

King’s Research Portal

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Sadati, S., Zschaler, S., & Bergeles, C. (Accepted/In press). A Matlab-Internal DSL for Modelling Hybrid Rigid-
Continuum Robots with TMTDyn. In 6th Workshop on Model-Driven Robot Software Engineering (MORSE 2016)
IEEE.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 09. Aug. 2022

https://kclpure.kcl.ac.uk/portal/en/publications/a-matlabinternal-dsl-for-modelling-hybrid-rigidcontinuum-robots-with-tmtdyn(30dba284-8b89-4d80-b70e-b673614f746d).html
https://kclpure.kcl.ac.uk/portal/en/persons/hadi-sadati(fc69b707-2051-44ad-8f51-6631aebe4a94).html
https://kclpure.kcl.ac.uk/portal/en/persons/steffen-zschaler(4e7318ca-c142-4efd-8358-2cd9863a78fe).html
https://kclpure.kcl.ac.uk/portal/en/persons/christos-bergeles(9361b348-aa1e-45ee-b499-d971fde209e8).html
https://kclpure.kcl.ac.uk/portal/en/publications/a-matlabinternal-dsl-for-modelling-hybrid-rigidcontinuum-robots-with-tmtdyn(30dba284-8b89-4d80-b70e-b673614f746d).html
https://kclpure.kcl.ac.uk/portal/en/publications/a-matlabinternal-dsl-for-modelling-hybrid-rigidcontinuum-robots-with-tmtdyn(30dba284-8b89-4d80-b70e-b673614f746d).html

A Matlab-Internal DSL for Modelling Hybrid

Rigid–Continuum Robots with TMTDyn

S.M.Hadi Sadati

School of Biomedical Engineering

& Imaging Sciences

Faculty of Life Sciences & Medicine

King’s College London

Email: smh_sadati@kcl.ac.uk

Steffen Zschaler

Department of Informatics

Faculty of Natural

& Mathematical Sciences

King’s College London

Email: szschaler@acm.org

Christos Bergeles

School of Biomedical Engineering

& Imaging Sciences

Faculty of Life Sciences & Medicine

King’s College London

Email: christos.bergeles@kcl.ac.uk

Abstract—Hybrid rigid–continuum robot design addresses a
range of challenges associated with using soft robots in applica-
tion areas such as robotic surgery. Design of such robots poses
challenges beyond standard rigid-body robots. A fast, reliable,
accurate yet simple dynamic model is important to support
the design, analysis, and control of hybrid rigid–continuum
robots. In our previous work, we developed a modeling package
for hybrid rigid–continuum systems, named TMTDyn. In this
paper, we focus on how we developed an internal domain-specific
language (DSL) using Matlab’s OO capabilities and the concept
of fluent interfaces to improve validation, understandability, and
maintainability of the models constructed using TMTDyn. We
present the language implementation, and discuss some of the
benefits and challenges of building a Matlab-internal DSL.

I. INTRODUCTION

Mimicking highly dexterous and deformable biological bod-

ies has been a trending topic of multi-disciplinary research,

called soft robotics, using intrinsically soft materials in the

form of continuum robotic platforms [1]. Performing delicate

tasks [2], high manoeuvrability in unstructured and confined

environments [3], [4], [5], dexterous grasping [6], mimicking

biological tissue and organs [7], bio-inspired dynamic loco-

motion [8] such as crawling [9], terrestrial [10] or submerged

locomotion [11] are among the promises made by the research

in the field. Soft robots are appealing to investigate new

design and theoretical concepts such as variable stiffness

structures [12], morphological computation [13] and embodied

intelligence [14], to simplify the control and sensing tasks

through robot embodiment [15], [16].

However, compliance has disadvantages such as uncertain

deformations, limited control feedback, reduced control band-

width, stability issues, underdamped modes, and lack of pre-

cision in tasks involving working against external loads [17],

[18]. These result in modeling and control challenges for such

designs. There is an urgent need for unified frameworks to

transfer our well-established knowledge of dynamic system

analysis, path planning and control design for rigid-body

robots to soft robotic research [19], [20], [21], [22] and

to model hybrid rigid–soft-body systems [23], [24]. Such

frameworks should be as simple as possible and easy to use to

be widely accepted by the ever-growing soft-robotics research

community that gathers researchers from different disciplines

and backgrounds. They should provide fast computational

performance to be suitable for control and design problems

of soft systems with large state spaces. To be useful to

the community, such frameworks need to be integrable with

standard software platforms (e.g. C/C++, Matlab, ROS).

In [25], we introduce two new modelling approaches for

continuum rods and actuators, a general reduced-order model

(ROM), and a discretized model with absolute states and Euler-

Bernoulli beam segments (EBA). These models enable us to

perform more accurate simulation of continuum rod manipu-

lators as well as extending the solution to modelling 2D and

3D continuum geometries, which is missing in similar recent

research [21]. In [26], these models are further explained

and implemented in a Matlab software package—TMTDyn—

providing a new modelling and simulation tool for hybrid

rigid–continuum body systems1.

Our main goal is to make the tasks of deriving the Equation

of Motion (EOM) of hybrid rigid–continuum-body robots,

performing dynamic-system analysis, state observation, and

control-system design more accessible to the interdisciplinary

soft-robotics research community and people with limited

expertise in dynamic-system modelling. To this end, in this

paper we describe a Matlab-internal DSL (Domain Specific

Language) serving as a “front-end” for the TMTDyn package.

This DSL provides the following benefits:

1) Accessibility: the DSL offers an intuitive structure for

describing a robotic system that is automatically broken

down into the parts required by the TMTDyn package.

2) Early validation: the DSL can offer validation checks

at the time of description rather than the time of evalu-

ation, allowing error messages to be more focused and

simplifying debugging.

3) Maintainability: changes to the structure to be modelled

can be made easily and in a structured fashion; where the

plain TMTDyn package may require careful adjustment

of multiple parts of the code, all related changes are

closely linked in the DSL.

While DSLs for kinematics and dynamics in robotics have

been developed in the past [27], to the best of our knowledge,

1https://github.com/hadisdt/TMTDyn

https://github.com/hadisdt/TMTDyn

this is the first Matlab-internal DSL specifically targeting

hybrid rigid–soft-body systems.

In the remainder of this paper, we first show a motivating

example to develop such DSL for robot analysis in Sec. II.

We then give some background on concepts relevant to our

work in Sec. III before introducing our DSL in Sec. IV and

discussing our experience in developing this DSL in Sec. V.

