this section we provide templates for using the functions in our suite to
solve a variety of problems. We hope that many users may find here an
example that is sufficiently similar to theirs that it would require only a
few lines of additional code to solve their particular problem. With this aim
in mind we attempt to cover a wide a range of problems that utilize nearly
all the functions in our suite. The problems are summarized in Table I.

The examples discussed here are all well-known problems in physics and
engineering. Many efficient numerical methods have been proposed for
their solution, but few of them have been solved by the differentiation
matrix approach followed here. It is beyond the scope of this paper to
undertake a detailed comparison of how this approach compares to the
more established numerical procedures with regards to accuracy, stability,
and efficiency. Nevertheless, we are confident that our methods are com-
petitive. And as our examples will show, in terms of coding effort their
efficiency can hardly be surpassed.

Each of the examples below involves the use of at least one of the
differentiation, interpolation, or rootfinding functions in our suite. All
additional MATLAB coding required to solve the problem is displayed in
Tables VIII–XVII. The user should be able to duplicate these results by
simply retyping the lines following the MATLAB prompt ... Only the

Table VII. Solving the Eigenvalue Problem (48)

..N 5 16;

..[x, DM] 5 chebdif(N, 4); % Get derivative matrices

..D2 5 DM(:,:,2); % 2nd derivative

..D4 5 DM(:,:,4); % 4th derivative

..M1 5-[D2(1,3:N-2); D2(N,3:N-2)];

..M2 5 [D2(1,2) D2(1,N-1); D2(N,2) D2(N,N-1)];

..M3 5 [D4(3:N-2,2) D4(3:N-2,N-1)];

..D4t 5 D4(3:N-2,3:N-2) 1M3*(M2\M1); % Create D4(tilde)

..e 5 eig(D4t); % Compute eigenvalues

502 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

instructions that control the appearance of the graphics output, such as the
linewidth, symbol size, and headings of the plots, have been omitted (to
avoid clutter).

When a code is going to be used several times it is efficient to turn it into
a MATLAB script or function file. Our suite contains all the MATLAB codes
of Tables VIII–XVII as M-files; see the Appendix for a summary.

5.1 The Complementary Error Function

The accurate computation of the complementary error function, defined by

erfc~t! 5
2

Îp
E
t

`

e2x2

dx, t . 0, (50)

is required in applications in physics, engineering, and statistics. Since this
function decays superexponentially as t 3 `, it is practical to approximate
instead

y~t! 5 et2

erfc~t!,

a function that decays like 1 / t.
Our suite contains two function files, cerfa.m and cerfb.m , for comput-

ing y~t!. They implement different boundary conditions as explained below.
Both of these codes are based on a method in Schonfelder [1978], which we
have adapted for the differentiation matrix approach.

We start by converting the integral to a differential equation, by multi-
plying (50) by et2

and differentiating the result:

y9~t!22ty 5 2
2

Îp
, 0 # t , `.

This is accompanied by one of the side conditions y~0! 5 1 or y~`! 5 0.
Since the domain of interest is the half-line, the Laguerre approach seems
suitable. The function y~t! decays slowly, however, and therefore this
method is not particularly accurate. Following Schonfelder [1978], we
consider instead the Chebyshev method in combination with the change of
variables

x 5
t 2 c

t 1 c
N t 5 c

1 1 x

1 2 x
. (51)

This maps t [@0, `! to the canonical Chebyshev interval x [@21, 1# for
each positive value of the parameter c. This parameter is free to be tuned
for optimum accuracy.

A MATLAB Differentiation Matrix Suite • 503

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Having made the change of variables the differential equation is con-
verted to

~1 2 x!3y924c2~1 1 x!y 5
4c

Îp
~x 2 1!, 21 # x # 1.

One could use either of the two boundary conditions

~a! y 5 0 at x 5 1, or ~b! y 5 1 at x 5 21. (52)

The first condition was used in Schonfelder [1978]; we consider both
conditions here.

At this point our approach starts to deviate from Schonfelder’s. In
Schonfelder [1978] the function y is approximated by the Chebyshev series
OanTn~x! which leads to a linear system for the expansion coefficients an.
Computing the coefficients of the linear system involves the manipulation
of Chebyshev identities which is a complicated procedure compared to what
we propose here.

Let D be the Chebyshev first-derivative matrix of order N 1 1, and let
$ xk% be the corresponding Chebyshev nodes as defined in Section 3.2. To
incorporate the first boundary condition in (52), the first row and column of
D are deleted. Then the differential equation may be approximated by the
N 3 N linear system

Ay 5 b,

where

A 5 diag~~1 2 xk!
3!D 2 4c2diag~1 1 xk!, bk 5

4c

Îp
~xk 2 1!, k 5 1, . . . , N.

The solution of the linear system provides approximations to y~tk!, where
the tk are the images of the Chebyshev points xk 5 cos~kp / N ! under the
transformation (51). To compute y~t! at arbitrary points Chebyshev
barycentric interpolation is used.

