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Abstract

This paper is devoted to the development of an innovative Matlab software, dedi-

cated to the numerical analysis of two-dimensional elliptic problems, by means of the

probabilistic approach. This approach combines features of the Monte Carlo random

walk method with discretization and approximation techniques, typical for meshless

methods. It allows for determination of an approximate solution of elliptic equations

at the specified point (or group of points), without a necessity to generate large sys-

tem of equations for the entire problem domain. While the procedure is simple and

fast, the final solution may suffer from both stochastic and discretization errors. The

attached Matlab software is based on several original author’s concepts. It permits the

use of arbitrarily irregular clouds of nodes, non-homogeneous right-hand side func-

tions, mixed type of boundary conditions as well as variable material coefficients

(of anisotropic materials). The paper is illustrated with results of analysis of selected

elliptic problems, obtained by means of this software.

Keywords Monte Carlo method · Random walk technique · Meshless methods ·
Elliptic problems · Finite difference method · Implementation in Matlab

1 Introduction

The large class of mechanical and civil engineering stationary (time-independent)

problems may be modeled by means of the partial differential equations of elliptic

type (e.g., torsional deflection of a prismatic bar, stationary heat flow, distribution of
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electrical potential or filtration through porous media). Two different types of math-

ematical models may be investigated, depending on the problem variables’ nature,

namely deterministic and probabilistic ones. In deterministic models, a particular

state (either continuous or discrete) is uniquely assigned to input data and no element

of randomness occurs. In other words, all input parameters are represented by their

mean values and one fixed data set corresponds to one unique solution. In most cases,

the specified numerical solution approach has to be incorporated, as the analytical

solution is limited to problems with simple geometry and uniformly distributed sub-

jected load. Therefore, such problems ascribed by deterministic models are usually

analyzed by means of the standard numerical approaches (hard computing methods,

[22]), which are based upon appropriate domain discretization (partition into nodes

and/or elements) and unknown function approximation, built upon those geometrical

quantities (e.g., finite element method (FEM, [37]), finite difference method (FDM,

[31, 32]), meshless methods (MM, [29, 31, 33, 35, 45]), or boundary element method

(BEM)).

On the other hand, the probabilistic class of mathematical models specifies gov-

erning differential equations that combine one or more random variables (with

assigned probability distribution function) with other non-random variables. Regard-

less of the applied solution approach, taking advantage from the problem’s stochastic

nature, one deals with the analysis of multiple standard problems, varying with input

parameters’ values. These auxiliary problems are usually investigated by means of

the standard aforementioned deterministic methods. As a consequence, the entire

family of solutions is obtained, out of which the optimal solution is selected, using

appropriate averaging criteria. Among the most commonly applied probabilistic

approaches (soft computing methods), which rule the principles of a random selection

of the input data and averaging techniques, one may distinguish the following:

– Fuzzy sets (FS, [36]) analysis, in which the fuzzy models are applied to selec-

tion of input data, with assigned membership function, characterizing data

randomness.

– Genetic and evolutionary algorithms (GA and EA, [24]), inspired by the bio-

logical evolution and dedicated to non-gradient analysis of multidimensional

optimization problems.

– Artificial neural networks (ANN, [39]), inspired by biological nervous sys-

tem, tailored for analysis of variety of problems by means of a-priori prepared

patterns.

– Monte Carlo stochastic approach, in which series of simulations (trials), rep-

resenting the analyzed problem, with randomly selected input values, are per-

formed. Among these trials, the specified number of properly defined successes

is achieved. The ratio between the number of success trials to the number of

all trials, scaled by dimensional quantity (e.g., area, function value) allows for

the estimation of the unknown solution, providing the number of trials is large

enough.

The first mature formulation as well as technical applications of Monte Carlo (MC)

concept were derived by S. Ulam and J. von Neumann in their pioneering research

[1, 21], devoted to the neutron transport in an atomic bomb framework. It was
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followed by a variety of works delivered by many other researchers, who applied this

simple concept to analysis of algebraic and differential problems, like eigenvalues

estimation [3], solution of linear systems of equations [2, 4, 5], numerical integration

in multidimensional spaces [13, 26] as well as numerical solution of Laplace differ-

ential equations [6, 7, 9, 15, 17, 20, 23, 27, 28, 30], at the selected internal point of

the problem domain. This application is discussed in more detailed manner in this

paper.

The main idea is based upon the classic MC concept combined with the so-called

fixed random walk (RW, [6, 7, 9, 42, 53]) technique. This technique allows for a ran-

dom selection of the path consisting of the horizontal and vertical walks. Those walks

are performed on the regular grid of lines, starting from the given internal point (thus

forming a Markov chain). This path has to be terminated at the domain boundary and

the entire procedure is repeated as long as all random walks are completed. Therefore,

the net of connections is generated, linking the selected internal point of interest with

all points located on the boundary. The total sum of all numbers of boundary indica-

tions (boundary hits), scaled by their boundary values, estimates the solution of the

Laplace equation at this particular point. It was proved [7], that this estimation corre-

sponds to the finite difference solution, obtained on the same regular grid of nodes.