II. MOTIVATING EXAMPLE

A dynamic system with inertial, compliant and constraining

elements can be expressed as a set of lumped (point) masses,

usually assumed at the system elements’ center of mass

(COM) locations, with moments of inertia which are connected

with springs / dampers and joints to the adjacent lumped

masses. For a continuum system, where usually a system

of differential equations describes the system mechanics, a

differential format of the lumped-system approach can be

employed. To this end, first, the free body diagram of the

load balance in a single differential element is drawn, then the

lumped-system equivalence of the system is assumed where

the parameters are differential terms.

The following principles guided the design of TMTDyn:

• The dynamic motion of a multi-link system is derived

where external/input loads, geometrical constraints, rope

elements, and soft impacts can be modelled.

• Each element in the system can be assumed as a combina-

tion of separable inertial, linear elastic, viscous damping

with power law, and external load elements, each with

3D elements.

• The system may have finite or infinite number of elements

but must have a finite number of states, forming an

Ordinary Differential Equation (ODE) to be integrated

numerically over time.

• External / input loads, elastic, damping, geometrical

constraint, soft contact, and directional elements (such as

string and membrane) are considered as joints between

two points on the system but with specific properties to

each element type2.

• 1D continuum elements can be modelled as a finite

number of interconnected Euler-Bernoulli elastic beam

elements (discretization), or as continuous beam elements

with predefined polynomial deformation shape functions

(ROM).

• 2D & 3D continuum elements can be modelled as wire

meshes in which edges are 1D Euler-Bernoulli beams and

connections are point masses.

• Hyperelasticity is not captured directly but can be added

by updating an element stiffness matrix in an intermediate

step during the numerical simulation.

System kinematics describes the geometric relations be-

tween the system elements in terms of rotation and translation.

TMTDyn derives equations describing the position vector and

2This will be discussed more later; our DSL provides dedicated keywords
to reduce cognitive load and improve validation.

TABLE I: The modeling parameters for the experiments with

a fabric sleeve around a single link pendulum (M: Measured,

C: Calibrated).

Sym. Value Metric Sym. Value Metric

m1[g] 40 M m1[g] 36 M
lm1

[mm] 270 M lcom1
[mm] 135 M

lm2x [mm] 350 M lm2y [mm] 0.8 M

lm2z [mm] 99 M lcx [mm] 38 M
lcz [mm] 30 M θh[deg] 85 M
E[KPa] 5 C ν 1 C
µh[Ns/m] 1e2 C µǫ[Ns/m] 1e2 C
µα[Nms/rad] 1e2 C

orientation of the local frame attached to each point of the

system over time.

As an example, consider a simple model of the dynamic

deformation of a fabric sleeve (as a 2D continuum medium)

worn on an elbow-like rigid-link pendulum (E2), modelled as a

complex hybrid system in our previous work. The results from

such a model can be useful for research on wearable sensors.

Capturing the dynamics of soft fabrics can provide many

benefits to textile-embedded human motion analysis systems,

such as those used for computer animation or rehabilitation

feedback [28], [29]. Table I presents the fabric and setup

dimensions and the simulation parameters. We will use this

example throughout this paper. Below, we first show its

specification in the current TMTDyn package and highlight

challenges of the current interface.

A. Pendulum with Fabric Sleeve Setup

A fabric sleeve, made of Jersey fabric, was cut and clamped

on a rigid-link pendulum, cut to shape out of ABS clear plastic

(Fig. 1). This shape is modelled on a standard sized human

arm, and used to simulate the effect of clothing movement

given wearer motion. The pendulum was fixed with a 1-DOF

(degree of freedom) joint at the top and passively swings. The

model was intended to capture the fabric dynamics due to the

pendulum’s free motion. Three magnetic trackers were used to

measure the link COM motion, and deformation of two points

on the fabric (s1, s2).

1) Modelling Assumptions & Program Input: The fabric

can be modelled as a membrane, which is a 2D tension-

only continuum geometry that does not withstand bending or

compression. This can be done by assuming the fabric as a net

of equally distributed masses with connecting linear springs;

a lumped-mass approximation of the fabric mesh. We have

used a similar method to model a spider web with TMTDyn

recently [30].

To model the system, we focus on the fabric model and

consider the link motion as a passive swinging pendulum from

an initial state based on the experimental recording. The fabric

deforms when clamped on the link. The overall geometry of

the clamped fabric is modelled with FreeCAD software as

a wireframe sketch with a 3 × 5 grid of nd = 15 nodes

and 22 edges as in Fig. 1.c. The CAD model is stored in

Initial Graphics Exchange Specification (IGES) format to be

a) b)

l
m2z

l
m2x

 l
cx

l
cz

Clamps

Arm pivot
joint

M
ag

n
et

ic
tr

ac
k
er

s

s
1

s
2

Mesh
nodes

c)

-0.35

-0.05

7
6

-0.3

y[m]

0

5

-0.05

x[m]

0
0.05

-0.25

0.05

8

134

-0.2z
[m

]

-0.15

9

3 12

-0.1
10

-0.05

2
11

0
14

16

15

-0.3

-0.1

-0.2

-0.20

z
[m

]

y[m]

-0.1

-0.1

x[m]

0.1 0

0

0.10.2
0.2

rigid pendulum

fabric mesh

Fig. 1: a) A fabric is cut to form a fabric sleeve around a single link pendulum. b) The link forms a passive pendulum with

clamped fabric sleeve. The link is fixed with a 1 DOF joint at the top and two magnetic trackers at nodes s1 & s2. Red

dots are equivalent to the CAD-file nodes. c) CAD-file wireframe of the sleeve in the clamped configuration (as shown by

mesh_import.m module) and the final animation of the simulation results.

imported into the TMTDyn model later. The fabric is clamped

at nodes 14 & 16 to the link at position [±lcx , 0, lcz] (see Fig.

1). Two sets of six constraints are defined to fully fix each of

these two nodes to the link.

The fabric mesh is modelled with lumped masses at the

CAD-file wireframe nodes that are interconnected with Euler–

Bernoulli (EB) beams. The system states are described with

absolute states of the masses where the frames defining the

DOF of each mass are defined w.r.t. the system reference

frame. The nodes are rigid lumped masses with an equally

distributed mass of m2/nd. Considering the fabric as a thin

plate, the following relation is used to derive the nodes’ second

moment of inertia as in Eq. 1. where ⊙ denotes inner prod-

uct. Links are considered as EB ribbons (beams) connecting

the pairs of point masses on the nodes, where the frames

defining the ends of a link are defined w.r.t. the local frame

of the connecting masses. The beams have linear elasticity

Kǫ = diag(ac[G,G,E]) and Kα = diag([E,E,G]).diag(J).
Here, J = [l3

m2y
lm2b

, lm2y
l3
m2b

, l3
m2y

lm2b
+ lm2y

l3
m2b

] is a

1×3 vector consisting of the EB ribbons’ cross-section second

moments of areas, where lm2b
= (lm2x

+ lm2z
)/2 is the mean

width of the ribbons in the x, z-axis directions.