The MATLAB computation shown in Table VIII is essentially the code of
the script file cerfa.m . It computes the values of y~t! 5 et2

erfc~t! at the
(arbitrarily chosen) set of ordinates t 5 10m, m 5 22, 21, 0, 1. As in
Schonfelder [1978] we have used c 5 3.75, which was empirically found to
be near optimal.

As N is increased, the method yields the rapid convergence seen in Table
IX. The accuracy is comparable to that of Schonfelder’s method. The
condition number of A grows relatively slowly, namely cond~A! ' 29, 63,
110 for N 5 10, 15, 20, indicating that this is a reasonably well-condi-
tioned procedure for computing the complementary error function.

504 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

We remark that with boundary condition (b) in (52) the implementation
is slightly more complicated due to the incorporation of the inhomogeneous
term; see cerfb.m for details. The accuracy appears to be higher, however,
and the condition number is also smaller. If the reader wishes to use this
algorithm for practical computations cerfb.m is recommended.

Another bit of practical advice is that if the code is to be used many
times, it will be efficient to compute the function values y~tk! and save
them for later use. Then each subsequent evaluation of y~t! would skip the
linear system solver and go directly to the interpolation routine. This is
akin to Schonfelder’s approach in which the Chebyshev expansion coeffi-
cients are computed once and for all.

5.2 The Mathieu Equation

Mathieu’s equation,

y99~x! 1 ~a 2 2q cos 2x!y 5 0, (53)

arises when solving the wave equation in elliptical coordinates, in the
stability analysis of Duffing’s equation, and as the first step in the inverse
scattering procedure for solving the Korteweg–de Vries equation with
periodic boundary conditions. The basic question in these applications is
which sets of parameter values ~q, a!, called characteristic values, give rise
to bounded nontrivial solutions of period p (resp. 2p).

Table VIII. Computing the Function y(t) 5 et2
erfc(t)

..c 5 3.75; N 5 20; % Initialize parameters

..t 5 10.ˆ[-2:1:2]; % Points at which y(t) are required

..[x, D] 5 chebdif(N 11,1); % Compute Chebyshev points,

..D 5 D(2:N 11,2:N 11); % assemble differentiation matrix,

..x 5 x(2:N 11); % and incorporate boundary condition

..A 5 diag((1-x).ˆ3)*D-diag(4*c ˆ2*(1 1x)); % Coefficient matrix

..b 5 4*c/sqrt(pi)*(x-1); % Right-hand side

..y 5 A\b; % Solve linear system

..p 5 chebint([0; y], (t-c)./(t 1c)); % Interpolate

Table IX. Chebyshev Approximations to y(t) 5 et2
erfc(t)

N t 5 0.01 t 5 0.1 t 5 1 t 5 10

10 0.98881546 0.89645698 0.427584 0.0561409
15 0.9888154610463 0.896456979969 0.427583576156 0.0561409927
20 0.9888154610463 0.89645697996912 0.42758357615581 0.056140992743823

y~t! 0.988815461046343 0.896456979969126 0.427583576155807 0.0561409927438226

A MATLAB Differentiation Matrix Suite • 505

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

We first consider the case of solutions of period 2p. The classical
approach to solving the problem is to assume the Fourier series represen-
tation y~x! 5 Ockeikx. Inserting this series into (53) yields a recurrence
relation for the expansion coefficients ck in terms of a and q. The eigenval-
ues are typically found by computing determinants, or by computing
continued fractions. For a survey on the numerical solution of Mathieu’s
equation we refer to Alhargan [1996].

We propose an alternative to the classical methods here, namely the use
of the Fourier differentiation matrix. Let D be the N 3 N Fourier second-
derivative matrix defined in Section 3.5, based on the equidistant nodes
xk 5 2p~k 2 1! / N, k 5 1, . . . , N. Let

C 5 diag~cos 2xk!.

Then the Mathieu equation (53) may be approximated by

~2qC 2 D!y 5 ay (54)

where y is the vector of approximate eigenfunction values y~xk!. To
compute solutions of period p it is necessary to replace D by 4D, and to
modify the definition of C to C 5 diag~cos xk!. This follows from the
change of variables x 43 2x.

Equation (54) defines an algebraic eigenvalue problem that may be
solved by MATLAB’s eig routine. It yields N values of a for each q. Not all
of these values should be accepted, however, since only the values of a
nearest the origin can be assumed to be accurate, as these eigenvalues
correspond to the least rapidly oscillating eigenfunctions y~x!.

The strategy is as follows: solve the eigenvalue problem (54), for q
ranging from 0 to some maximum value. This defines a set of curves in the
~q, a! parameter plane which may be plotted using MATLAB’s graphing
routines. The code in Table X, which is the script file matplot.m in our
suite, implements this strategy. Note that by restricting the axes of the
figure, attention is focussed on the eigenvalues of smallest magnitude. The
resulting plot, shown in Figure 1, is indistinguishable from the plot given
in Abramowitz and Stegun [1964, p. 724].