To map the nodes’ motion to the beams deformation map,

the beams are defined in the local body frames (xaxis is not

defined) with an initial deformation to comply with the initial

geometry of the fabric, as imported from the ’cad.iges’

file, by setting init = nan3.

B. TMTDyn specification

The inputs for the TMTDyn package to model this setup are

shown in Listing 1. TMTDyn uses a number of Matlab structs

to capture input data. Specifically, the par struct is used to

capture parameters controlling how TMTDyn derives EOMs

and what it does with them. These are mostly boolean flags

selecting individual features of the library to be used. The

world struct allows specifying global parameters, such as the

3See the project wiki page at https://github.com/hadisdt/TMTDyn/wiki

gravity vector. The body and joint vectors contain structs for

modelling the robot geometry. Finally, the mesh struct allows

one CAD file to be loaded, describing a set of interconnected

lumped masses, which in this example is used to model the

fabric mesh.

C. Drawbacks of current specification interface

The current interface is not atypical of Matlab libraries.

The use of structs provides a flexible and efficient encoding

of the information needed to derive EOMs for hybrid rigid–

continuum robots, but it also creates a number of challenges:

1) Accessibility: Creating and understanding a model in the

TMTDyn format can be challenging. One has to have

a good understanding of how rotation and translation

are encoded in TMTDyn both for fixing the relationship

between different parts of the system and for describing

degrees of freedom that enable the robot to move. There

is concept overloading, where the same interface concept

is used to describe different things (e.g., ‘joint’ is an

overloaded concept that can describe an actual joint as

well as a geometric constraint between two masses and

different additional information must be provided for

each case).

2) Validation: The TMTDyn package implements a range

of checks to validate the model before computation

starts. While these checks will flag up errors, actually

identifying and correcting the cause of the problem is

not easy. This is compounded by the dynamic nature

of Matlab, allowing struct members to be declared on

the fly, simply by setting their values. As a result, a

small misspelling of one of the keywords will lead to

an invalid model, which can be very difficult to debug

as the problem is only discovered when attempting to

analyse the model. Matlab does not provide any built-in

support for analysis for this interface.

3) Maintainability: There are some complex interactions

between different parts of the specification. For example,

the description of DOF requires an entry in the joints

https://github.com/hadisdt/TMTDyn/wiki

I2 =
m2

12nd

⊙







l2
m2y

+ (
lm2z

5
)2 0 0

0 (
lm2x

3
)2 + (

lm2z

5
)2 0

0 0 (
lm2x

3
)2 + l2

m2y






, (1)

Listing 1: TMTDyn package input for the sleeve fabric models clamped to a rigid-link pendulum, structure-based user interface.

Model labels are as in Fig. 1.

1 p a r . d e r i v e = 0 ; % d e r i v e TMT EOM
2 p a r . de r ive_mex = 0 ; % use Mat lab codegen
3 p a r . simdyn = 2 ; % dynamic s i m u l a t i o n wi t h C−mex f i l e s
4 p a r . p o s t _ p r o c e s s = 1 ; % pos t−p r o c e s s u s i n g use r−s p e c i f i e d code
5 p a r . anim = 1 ; % a n i m a t e t h e r e s u l t s
6 syms E ν µǫ µα θh0

µh ; % s y m bo l i c v a r i a b l e d e f i n i t i o n f o r d e r i v a t i o n s
7 p a r . sym = [E , ν , µǫ , µα , θh0

, µh] ;
8 p a r . v a r = [5e3 , 1 , 1e2 , 1e2 , 1 . 4 8 , 1 e2] ; % v a l u e s f o r s y m b o l i c v a r i a b l e s i n s i m u l a t i o n as i n Tab le

1 .
9

10 wor ld . g = [0 ,0 , −g] ; % g r a v i t y
11
12 body (1) .m = m2 ; % pendulum r i g i d l i n k
13 body (1) . l_com = [0 , 0 , −lm1

] ; % pendulum COM
14
15 j o i n t (1) . second = 1 ;
16 j o i n t (1) . t r . r o t = [2 , i n f] ; % 1 DOF r o t a t i o n around y−a x i s
17 j o i n t (1) . dof . i n i t = θh0

; % pendulum i n i t i a l a n g l e
18 j o i n t (1) . dof . damp . v i s c = µh ; % pendulum j o i n t v i s c o u s damping
19
20 % I mp or t mesh geomet ry :
21 mesh . f i l e _ n a m e = ' cad . i g e s ' ; % CAD− f i l e name
22 mesh . t o l = 1e−3; % geomet ry i m p o r t t o l e r a n c e
23 mesh . t r . t r a n s = [0 , 0 , lcz] ; % mesh geomet ry i n i t i a l p o s i t i o n / o r i e n t a t i o n
24 mesh . t r . r o t = [2 ,θh0

] ;
25 mesh . body .m = m2 /nd ; % e q u a l l y d i s t r i b u t e d f a b r i c mass ove r t h e nodes
26 mesh . body . I = I2 ; % D e s c r i b i n g t h e mesh a b s o l u t e DOF wi t h mesh . j o i n t (1) :
27 mesh . j o i n t (1) . t r . t r a n s = [i n f , i n f , i n f] ; % masses a b s o l u t e s t a t e a s sys tem DOFs
28 mesh . j o i n t (1) . t r . r o t _ t y p e = ' n o n _ u n i t _ q u a t ' ; % o r i e n t a t i o n r e p r e s e n t a t i o n t y p e
29 mesh . j o i n t (1) . t r . r o t = [i n f , i n f , i n f , i n f] ; % non−u n i t q u a t e r n i o n
30 mesh . j o i n t (1) . dof (4) . i n i t = 1 ; % q u a t e r n i o n i n i t i a l v a l u e
31
32 % D e s c r i b i n g t h e mesh EB beam c o n n e c t i o n s wi t h mesh . j o i n t (2) :
33 mesh . j o i n t (2) . s p r i n g . c o e f f = [d i a g (Kǫ) , d i a g (Kα)] ; % l i n e a r e l a s t i c i t y o f beams
34 mesh . j o i n t (2) . s p r i n g . i n i t = nan ; % beam i n i t i a l s t a t e from sys tem geomet ry
35 mesh . j o i n t (2) . damp . v i s c = [µǫ , µα] ; % l i n e a r v i s c o u s damping
36 mesh . j o i n t (2) . damp . power = ν ; % damping power law
37
38 % F a b r i c c lamps :
39 j o i n t (2) . f i r s t = 1 ;
40 j o i n t (2) . second = 16 ; % clamp a t node 16 based on mesh f i l e p l o t
41 j o i n t (2) . t r . t r a n s = [lcx , 0 , −lcz] ;
42 j o i n t (2) . f i x e d = ones (1 , 3) ; % on l y t h e C a r t e s i a n l o c a t i o n i s c o n s t r a i n t (f r e e r e l a t i v e r o t a t i o n s)
43 j o i n t (3) . f i r s t = 1 ;
44 j o i n t (3) . second = 14 ; % clamp a t node 14 based on mesh f i l e p l o t
45 j o i n t (3) . t r . t r a n s = [−lcx , 0 , −lcz] ;
46 j o i n t (3) . f i x e d = ones (1 , 3) ;

vector to be coordinated with a number of entries in the

DOF vector (one for each inf transformation in the

joint specification). The connection is made based on

the index in both vectors. However, because for every

joint there may be more than one DOF entry, identifying

the correct DOF entry for a given joint entry is a non-

trivial task with a high cognitive load. This is particularly

problematic when making changes to the model, where

a small change to a joint can inadvertently cause the

two sets of index to become out of sync, leading to an

invalid model that is very difficult to debug.

III. BACKGROUND

In this section, we provide brief background on concepts

relevant to our work. Specifically, we briefly discuss domain-

specific languages (DSLs) and the differentiation of internal

and external DSLs, the idea of fluent interfaces for imple-

menting internal DSLs, and Matlab’s approach to object-

orientation as this will be required for the development of

a fluent language.

Domain-Specific Languages: are computer languages de-

veloped specifically to capture problems in a specific applica-

tion domain. DSLs allow domain experts to express their goals,

problems or requirements in terms they are familiar with,

while ensuring that these expressions can be meaningfully

interpreted (and often ‘executed’ in some form) by a computer.

This is useful because it encapsulates details required at the

level of abstraction at which a computational process actually

works and shields domain experts from them, leading to a

more effective division of labour in a cross-disciplinary group

of experts. For our purposes, we wish to hide the details of

how EOMs are computed and provide a language that is close

to how someone aiming to solve a particular problem with the

help of a novel robot thinks about the robot’s structure.

DSLs can be internal or external [31]. The former are

developed directly embedded in an existing ‘host’ language—

often a general-purpose language such as Ruby, Java, or C++.

The latter are developed as independent languages which are

subsequently interpreted or compiled for execution. Robot

design uses a rich set of existing languages and tools, most

notably Matlab and C++. Adding yet another standalone

language to this mix is a hard sell: existing languages and

tools come with a rich ecosystem of libraries and support

infrastructure, which would need to be adapted and translated

at great cost to be interoperable with a newly introduced

external DSL. Instead, an internal DSL embedded in Matlab

offers the right trade-offs for this problem, despite the well-

known limitations of internal DSLs.

Fluent interfaces: are the typical approach to API design

used in developing internal DSLs [31]. The key idea is to use

a set of interacting classes, whose methods can be chained

together into call sequences that read like keywords in a new

language. This is achieved by making each method return

either the object it was called on or a new object representing

a subordinate language scope. Carefully designing the names

of methods so that chains of method invocations can be read

like sentences increases the usability of the language.

Object-orientation in Matlab: Fluent interfaces rely on

using object-oriented concepts for API design to enable

method chaining. Matlab is originally not an object-oriented

language, but does provide object-oriented features. Some id-

iosyncrasies of the Matlab approach to object orientation must

be taken into account when implementing fluent interfaces: By

default, objects are passed by value in Matlab rather than by

reference. This makes developing methods that return a sub-

scope while updating the current scope difficult. Fortunately,

objects of classes that sub-class the handler class are always

passed by reference. Matlab also doesn’t support statements

that continue over multiple lines of text. Instead, an ellipsis

(. . .) must be placed at the end of each line. This will add

some syntactical clutter to our internal DSL.

IV. A MATLAB-INTERNAL DSL

Listing 2 shows our motivating example expressed in our

new DSL. The DSL is a Matlab-internal language built using

fluent interfaces [31]. For each new context (indicated in

the listing by levels of indentation), we have implemented

a separate builder class providing the keywords available to

the user at this level. The entire specification starts by using

tmtdyn(), which creates an instance of the root tmtdyn

builder class. From tmtdyn(), three keywords are available:

simulation() to specify simulation parameters, world()

to specify general world parameters4, and robot() to start

the definition of the robot structure. Finally, users use run()

to run the analysis based on the specification provided.

Rather than providing a detailed account of every line of

Listing 2 (many of which are hopefully self-explanatory), we

will focus on highlighting some of the key design principles

behind our DSL:

1) Using Matlab OO to support fluent interfaces;

2) Improving accessibility through specialised keywords;

3) Improving maintainability by co-locating the definition

of transformations and additional information about de-

grees of freedom; and

4) Improving validation using runtime checks for method

availability.

A. Using Matlab OO to support fluent interfaces

For each scope, we have defined a new Matlab class using

the Builder design pattern [32]. The tmtdyn().run()

method then extracts all information accumulated and in-

vokes the appropriate TMTDyn functions as configured in the

simulation() settings.

All builder classes follow the fluent-interface design pattern.

Methods return a reference to self (or a fresh sub-builder if

a new scope is opened) so that they can be easily chained

using dot notation. Method names have been carefully chosen

to achieve natural and intuitive readability of chained method

calls. A technical challenge is that, by default, all Matlab

objects are passed by value. As a result, a method like the

one below from class tmtdyn will not work as expected:

1 f u n c t i o n r o b o t = r o b o t (s e l f , name)
2 s e l f . t h e _ r o b o t = r o b o t _ b u i l d e r (s e l f , name) ;
3 r o b o t = s e l f . t h e _ r o b o t ;
4 end

In particular, the update to self will be lost as soon as the

robot() method returns. Fortunately, this counter-intuitive

behaviour can be easily fixed by ensuring all classes extend

the handle system class. Instances of handle are always

passed by reference.

The use of separate classes for different scopes restricts

the ‘keywords’ available at each point in a specification:

only the methods defined in the current builder class can be

invoked. Calling a method not defined in the current scope

will lead to an error when executing the Matlab program.