Table X. Plotting the Characteristic Values of Mathieu’s Equation

..[x, D] 5 fourdif(32,2);

..for q 5 0.1:0.1:12 % For loop over q values

..a 5 eig(2*q*diag(cos(2*x))-D); % Compute eigenvalues (period 2 pi)

..plot(q 1i*a,’o’);

..hold on;

..end

..axis([0 12 -10 30]) % Zoom in

506 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

The procedure suggested here may also be used to compute the Mathieu
functions. For example, the Mathieu cosine-elliptic function ce0~x, q! is the
eigenfunction of period p, associated with the smallest characteristic
number a (corresponding to the lower curve in Figure 1). There are various
normalizations used in the literature—we shall use the one consistent with
Abramowitz and Stegun [1964, Ch. 20], which is

E
0

2p

ce0
2~x, q!dx 5 p.

The strategy for computing ce0~x, q! is as follows: solve the eigenproblem
(54), rescaled to have period p, and determine the smallest eigenvalue. The
corresponding eigenvector, after normalization, represents the values
ce0~xk, q! on the evenly spaced nodes xk in @0, p#. To compute the function
at arbitrary values of x, barycentric trigonometric interpolation is used.
Our MATLAB function ce0.m implements this strategy; see Table XI.

For q 5 25 the function ce0.m yields the rapidly converging approxima-
tions seen in Table XII. For smaller values of q the convergence is even
faster. (The actual values of the Mathieu function were taken from the
tables in Abramowitz and Stegun [1964, p. 748].)

0 2 4 6 8 10 12
–10

–5

0

5

10

15

20

25

30

q

a

Fig. 1. Characteristic values of Mathieu’s equation.

A MATLAB Differentiation Matrix Suite • 507

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

5.3 The Schrödinger Equation

The Schrödinger equation,

2y99~x! 1 y~x! 5 lq~x!y~x!,

plays a central role in the theory of quantum mechanics. Different poten-
tials q~x! describe various phenomena—among these is the interaction of a
neutron with a heavy nucleus which is modeled by the Woods-Saxon
potential [Flügge 1971, p. 162]

q~x! 5
1

1 1 e~x2r!/e
.

Physically meaningful values of the constants r and e are given in the
MATLAB code in Table XIII, and the boundary conditions are

y~0! 5 0, lim
x3`

y~x! 5 0.

Since the domain is @0, `!, solving the Schrödinger equation by the
Laguerre spectral collocation method is a natural idea. We could not,

Table XI. Computing the Mathieu Functions ce0(x,q)

function c 5 ce0(x, q, N);
% The function c 5 ce0(x, q, N) computes the value of the
% Mathieu cosine-elliptic function ce0(x, q) using N Fourier modes.

[t, D] 5 fourdif(N,2); % Assemble Differentiation Matrix
[V,E] 5 eig((q/2)*diag(cos(t))-D); % Solve Eigenproblem-rescaled to

% period pi

[m,l] 5 min(diag(E)); % Determine smallest characteristic
% number

v 5 abs(V(:,l))*sqrt(N/2); % Normalize the corresponding
% eigenfunction

c 5 fourint(v, 2*x); % Compute function values with
% barycentric trigonometric
% interpolation

Table XII. Fourier approximations to ce0(x,25)

N x 5 0 x 5 p / 2

15 2.17(–4) 1.65749
20 2.158625(–4) 1.6575103
25 2.15863018(–4) 1.6575103

ce0~x, 25! 2.15863018(–4) 1.6575103

508 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

however, find any references to this approach—numerical work reported in
the literature involved the sinc method [Eggert et al. 1987], various
shooting methods [Pryce 1993], and the finite-element method [Schoombie
and Botha 1981].

Let D be the second-derivative Laguerre matrix of order N 1 1, as
computed by lagdif.m . Let the scaling parameter be b, as defined in
Section 3.4. This means that the nodes are xj 5 rj / b, where the rj are the
roots of LN~x!. There is an additional boundary node x 5 0; incorporation
of the boundary condition at this node means the first row and column of D
are to be deleted. The boundary condition at x 5 ` is automatically taken
care of by the Laguerre expansion. The Schrödinger equation is therefore
approximated by the N 3 N matrix eigenvalue problem

~2D 1 I !y 5 lQy,

where y represents the approximate eigenfunction values at the nodes,
where I is the identity matrix, and where

Q 5 diagS 1

1 1 e~xj2r!/eD.

The MATLAB function schrod.m in our suite implements this method; it is
reproduced in Table XIII.

The physically interesting eigenvalue (associated with the 1s ’ state of the
neutron) is the one of smallest magnitude. It has been computed to
seven-digit accuracy as l 5 1.424333 independently by Eggert et al.
[1987] and Schoombie and Botha [1981]. The Laguerre method shown in
Table XIII computed this eigenvalue to full accuracy with N 5 20 (resp.
N 5 30) and all scaling parameters roughly in the range b [@3, 6# (resp.
b [@2, 9#).

Table XIII. Computing the Eigenvalues of the Schrödinger Equation

..b 5 4; N 5 20; % Initialize parameters.

..r 5 5.08685476; epsi 5 0.929852862;

..[x,D] 5 lagdif(N 11,2,b); % Compute Laguerre derivative matrix.

..D2 5 D(2:N 11,2:N 11,2); % Delete first row and column,

..x 5 x(2:N 11); % to enforce boundary condition.