While this is an important feature for validation purposes

(see below), it can also cause problems. In particular, in a

naïve language implementation, users would have to explicitly

close each scope to obtain a reference to the containing

scope, for example by chaining an, otherwise meaningless,

4Currently, TMTDyn only supports defining the gravity vector

Listing 2: Motivating example expressed using our internal

DSL

1 tmtdyn () ...
2 . s i m u l a t i o n () ...
3 . v a r (E , 5 e5) ...
4 . v a r (ν , 1) ...
5 . v a r (µǫ , 1 e2) ...
6 . v a r (µα , 1 e2) ...
7 . v a r (θh0

, 1 . 4 8) ... % i n r a d i a n s
8 . v a r (µh , 1 e2) ...
9 . de r ive_eom () ...

10 . use_mex () ...
11 . o p t i m i z e _ c o d e () ...
12 . a n a l y s i s () ...
13 . dynamic_sim (' m _ f i l e ' , 0 , 1) ... %

s i m u l a t i o n f o r t =0:1 s
14 . p o s t _ p r o c e s s () ...
15 . a n i m a t e () ...
16 . r u n _ u s e r _ c o d e () ...
17 . wor ld () ...
18 . g ([0 , 0 , −g]) ...
19 . r o b o t (' f a b r i c _ p e n d u l u m ') ...
20 . body (' arm ') ...
21 . wi th_mass (m2) ...
22 . w i t h _ c e n t e r _ o f _ m a s s _ a t ([0 , 0 , −lm1

]) ...
23 . c o n n e c t e d () ...
24 . w i t h _ t r a n s f o r m a t i o n _ f r o m () ...
25 . r o t _ y () ...
26 . i n i t i a l _ v a l u e (θh0

) ...
27 . p a r a l l e l _ d a m p e r () ...
28 . v i s c o s i t y (µh) ...
29 . mesh (' f a b r i c ') ...
30 . f r o m _ f i l e (' exp / exp2 . i g e s ' , 1e−3)...
31 . w i t h _ t r a n s f o r m a t i o n () ...

32 . r o t _ y (θh0
) ...

33 . t r a n s _ z (−lcz) ...
34 . wi th_node (' f a b r i c ') ...
35 . wi th_mass (m2/nd) ...
36 . w i t h _ i n e r t i a (I2) ...
37 . c o n n e c t e d () ...
38 . w i t h _ t r a n s f o r m a t i o n _ f r o m () ...
39 . t r a n s l a t i o n ([i n f , i n f , i n f]) ...
40 . r o t _ n o n _ u n i t _ q u a t ([i n f , i n f , i n f ,

i n f]) ...
41 . dof (1) ...
42 . i n i t i a l _ v a l u e (1) ...
43 . w i th_edge (' f a b r i c _ l i n k s ') ...
44 . b e a m _ s t i f f n e s s () ...
45 . c o e f f i c i e n t ([d i a g (Kǫ) ' , d i a g (Kα) ']) ...
46 . i n i t i a l _ s t a t e _ f r o m _ c o n f i g u r a t i o n () ...
47 . beam_damping () ...
48 . v i s c o s i t y ([µǫ* ones (1 , 3) , µα* ones (1 , 3)

]) ...
49 . power (ν) ...
50 . c o n s t r a i n t (' c l i p _ c o n s t r a i n t _ 1 ') ...
51 . from_body (1) ...
52 . w i t h _ t r a n s f o r m a t i o n _ f r o m () ...
53 . t r a n s l a t i o n ([lcx , 0 , −lcz]) ...
54 . to_body (1 6) ...
55 . f i x e d _ d i r e c t i o n s ([1 , 1 , 1]) ...
56 . c o n s t r a i n t (' c l i p _ c o n s t r a i n t _ 2 ') ...
57 . from_body (1) ...
58 . w i t h _ t r a n s f o r m a t i o n _ f r o m () ...
59 . t r a n s l a t i o n ([−lcx , 0 , −lcz]) ...
60 . to_body (1 4) ...
61 . f i x e d _ d i r e c t i o n s ([1 , 1 , 1]) ...
62 . run () ;

.end() call. Each scope object contains a private property

called the_source, which references the containing scope

element, so end() would be implemented like this:

1 f u n c t i o n s o u r c e = end (s e l f)
2 s o u r c e = s e l f . t h e _ s o u r c e ;
3 end

Calling end() would then return the containing scope, so

that subsequent chained method calls would be able to use

the methods defined in that scope again. However, this would

create a lot of syntactic clutter, which is generally undesirable

in language design. Fortunately, Matlab provides basic meta-

programming capabilities, which enable us to intercept the

routing of method calls. We use this to implicitly close scopes

when a method from a containing scope is invoked. To do so,

each builder class overrides the subsref method, responsible

for method lookup:

1 f u n c t i o n v a r a r g o u t = s u b s r e f (s e l f , S)
2 t r y
3 [v a r a r g o u t { 1 : n a r g o u t }] = ...
4 b u i l t i n (' s u b s r e f ' , s e l f , S) ;
5 c a t c h
6 s e l f . onLeaveCon tex t () ;
7 [v a r a r g o u t { 1 : n a r g o u t }] = ...
8 b u i l t i n (' s u b s r e f ' , s e l f . t h e _ s o u r c e , S) ;
9 end

10 end

This first attempts to look up any requested method in the

current object. If the method is not found there, it is looked

up in the containing scope, which can be found via property

the_source. Here, onLeaveContext() is a method in

each builder class to do context-specific cleanup.

Automatically closing scopes like this makes the DSL more

concise, but can also lead to problems like the well-known

“dangling else problem” [33]: If the same keyword is available

in two nested scopes, which one does the user mean? In our

DSL, we avoid this problem by using distinct keywords where

similar concept are available in different nested scopes. For

example, both joints and general DOFs can have springs and

dampers attached. A joint_builder describes a connec-

tion between two frames and can have stiffness and damping

element to restrict the relative motion of these two frames in

the form of a parallel spring–damper. Any dof_builder,

defining a system state, can have a parallel spring–damper

system. To solve the problem of scopes we chose differ-

ent names for the methods that define these spring–damper

systems in each scope; both are translated to the .spring

and .damper sub-field of the struct-based interface. For

example, a spring element is named beam_stiffness in

the joint_builder class and parallel_spring in the

dof_builder class. Apart from resolving issues in scoping,

these names also better describe the purpose and functionality

of the elements in their respective context.

B. Improving accessibility through specialised keywords

In the structs-based approach, all transformations need to

be specified using axis index and value, vectors, quaternions

etc. This creates additional cognitive load when reading a

specification as the reader has to constantly back translate to

a more intuitive representation. In our DSL, we still offer

these ways of specifying transformations, but also provide

specialised operators for typical transformations, that allow for

better readability. For example, to specify a rotational degree

of freedom around the y-axis, one simply says .rot_y().

Similarly, to specify a fixed rotation around the same axis,

one simply provides a value parameter to the method call:

.rot_y(.5). Rotations and translations can be mixed ar-

bitrarily. The DSL will automatically generate an appropriate

number of tr records in the structs that are passed to the

underlying TMTDyn library at the end. This is done by

combining sequences of rotations (translations) and creating

new records whenever a translation is followed by a rotation.

Another such example is the specification of the initial

state of the mesh. Remember from Sect. II that we used an

initial value of nan to specify that the mesh should initially

be deformed to be connected to the arm according to the

overall configuration. This encoding clearly loses the intuition.

Instead, on Line 46 of Listing 2, we use a bespoke keyword

initial_state_from_configuration to express the

same thing in a more intuitive manner.

C. Improving maintainability

In the structs-based interface, the definition of what de-

grees of freedom exist (by using inf values for elements in

transformation vectors) and the specification of their properties

(damping, spring properties, etc) are contained in two separate

arrays, requiring users to track complicated links between

two sets of indexes. This makes changing the code very

error prone: adding or removing a degree of freedom in a

transformation somewhere in the structural specification means

tracking down the corresponding index in the dof vector and

updating it and all subsequent indexes accordingly. Mistakes

made in this process are very difficult to spot and correct; often

the only sensible way of fixing a problem is to reconstruct the

dof vector from scratch.

In our DSL, we choose a different approach: DOF details are

given directly in a sub-scope of a transformation-specification

that declares a new degree of freedom. For example, Lines 25–

28 in Listing 2 declare that the robot arm can be freely rotated

around the y-axis (DOF declaration, previously defined in

body.tr.rot) and immediately specify the behaviour of

the arm when rotated in this way (previously defined in dof

vector). As a result, maintainability is improved, because users

no longer need to maintain consistency between two separate

vector-index ranges. Instead, the correct vectors are generated

from the DSL specification.

D. Improving validation

Our fluent DSL improves validation in two ways:

1) Better use of Matlab checking mechanisms: Matlab is

a very dynamic language. Variables do not need to be

declared, but can be used straightaway. While this can

have many benefits, it also means that a small typo

in a name silently creates a new variable (or struct

member) rather than setting a required property. As a

result, TMTDyn will produce incorrect results, but this

can be very hard to spot and debug. In contrast, with

a fluent DSL only the methods explicitly defined in a

scope are available to be used. Any typos will be picked

up by Matlab when it tries to invoke the method and an

error will be thrown at this point, helping identify the

cause of the problem instantly. This can also be used to

ensure consistency constraints are satisfied. For example,

joints in a TMTDyn model can either connect two bodies

or can indicate where a body is connected to the base. In

the former case, two bodies must be specified, whereas

in the latter case only one body is required. We provide

the joint() keyword to define a standard joint while

using the connected_from() keyword for defining

joints that connect to the base. Both return a type of

joint builder, but only the one returned by joint()

has a method for defining the from_body(). For

connected_from(), the source body is automati-

cally set from the specification context.

2) Localised consistency checks: In the existing TMTDyn

library all consistency checks are only undertaken once

the complete struct has been defined. This makes it

difficult to provide error messages clearly locating the

source of a problem. Because every declaration is done

through a method call, we can distribute consistency

checks throughout the model creation. For example, we

are easily able to check the correct format of any vector

provided at the point that it is defined.

V. DISCUSSION

The DSL we have presented in this paper is the current

endpoint of a language-design journey. We originally started

our collaboration on a Matlab package for deriving EOMs for

primarily rigid-body robots. This package had already some

of the features of the current TMTDyn package, but had a

much more basic interface, where every aspect of the system

to be modelled was captured in a different vector, with no

meaningful naming conventions, validation, etc. We initially

experimented with an external DSL—written in Xtext [34]—

that allowed fairly comfortable high-level specification of

robot structures with clean syntax and good tool support, in-

cluding an amount of in-editor error checking and validation5.

While using an external DSL enabled very clean syntax and

some fairly powerful features, including the easy specification

of model variants, this external DSL struggled to be accepted

by users and we eventually gave it up. The main challenge

was that the external DSL required users to become familiar

5The last version of this DSL we explored can still be found at https:
//github.com/szschaler/RigidBodies/

https://github.com/szschaler/RigidBodies/
https://github.com/szschaler/RigidBodies/

with a separate tool set, which was perceived as a hurdle too

high. However, the design of that original DSL informed the

redesign of the current, struct-based interface of TMTDyn.

While this improves on the original interface, and in parts

already reads like a DSL, it leaves substantial challenges

to accessibility, maintainability, and validation as we have

discussed in this paper. This is also supported by informal

feedback received from some of the users of that interface,

who highlighted the difficulty of specifying basic relative

rotations (for which our DSL now has introduced dedicated

keywords) or complex geometry (which can now be imported

directly using IGES format). There was also feedback indicat-

ing that the struct-based interface requires substantial initial

training; we hope that the DSL-based approach has improved

this situation. With the current, Matlab-internal DSL, we feel

we are getting closer to a design sweet spot that balances reuse

of existing tooling infrastructure against the strengths of DSLs

in improving accessibility, maintainability, and validation.

An internal DSL in Matlab has many benefits, not least the

ability to reuse Matlab’s rich and flexible mathematical ex-

pression language. However, Matlab also makes it difficult in

some regards to create a seamless language experience from a

fluent interface. Most annoyingly, Matlab requires continuation

markers (. . .) to indicate a line of code that continues on the

next line of input. This can add substantial syntactic clutter.

Fluent interfaces are often praised for their discoverability [31]

as they integrate nicely with code-completion functionality

offered by modern development environments. Unfortunately,

discoverability is limited in a Matlab-based fluent interface

because the Matlab language is highly dynamic, making it

near impossible to predict statically what methods might be

invoked in a particular place. However, using fluent interfaces

at least provides a fail-fast capability that reports any mistyped

keywords as soon as the code is executed.

VI. CONCLUSIONS

We have presented a Matlab-based DSL enabling the speci-

fication of hybrid rigid–continuum robots so that EOMs for

these robots can be derived automatically by the TMTDyn

package. The new DSL improves accessibility, maintainability,

and validation of robot models using our approach. The

examples from this paper are available online6.

This is not the first DSL developed for the robotics domain.