..Q 5 diag(1./(1 1exp((x-r)/epsi))); % Woods-Saxon potential.

..I 5 eye(size(D2)); % Identity matrix.

..e 5 min(eig(-D2 1I,Q)); % Compute smallest eigenvalue.

A MATLAB Differentiation Matrix Suite • 509

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

5.4 The Sine-Gordon Equation

The sine-Gordon equation,

utt 5 uxx 2 sin u,

is related to the Korteweg–de Vries and cubic Schrödinger equations in the
sense that all these equations admit soliton solutions. The equation de-
scribes nonlinear waves in elastic media, and it also has applications in
relativistic field theory [Drazin and Johnson 1989]. Being completely
integrable, the sine-Gordon equation is solvable, at least in principle, by
the method of inverse scattering [Drazin and Johnson 1989]. In practice,
however, this method of solution is cumbersome to execute when arbitrary
initial data u~x, 0! and ut~x, 0! are prescribed. A more practical approach
to solving the sine-Gordon equation is direct numerical simulation.

To prepare the equation for numerical solution we introduce the auxil-
iary variable v 5 ut. This reduces the second-order equation to the first-
order system

ut 5 v (55)

vt 5 uxx 2 sin u.

The derivative with respect to x may be approximated by any second-
derivative matrix D appropriate for the domain under consideration, which
leads to

ut 5 v (56)

vt 5 Du 2 sin u.

The unknown function values at the gridpoints are represented by the
vectors u and v, and the operation sin u should be interpreted as applying
the sine function componentwise to the entries of u.

The domain of interest for the sine-Gordon equation is typically the real
line x [~2`, `!. We will therefore use the Hermite and sinc second-
derivative matrices for D, as well as the Fourier matrix rescaled to a
truncated domain @2L, L#. We suspect that this might be the first applica-
tion of the Hermite method (and perhaps also the sinc method) to simulate
solitons. The traditional approaches to solving these equations involve the
method of finite differences and the Fourier method; see Fornberg [1996, p.
130].

Having selected an appropriate differentiation matrix D, it remains to
solve the nonlinear system of ordinary differential equations (56). We shall
use MATLAB’s built-in function ode45.m for this purpose [Shampine and
Reichelt 1997]. It is based on a Runge-Kutta fourth- and fifth-order pair,
combined with Fehlberg’s time-step selection scheme.

510 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

The first step in using ode45.m is to write a function that computes the
right side of the system (56). This function is shown in Table XIV. (The
flag input parameter is used by the integration routine; type help ode45
in MATLAB for more details.)

It remains to select initial conditions. We consider an example with a
known solution,

u~x, t! 5 4 tan21S sin~t/Î2!

cosh~x/Î2!
D, (57)

and extract the corresponding initial conditions

u~x, 0! 5 0 (58)

ut~x, 0! 5 2Î2 sech ~x/Î2!.

The solution (57)—called a “breather soliton” for its oscillatory temporal
evolution—is represented in Figure 2.

We can now assemble these components in a main program, shown in
Table XV. It generates the differentiation matrix, computes the initial
conditions (58), and passes all this information to the function ode45.m . On
output it yields approximations to u~xk, tj!, where the xk are the nodes
corresponding to the differentiation matrix D, and tj are time levels
distributed uniformly over @0, t final#. The final step is to display the solution
as a mesh-plot using MATLAB’s mesh function.

In the code, we have specified the relative error tolerance as 1026, and
the same value for the absolute error tolerance on each component. (See the
vector options in the code, and refer to the description of ode45.m in
MATLAB’s help menu.)

The code in Table XV shows the computation for the Hermite method. It
is straightforward to adapt it for other methods, and this is done in the

Table XIV. Function for Computing the Right-Hand Side of the Sine-Gordon System (56)

function dw 5 sgrhs(t,w,flag,D);

% Function for computing the right-hand side of the SG equation

N 5 length(w)/2;
u 5 w(1:N); v 5 w(N11:2*N); % Extract the u, v variables from w

du 5 v; % Compute the right-hand side
dv 5 D*u-sin(u);

dw 5 [du; dv]; % Recombine the du/dt, dv/dt vectors into dw/
dt

A MATLAB Differentiation Matrix Suite • 511

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

script file sineg.m . To use the sinc method only the line [x,D] 5
herdif(N,2,b) needs to be modified to [x,D] 5 sincdif(N,2,h) . To
implement the Fourier method on a truncated domain one would compute
the Fourier second-derivative matrix with [x,D] 5 fourdif(N,2) . This
would assume a periodic domain x [@0, 2p#, which should be rescaled to a
large interval @2L, L# by the change of variables x 43 L~x 2 p! / p; for
details, we refer to sineg.m . The half-period L, like the scaling parameter

–10

–5

0

5

10 0

5

10

15

20
–4

–3

–2

–1

0

1

2

3

4

timespace

Fig. 2. Breather solution of the sine-Gordon equation.