In [27], Nordmann et al. provide a detailed survey of the

growing landscape of literature in this field. They also define

a set of dimensions enabling the classification of existing and

new DSLs. We classify our work in these terms as follows:

• Functional dimension. We are focusing on kinematics and

dynamics. While there are a good number of DSLs in this

space already, ours is the first supporting hybrid systems

and soft robots.

• Process stage. We cover a number of process stages as

listed by [27]:

6https://github.com/hadisdt/TMTDyn_hll

1) Capability building has been implemented: full

equations of motion are derived for any system

specified in our DSL;

2) Platform building is partially addressed through the

support for importing mesh definitions and IGES

files enabling modelling of platforms such as con-

tinuum arms or deformable 2D structures.

In future work, we will explore further useful features to be

added to the DSL. For example, more complex configuration

patterns could be incorporated as pre-defined keywords for

typical recurring model elements (spherical joints, for exam-

ple) that would further improve the efficiency of specifying

robot models in our Matlab package. We will apply this

new DSL to model further examples, which will help further

refine and improve the modelling capabilities offered. We also

plan to undertake an empirical study to evaluate and further

improve the usability of our DSL in terms of productivity and

reliability.

ACKNOWLEDGEMENTS

S.M.H. Sadati and C. Bergeles are funded by ERC Starting

Grant No. 714562.

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, 2015. [Online].
Available: http://dx.doi.org/10.1038/nature14543

[2] M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer,
P. Dasgupta, and A. Menciassi, “Soft Robotics Technologies to Address
Shortcomings in Today’s Minimally Invasive Surgery: The STIFF-FLOP
Approach,” Soft Robotics, vol. 1, no. 2, pp. 122–131, 2014. [Online].
Available: http://online.liebertpub.com/doi/abs/10.1089/soro.2014.0001

[3] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum Robots
for Medical Applications: A Survey,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1261–1280, Dec. 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7314984/

[4] M. Cianchetti and A. Menciassi, “Soft Robots in Surgery,” in
Soft Robotics: Trends, Applications and Challenges, 1st ed., ser.
Biosystems & Biorobotics. Springer International Publishing, 2017,
vol. 9, pp. 75–85. [Online]. Available: http://link.springer.com/10.1007/
978-3-319-46460-2_10

[5] I. D. Walker, H. Choset, and G. S. Chirikjian, “Snake-Like and
Continuum Robots,” in Springer Handbook of Robotics. Cham:
Springer International Publishing, 2016, pp. 481–498. [Online].
Available: http://link.springer.com/10.1007/978-3-319-32552-1_20

[6] R. K. Katzschmann, A. D. Marchese, and D. Rus, “Autonomous
Object Manipulation Using a Soft Planar Grasping Manipulator,” Soft

Robotics, vol. 2, no. 4, pp. 155–164, Dec. 2015. [Online]. Available:
http://online.liebertpub.com/doi/abs/10.1089/soro.2015.0013

[7] L. He, N. Herzig, S. d. Lusignan, and T. Nanayakkara, “Granular
Jamming Based Controllable Organ Design for Abdominal Palpation,”
in 2018 40th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), Jul. 2018, pp. 2154–2157.

[8] M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M.
Whitesides, J. A. Lewis, and R. J. Wood, “An integrated design
and fabrication strategy for entirely soft, autonomous robots,” Nature,
vol. 536, no. 7617, pp. 451–455, Aug. 2016. [Online]. Available:
http://www.nature.com/nature/journal/v536/n7617/full/nature19100.html

[9] S. I. Rich, R. J. Wood, and C. Majidi, “Untethered soft robotics,” Nature

Electronics, vol. 1, no. 2, p. 102, 2018.

[10] I. S. Godage, T. Nanayakkara, and D. G. Caldwell, “Locomotion with
continuum limbs,” IEEE International Conference on Intelligent Robots

and Systems, pp. 293–298, 2012.

https://github.com/hadisdt/TMTDyn_hll
http://dx.doi.org/10.1038/nature14543
http://online.liebertpub.com/doi/abs/10.1089/soro.2014.0001
http://ieeexplore.ieee.org/document/7314984/
http://link.springer.com/10.1007/978-3-319-46460-2_10
http://link.springer.com/10.1007/978-3-319-46460-2_10
http://link.springer.com/10.1007/978-3-319-32552-1_20
http://online.liebertpub.com/doi/abs/10.1089/soro.2015.0013
http://www.nature.com/nature/journal/v536/n7617/full/nature19100.html

[11] M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi,
“Bioinspired locomotion and grasping in water: the soft eight-arm
OCTOPUS robot,” Bioinspiration & Biomimetics, vol. 10, no. 3, p.
035003, May 2015. [Online]. Available: http://stacks.iop.org/1748-3190/
10/i=3/a=035003?key=crossref.7e7a029ec68cfb24c606d395db7d7611

[12] M. A. McEvoy and N. Correll, “Shape-Changing Materials Using
Variable Stiffness and Distributed Control,” Soft Robotics, Oct. 2018.
[Online]. Available: https://www.liebertpub.com/doi/abs/10.1089/soro.
2017.0147

[13] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, “Exploiting the
Dynamics of Soft Materials for Machine Learning,” Soft Robotics, Apr.
2018. [Online]. Available: https://www.liebertpub.com/doi/full/10.1089/
soro.2017.0075

[14] ——, “Information processing via physical soft body,” Scientific

Reports, vol. 5, p. 10487, May 2015. [Online]. Available: https:
//www.nature.com/articles/srep10487

[15] R. M. Füchslin, A. Dzyakanchuk, D. Flumini, H. Hauser, K. J.
Hunt, R. H. Luchsinger, B. Reller, S. Scheidegger, and R. Walker,
“Morphological Computation and Morphological Control: Steps Toward
a Formal Theory and Applications,” Artificial Life, vol. 19, no. 1, pp.
9–34, Nov. 2012. [Online]. Available: https://doi.org/10.1162/ARTL_a_
00079

[16] T. G. Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control
Strategies for Soft Robotic Manipulators: A Survey,” Soft Robotics,
vol. 5, no. 2, pp. 149–163, Apr. 2018. [Online]. Available:
https://www.liebertpub.com/doi/10.1089/soro.2017.0007

[17] L. Blanc, A. Delchambre, and P. Lambert, “Flexible Medical Devices:
Review of Controllable Stiffness Solutions,” Actuators, vol. 6, no. 3,
p. 23, Jul. 2017. [Online]. Available: http://www.mdpi.com/2076-0825/
6/3/23

[18] M. Cianchetti, T. Ranzani, G. Gerboni, I. De Falco, C. Laschi, and
A. Menciassi, “STIFF-FLOP surgical manipulator: Mechanical design
and experimental characterization of the single module,” in IEEE Inter-

national Conference on Intelligent Robots and Systems (IROS). Tokyo,
Japan: IEEE, 2013, pp. 3576–3581.

[19] A. D. Kapadia, I. D. Walker, D. M. Dawson, and E. Tatlicioglu,
“A Model-based Sliding Mode Controller for Extensible Continuum
Robots,” in Proceedings of the 9th WSEAS International Conference on

Signal Processing, Robotics and Automation, ser. ISPRA’10. Stevens
Point, Wisconsin, USA: World Scientific and Engineering Academy
and Society (WSEAS), 2010, pp. 113–120. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1807817.1807840

[20] F. Renda and L. Seneviratne, “A Geometric and Unified Approach for
Modeling Soft-Rigid Multi-Body Systems with Lumped and Distributed
Degrees of Freedom,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), May 2018, pp. 1567–1574.
[21] F. Renda, F. Boyer, J. Dias, and L. Seneviratne, “Discrete Cosserat Ap-

proach for Multisection Soft Manipulator Dynamics,” IEEE Transactions

on Robotics, pp. 1–16, 2018.

[22] C. Della Santina, D. Lakatos, A. Bicchi, and A. Albu-Schäffer, “Using
Nonlinear Normal Modes for Execution of Efficient Cyclic Motions in
Soft Robots,” arXiv:1806.08389 [cs], Jun. 2018, arXiv: 1806.08389.
[Online]. Available: http://arxiv.org/abs/1806.08389

[23] S. Sadati, L. Sullivan, I. Walker, K. Althoefer, and
T. Nanayakkara, “Three-Dimensional-Printable Thermoactive Helical
Interface With Decentralized Morphological Stiffness Control for
Continuum Manipulators,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 2283–2290, Jul. 2018. [Online]. Available:
http://ieeexplore.ieee.org/document/8288847/

[24] L. Paternò, G. Tortora, and A. Menciassi, “Hybrid Soft–Rigid Actuators
for Minimally Invasive Surgery,” Soft Robotics, Oct. 2018. [Online].
Available: https://www.liebertpub.com/doi/full/10.1089/soro.2017.0140

[25] S. Sadati, A. Shiva, L. Renson, C. Rucker, K. Althoefer, T. Nanayakkara,
C. Bergeles, H. Hauser, and I. Walker, “Reduced Order vs. Discretized
Lumped System Models with Absolute and Relative States for Con-
tinuum Manipulators,” in Robotics: Science and Systems, Freiburg,
Germany, 2019, p. 10.

[26] S. Sadati, S. E. Naghibi, A. Shiva, M. Brendan, L. Renson, M. Howard,
C. Rucker, K. Althoefer, T. Nanayakkara, S. Zschaler, C. Bergeles,
H. Hauser, and I. D. Walker, “TMTDyn: A Matlab package for
modeling and control of hybrid rigid–continuum robots based on
discretized lumped system and reduced order models,” (under review).
[Online]. Available: https://bit.ly/2XvcgiI

[27] A. Nordmann, N. Hochgeschwende, D. Wigand, and S. Wrede, “A
survey on domain-specific modeling and languages in robotics,” Journal

of Software Engineering for Robotics, vol. 7, no. 1, pp. 75–99, Jul. 2016.
[28] B. Michael and M. Howard, “Activity recognition with wearable

sensors on loose clothing,” PLOS ONE, vol. 12, no. 10, p. e0184642,
Oct. 2017. [Online]. Available: https://journals.plos.org/plosone/article?
id=10.1371/journal.pone.0184642

[29] ——, “Gait Reconstruction From Motion Artefact Corrupted Fabric-
Embedded Sensors,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1918–1924, Jul. 2018.

[30] S. M. H. Sadati and T. Williams, “Toward Computing with
Spider Webs: Computational Setup Realization,” in Biomimetic

and Biohybrid Systems, ser. Lecture Notes in Computer Science.
Springer, Cham, Jul. 2018, pp. 391–402. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-319-95972-6_43

[31] M. Fowler and R. Parsons, Domain-Specific Languages. Addison-
Wesley Professional, 2010.

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, ser. Professional Com-
puting Series. Addison Wesley Professional, 1995.

[33] A. F. Kaupe, “A note on the dangling else in ALGOL 60,” Commun.

ACM, vol. 6, no. 8, pp. 460–462, Aug. 1963. [Online]. Available:
http://doi.acm.org/10.1145/366707.367585

[34] S. Efftinge, J. Köhnlein, and S. Zarnekow, “Xtext language development
framework,” http://www.eclipse.org/Xtext/, last visited 06 June, 2018.

http://stacks.iop.org/1748-3190/10/i=3/a=035003?key=crossref.7e7a029ec68cfb24c606d395db7d7611
http://stacks.iop.org/1748-3190/10/i=3/a=035003?key=crossref.7e7a029ec68cfb24c606d395db7d7611
https://www.liebertpub.com/doi/abs/10.1089/soro.2017.0147
https://www.liebertpub.com/doi/abs/10.1089/soro.2017.0147
https://www.liebertpub.com/doi/full/10.1089/soro.2017.0075
https://www.liebertpub.com/doi/full/10.1089/soro.2017.0075
https://www.nature.com/articles/srep10487
https://www.nature.com/articles/srep10487
https://doi.org/10.1162/ARTL_a_00079
https://doi.org/10.1162/ARTL_a_00079
https://www.liebertpub.com/doi/10.1089/soro.2017.0007
http://www.mdpi.com/2076-0825/6/3/23
http://www.mdpi.com/2076-0825/6/3/23
http://dl.acm.org/citation.cfm?id=1807817.1807840
http://arxiv.org/abs/1806.08389
http://ieeexplore.ieee.org/document/8288847/
https://www.liebertpub.com/doi/full/10.1089/soro.2017.0140
https://bit.ly/2XvcgiI
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184642
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184642
http://link.springer.com/chapter/10.1007/978-3-319-95972-6_43
http://doi.acm.org/10.1145/366707.367585
http://www.eclipse.org/Xtext/

	Introduction
	Motivating Example
	Pendulum with Fabric Sleeve Setup
	Modelling Assumptions & Program Input

	TMTDyn specification
	Drawbacks of current specification interface

	Background
	A Matlab-internal DSL
	Using Matlab OO to support fluent interfaces
	Improving accessibility through specialised keywords
	Improving maintainability
	Improving validation

	Discussion
	Conclusions
	References