Table XV. Solving the Sine-Gordon Equation

..b 5 0.545; N 5 32; tfinal 5 6*pi; % Initialize
parameters

..[x,D] 5 herdif(N,2,b); % Compute Hermite differentiation matrices

..D 5 D(:,:,2); % Extract second derivative

..u0 5 zeros(size(x)); % Compute initial conditions

..v0 5 2*sqrt(2)*sech(x/sqrt(2));

..w0 5 [u0; v0];

..tspan 5 [0:tfinal/40:tfinal];

..options 5 odeset(’RelTol’,1e-6,’AbsTol’,1e-6); % Set tolerance

..[t,w] 5 ode45(’sgrhs’, tspan, w0, options, D); % Solve ODEs

..u 5 w(:,1:N); % Extract u variable from solution array

..mesh(x,t,u); % Generate a mesh plot of u

512 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

b in the Hermite method and the step size h in the sinc method, may be
adjusted to optimize accuracy.

Table XVI shows the maximum absolute error at the gridpoints with each
of the Hermite, sinc, and Fourier methods, with N 5 32. The time level
was arbitrarily chosen to be t 5 6p (which is the final time level displayed
in Figure 2). The free parameters were determined empirically, by varying
their values over a certain range and comparing the numerical solution
with the exact solution (57). The three methods give results that are
accurate to within an order of magnitude of each another. The mesh plots of
the three numerical solutions were indistinguishable from the actual
solution shown in Figure 2.

In these computations stiffness was not a concern. For each of the
Hermite, sinc, and Fourier methods the Runge-Kutta-Fehlberg algorithm
executed between 610 and 620 function evaluations as part of about 100
successful steps and 3 or 4 failed attempts on the interval 0 # t # 6p. If
stiffness becomes a problem for larger N, the use of ode15s.m instead of
ode45.m should be considered; see Shampine and Reichelt [1997].

The code of Table XV may be used to solve more challenging problems,
perhaps involving moving or interacting solitons, or it may be modified to
solve other nonlinear evolution equations. It may also serve as basis for the
comparison of various numerical methods for solving PDEs such as these.

5.5 The Orr-Sommerfeld Equation

The Orr-Sommerfeld equation, derived in 1907, governs the linear stability
of a two-dimensional shear flow [Drazin and Reid 1981]. For the case of
flow between two plates (Poiseuille flow), it can be put in the form

R21~y999922y99 1 y!22 i y 2 i~1 2 x2!~y99 2 y! 5 c~y99 2 y!, (59)

subject to the boundary conditions

y~61! 5 y9~61! 5 0. (60)

This is an eigenvalue problem for the unknown complex wave speed, c, and
the normal perturbation velocity, y~x!. If there is an eigenvalue with
positive real part, then the flow is linearly unstable. The constant R is the
Reynolds number, which is inversely proportional to the viscosity.

An accurate solution to the Orr-Sommerfeld equation was first obtained
in 1971 by S. Orszag, who used a Chebyshev tau method [Orszag 1971].

Table XVI. Errors in the Numerical Solution of the Sine-Gordon Equation at Time t 5 6p

Method Hermite Sinc Fourier

Parameter (near optimal) b 5 0.545 h 5 0.795 L 5 12.4
Error 4.9(–5) 2.5(–4) 5.1(–4)

A MATLAB Differentiation Matrix Suite • 513

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Here we use the differentiation matrix approach considered in Huang and
Sloan [1994].

Let D ~4! be the fourth-derivative Chebyshev matrix that implements the
clamped boundary conditions (60), and let D ~2! be the second-derivative
Chebyshev matrix with boundary conditions y~61! 5 0. Note that differ-
ent boundary conditions are employed for these matrices—this approach
eliminates spurious eigenvalues [Huang and Sloan 1994].

The discretized Orr-Sommerfeld equation has the form

Ay 5 cBy, (61)

where

A 5 R21~D~4! 2 2D~2! 1 I ! 2 2 i I 2 i diag~1 2 xk
2!~D~2! 2 I !, B 5 D~2! 2 I.

The MATLAB program for solving the eigenvalue problem is given in
Table XVII.

Orszag computed the eigenvalue with greatest real part for R 5 104 to
be c1 5 0.00373967 2 0.2375265i. The code in Table XVII computes
this eigenvalue to about two significant places when N 5 32 and to full
precision when N $ 50.

The Chebyshev method has also been applied to investigate stability of
streamwise streaks [Reddy et al. 1998; Waleffe 1995]. In this case a system
of differential eigenvalue problems must be solved.

5.6 Extensions

The applications outlined above can be extended in various directions, two
of which we outline here. The first is the construction of spectral methods
based on rational interpolants; the second is the extension to two-dimen-
sional problems.

Consider the rational weight function

Table XVII. Computing the Eigenvalues of the Orr-Sommerfeld Equation

..N 5 64; R 5 1e4; i 5 sqrt(-1); % Initialize parameters

..[x,DM] 5 chebdif(N,2); % Compute second derivative

..D2 5 D(2:N-1,2:N-1,2); % Enforce boundary conditions

..[x,D4] 5 cheb4c(N); % Compute fourth derivative

..I 5 eye(size(D4)); % Identity matrix

..A 5 (D4-2*D2 1I)/R-2*i*I-i*diag(1-x. ˆ2)*(D2-I); % Set up A and
% B matrices

..B 5 D2-I;

..e 5 eig(A,B); % Compute eigenvalues

514 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

a~x! 5
1

~x 2 p1!~x 2 p2! . . . ~x 2 pM!
,

where the poles pj are chosen outside the interval @a, b#. (If they are
complex they should appear as conjugate pairs to ensure that a~x! is real.)
Then the interpolant (1) is nothing but a rational interpolant with pre-
assigned poles. It is a straightforward matter to use poldif.m to create the
corresponding differentiation matrices.

The question is how to pick the parameters pj optimally. If the function
f~x! that one is trying to approximate has poles in the neighborhood of
@a, b#, then the parameters pj should be selected to coincide with these
poles. If the function has no other singularities in this neighborhood, the
rational interpolation process converges rapidly. The problem is that when
solving differential equations the solution is unknown, and so too are the
poles. To estimate the location of the poles a priori, asymptotic techniques
such as boundary layer analysis or WKB analysis may be used. This
strategy has been used successfully in Weideman [1999] to solve a bound-
ary layer problem as well as a Sturm-Liouville problem.

Another possible application of our MATLAB suite is the solution of
problems in two space dimensions. Consider the case of a function f~x, y!
defined on @21, 1# 3 @21, 1#. Suppose there are four collocation points
~x1, y1!, ~x1, y2!, ~x2, y1!, ~x2, y2!, with x1 5 y1, x2 5 y2. The polynomial
interpolant is

f~x, y! ' p~x, y! 5 O
i51

2 O
j51

2

fi~x!fj~y!fij,

where fij 5 f~xi, yj!, and where the $f i% are the usual Lagrange interpolat-
ing polynomials for one dimension with nodes $ x1, x2% (or equivalently
$ y1, y2%).

Suppose we wish to compute the first derivative in x. Differentiating the
above expression and evaluating at the gridpoints, we have

fx~x,, ym! ' O
i51

2 O
j51

2

fi
~1!~x,!fj~ym!fij.

The derivative operator can be represented by a matrix. Let us enumer-
ate the discretization points by row in the x direction, and then create the
data vector:

f 5 @ f11 f21 f12 f22 #T.

Let f~1, 0! denote the vector of approximate first-derivative values with the
same ordering. The differentiation process can then be written as

A MATLAB Differentiation Matrix Suite • 515

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

f~1, 0! 5 D~1, 0!f,

where

D~1, 0! 5 3
f1

~1!~x1! f2
~1!~x1! 0 0

f1
~1!~x2! f2

~1!~x2! 0 0
0 0 f1

~1!~x1! f2
~1!~x1!

0 0 f1
~1!~x2! f2

~1!~x2!
4.

Here we have used the fact that f j~ ym! 5 d jm to simplify the matrix
entries. Note that D ~1, 0! is a block diagonal matrix with the first-derivative
matrix for one dimension on the diagonal. In other words, it is a Kronecker
tensor product (for which MATLAB has a built-in function kron) of the
identity matrix and D ~1!. This obviously generalizes to the case of more
than four collocation points. The matrix D ~1, 0! corresponding to N 2 points
can therefore be computed as follows

..[x,D] 5chebdif(N,1); % First derivative matrix in one dimension

..D105kron(eye(N,N),D); % Partial derivative with respect to x

For the matrix corresponding to the partial derivative with respect to y,
we need only interchange the order of the entries in the Kronecker product,
i.e., D015kron(D,eye(N,N)) . One can generalize these ideas to compute
the matrix corresponding to ~,1k! / ~x,yk!, namely Dlk 5kron(Dk,Dl) ,
where Dl and Dk are the matrices for the ,th and kth derivatives in one
dimension.

It is not difficult to extend these ideas to incorporate boundary conditions
and to mix different discretizations in the x and y directions, such as
Chebyshev and Fourier.

A disadvantage of this approach for solving two-dimensional problems is
that the order of the matrices are N 2 3 N 2, which becomes large quickly.
It might be more appropriate to create routines for applying the differenti-
ation matrix without explicitly creating it, and then use iterative methods
to solve the linear systems or eigenvalue problems.

APPENDIX

SUMMARY OF MATLAB FUNCTIONS IN THE SUITE

The Differentiation Matrix Suite is available at http://ucs.orst.edu/
˜weidemaj/differ.html and at http://www.mathworks.com/support/
ftp/diffeqv5.shtml in the Differential Equations category of the Math-
works user-contributed (MATLAB 5) M-file repository.

(I) Differentiation Matrices (Polynomial Based)
(1) poldif.m : General differentiation matrices
(2) chebdif.m : Chebyshev differentiation matrices
(3) herdif.m : Hermite differentiation matrices
(4) lagdif.m : Laguerre differentiation matrices

516 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

(II) Differentiation Matrices (Nonpolynomial)
(1) fourdif.m : Fourier differentiation matrices
(2) sincdif.m : Sinc differentiation matrices

(III) Boundary Conditions
(1) cheb2bc.m : Chebyshev second-derivative matrix incorporating

Robin conditions
(2) cheb4c.m : Chebyshev fourth-derivative matrix incorporating

clamped conditions

(IV) Interpolation
(1) polint.m : Barycentric polynomial interpolation at arbitrary dis-

tinct nodes
(2) chebint.m : Barycentric polynomial interpolation at Chebyshev

nodes
(3) fourint.m : Barycentric trigonometric interpolation at equidis-

tant nodes

(V) Transform-Based Derivatives
(1) chebdifft.m : FFT-based Chebyshev derivative
(2) fourdifft.m : FFT-based Fourier derivative
(3) sincdifft.m : FFT-based sinc derivative

(VI) Roots of Orthogonal Polynomials
(1) legroots.m : Roots of Legendre polynomials
(2) lagroots.m : Roots of Laguerre polynomials
(3) herroots.m : Roots of Hermite polynomials

(VII) Examples
(1) cerfa.m : Function file for computing the complementary error

function—boundary condition (a) in (52) is used
(2) cerfb.m : Same as cerfa.m , but boundary condition (b) in (52) is

used
(3) matplot.m : Script file for plotting the characteristic curves of

Mathieu’s equation
(4) ce0.m : Function file for computing the Mathieu cosine-elliptic

function
(5) sineg.m : Script file for solving the sine-Gordon equation
(6) sgrhs.m : Function file for computing the right-hand side of the

sine-Gordon system
(7) schrod.m : Script file for computing the eigenvalues of the

Schrödinger equation
(8) orrsom.m : Script file for computing the eigenvalues of the Orr-

Sommerfeld equation

ACKNOWLEDGMENTS

We acknowledge the Department of Mathematics, Oregon State University,
where a large part of J. A. C. Weiderman’s work was completed with
financial support from an NSF grant. We would also like to thank the

A MATLAB Differentiation Matrix Suite • 517

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

Department of Computer Science, University of Utah, for their hospitality
during a sabbatical visit 1996–97, and in particular Frank Stenger for
many discussions on the sinc method. The Fortran computations mentioned
in Section 2 were performed on a Cray T90; time was provided through a
grant to SCR from the National Partnership for Advanced Computational
Infrastructure. Correspondence with Peter Acklam concerning the subtle-
ties of efficient coding in MATLAB was very helpful, and two anonymous
referees provided input that lead to substantial improvements in the
original paper.

REFERENCES

ABRAMOWITZ, M. AND STEGUN, I. E. 1964. Handbook of Mathematical Functions. National
Bureau of Standards, Washington, DC.

ALHARGAN, F. A. 1996. A complete method for the computations of Mathieu characteristic
numbers of integer orders. SIAM Rev. 38, 2, 239–255.

BALTENSPERGER, R. AND BERRUT, J. P. 1999. The errors in calculating the pseudospectral
differentiation matrices for Chebyshev-Gauss-Lobatto points. Comput. Math. Appl. 37, 1,
41–48.

BAYLISS, A., CLASS, A., AND MATKOWSKY, B. J. 1995. Roundoff error in computing derivatives
using the Chebyshev differentiation matrix. J. Comput. Phys. 116, 2 (Feb.), 380–383.

BERRUT, J. P. 1989. Barycentric formulae for cardinal (sinc-) interpolants. Numer. Math. 54,
703–718.

BOYD, J. P. 1984. The asymptotic coefficients of Hermite function series. J. Comput. Phys.
54, 382–410.

BOYD, J. P. 1989. Chebyshev and Fourier Spectral Methods. Springer-Verlag, Berlin,
Germany.

BREUER, K. S. AND EVERSON, R. M. 1992. On the errors incurred calculating derivatives using
Chebyshev polynomials. J. Comput. Phys. 99, 1 (Mar.), 56–67.

CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A., AND ZANG, T. A. 1988. Spectral Methods in
Fluid Dynamics. Springer-Verlag, Berlin, Germany.

COSTA, B. AND DON, W. S. 1999. Pseudopack 2000. See http://www.labma.ufrj.br/˜bcosta/
PseudoPack2000/ Main.html.

DON, W. S. AND SOLOMONOFF, A. 1995. Accuracy and speed in computing the Chebyshev
collocation derivative. SIAM J. Sci. Comput. 16, 6 (Nov.), 1253–1268.

DRAZIN, P. G. AND JOHNSON, R. S. 1989. Solitons: An Introduction. Cambridge University
Press, New York, NY.

DRAZIN, P. G. AND REID, W. H. 1981. Hydrodynamic Stability. Cambridge University Press,
New York, NY.

DUTT, A., GU, M., AND ROKHLIN, V. 1996. Fast algorithms for polynomial interpolation,
integration, and differentiation. SIAM J. Numer. Anal. 33, 5, 1689–1711.

EGGERT, N., JARRATT, M., AND LUND, J. 1987. Sinc function computation of the eigenvalues of
Sturm-Liouville problems. J. Comput. Phys. 69, 1 (Mar. 1), 209–229.

FLÜGGE, S. 1971. Practical Quantum Mechanics I. Springer-Verlag, Berlin, Germany.
FORNBERG, B. 1996. A Practical Guide to Pseudospectral Methods. Cambridge University

Press, New York, NY.
FUNARO, D. 1992. Polynomial Approximation of Differential Equations. Springer-Verlag,

Berlin, Germany.
FUNARO, D. 1993. Fortran routines for spectral methods. (available via anonymous FTP at

ftp.ian.pv.cnr.it in pub/splib
GOTTLIEB, D., HUSSAINI, M. Y., AND ORSZAG, S. A. 1984. Theory and applications of spectral

methods. In Spectral Methods for Partial Differential Equations, R. Voigt, D. Gottlieb, and
M. Hussaini, Eds. 1–54.

GREENGARD, L. 1991. Spectral integration and two-point boundary value problems. SIAM J.
Numer. Anal. 28, 4 (Aug.), 1071–1080.

518 • J. A. C. Weideman and S. C. Reddy

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

GREENGARD, L. AND ROKHLIN, V. 1991. On the numerical solution of two-point boundary value
problems. Comm. Pure Appl. Math. 44, 419–452.

HENRICI, P. 1982. Essentials of Numerical Analysis with Pocket Calculator Demonstrations.
John Wiley and Sons, Inc., New York, NY.

HENRICI, P. 1986. Applied and Computational Complex Analysis: Discrete Fourier Analysis—
Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Vol. 3. John
Wiley and Sons, Inc., New York, NY.

HUANG, W. AND SLOAN, D. M. 1992. The pseudospectral method for third-order differential
equations. SIAM J. Numer. Anal. 29, 6 (Dec.), 1626–1647.

HUANG, W. AND SLOAN, D. M. 1993. A new pseudospectral method with upwind features. IMA
J. Num. Anal. 13, 413–430.

HUANG, W. AND SLOAN, D. M. 1994. The pseudospectral method for solving differential
eigenvalue problems. J. Comput. Phys. 111, 2 (Apr.), 399–409.

ORSZAG, S. A. 1971. An accurate solution of the Orr-Sommerfeld equation. J. Fluid Mech. 50,
689–703.

PRYCE, J. D. 1993. Numerical Solution of Sturm-Liouville Problems. Monographs on
Numerical Analysis. Oxford University Press, Oxford, UK.

REDDY, S. C., SCHMID, P. J., BAGGETT, J. S., AND HENNINGSON, D. S. 1998. On stability of
streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365,
269–303.

SCHONFELDER, J. L. 1978. Chebyshev expansions for the error and related functions. Math.
Comput. 32, 1232–1240.

SCHOOMBIE, S. W. AND BOTHA, J. F. 1981. Error estimates for the solution of the radial
Schrödinger equation by the Rayleigh-Ritz finite element method. IMA J. Num. Anal. 1,
47–63.

SHAMPINE, L. F. AND REICHELT, M. W. 1997. The MATLAB ODE suite. SIAM J. Sci. Comput.
18, 1, 1–22.

SHARMA, A. 1972. Some poised and nonpoised problems of interpolation. SIAM Rev. 14,
129–151.

STENGER, F. 1993. Numerical Methods Based on Sinc and Analytic Functions.
Springer-Verlag, New York, NY.

STRANG, G. 1986. A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74, 2 (Apr.),
171–176.

TADMOR, E. 1986. The exponential accuracy of Fourier and Chebyshev differencing
methods. SIAM J. Numer. Anal. 23, 1 (Feb.), 1–10.

TANG, T. 1993. The Hermite spectral method for Gaussian-type functions. SIAM J. Sci.
Comput. 14, 3 (May), 594–606.

TANG, T. AND TRUMMER, M. R. 1996. Boundary layer resolving pseudospectral methods for
singular perturbation problems. SIAM J. Sci. Comput. 17, 2, 430–438.

THE MATHWORKS, INC. 1998. MATLAB 5.2.
TREFETHEN, L. N. 2000. Spectral Methods in MATLAB. SIAM, Philadelphia, PA.
WALEFFE, F. 1995. Hydrodynamic stability and turbulence: Beyond transients to a self-

sustaining process. Stud. Appl. Math. 95, 319–343.
WEIDEMAN, J. A. C. 1999. Spectral methods based on nonclassical orthogonal polynomials. In

Approximations and Computation of Orthogonal Polynomials, W. Gautschi, G. Golub, and G.
Opfer, Eds. Birkhäuser, Basel, 239–251.

WEIDEMAN, J. A. C. AND TREFETHEN, L. N. 1988. The eigenvalues of second-order spectral
differentiation matrices. SIAM J. Numer. Anal. 25, 1279–1298.

WELFERT, B. D. 1997. Generation of pseudospectral differentiation matrices I. SIAM J.
Numer. Anal. 34, 4, 1640–1657.

WIMP, J. 1984. Computation with Recurrence Relations. Pitman Publishing, Inc., Marshfield,
MA.

Received: August 1998; revised: March 1999 and February 2000; accepted: March 2000

A MATLAB Differentiation Matrix Suite • 519

ACM Transactions on Mathematical Software, Vol. 26, No. 4, December 2000.