This simple solution approach was further developed by many investigators in subse-

quent years. Apart from the standard RW, in which both step size and move directions

are fixed and preassigned, two main random walk types were derived, namely semi

floating random walk (step size is fixed, though the move direction is not limited, [47,

52]) and full floating random walk (step size is not preassigned and changes at each

step, whereas the move direction is not limited, [8, 42, 47, 52]). Moreover, a contin-

uous random walk procedure, minimizing the solution error has been proposed [17]

along with the self-adaptive, grid-free algorithm, with improved solution smoothness

and its application to diffusion equations [20]. State-of-the-art as well as recent devel-

opments (up to date) may be found in [23]. Further reading may include the following

subjects: effective reduction of random walk steps’ number [28], weighted version of

MC method [30], MC treatment of complex 2D geometries [38]. Within the last sev-

eral years, investigated were, for instance, reduction of MC error by new probabilistic

sampling [41], development of stochastic limit theory and governing equations of

continuous time random walk [44, 50], improvement of the simulation efficiency for

radiative transfer problems with strongly frequency-dependent opacities [51], as well

as the analysis of heat conduction equations [52].

In this research, special emphasis is laid upon the development of the meshless

random walk technique, combined with the Monte Carlo approach, towards anal-

ysis of wider class of 2D elliptic problems. While the original MC/RW technique

(Section 2) may be applied to Laplace equation with regular grid of lines, essen-

tial boundary conditions as well as homogeneous right-hand side function only, the

proposed meshless version of MC/RW technique allows for analysis of 2D elliptic

equation in more general form, including the following:

– More complex geometries, discretized by means of arbitrarily irregular clouds

of nodes, without any imposed structure (therefore neither mesh size or move

directions are fixed)

Numerical Algorithms (2020) 83:565–591 567



– Non-homogeneous right-hand side functions (typical for equations of Poisson

type)

– Mixed type of boundary conditions (both essential and natural types may be

taken into the account)

– Non-constant material coefficients

Similar stochastic concepts were successfully applied in variety of methods based

upon the reduction of the solution of multidimensional problems for partial dif-

ferential equations to integration of stochastic equations [43, 49]. Especially, the

well-known Feynman-Kac formula [14, 34] is worth mentioning. It may be inter-

preted as a method for evaluating functional integrals of a specified continuous form.

However, its practical application is based upon the stochastic approximation of these

integrals [49], which incorporates both Monte Carlo approach and random walk

procedure. Although the entire numerical procedure is similar to the one presented

here, the mathematical formulation of the considered problem is more complex,

since it requires determination of the explicit closed form solution formula. More-

over, the right-hand side function of the differential equation has to be integrated,

which limits the number of potential applications to cases with smooth solution only

(i.e., no concentrated loads). The meshless MC/RW, developed in [53] and imple-

mented in Matlab package in this paper, uses the original deterministic differential

equation as well as the computational framework which is typical for element-

based and difference methods (i.e., existence of nodes (though with no imposed

structure), approximation schemes, solution smoothing). However, those aspects are

incorporated into the pure stochastic approach.

All innovative ideas and concepts, proposed and introduced in [53], are briefly

presented and discussed here (Section 3). They are based upon the incorporation

of selected discretization and approximation schemes, typical for meshless meth-

ods (MM). Especially, features of the moving weighted least squares approximation

(MWLS) are applied in order to reformulate classic random walk principles. How-

ever, the main part of this paper is devoted to the presentation of the innovative

Matlab software (Section 4), based upon those concepts. It may work in several var-

ious modes, for instance, it allows either for a determination of an approximated

solution of an elliptic equation at selected point for fixed number of random walks, or

for an examination of a solution convergence at selected point(s) with number of ran-

dom walks increasing. Finally, determination of the solution at all nodes is possible,

with additional smoothing of rough MC results. Moreover, for illustration purposes,

full graphical interface has been designed, including visualization of construction of

single random walks, solution convergence of N-type (i.e., with respect to the num-

ber of random walks), graphs of the final MC/RW solution and its first derivatives as

well as the simplified FD versus MC/RW error analysis [40]. By default, a user works

with rectangular, circular or triangular domain and irregular meshes/clouds of nodes,

though any other discretization may be loaded from the disc file. Several examples

of clouds of nodes corresponding to more complex geometries are attached as well.

Results of their analysis, conducted by means of the attached Matlab software, are

presented in Section 5. The paper is briefly concluded and directions of future work

are mentioned.
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2 StandardMonte Carlo randomwalk technique

The following 2D Laplace equation is considered as follows:

∂2F

∂x2
+

∂2F

∂y2
= 0 in � (1)

with essential boundary conditions as follows:

F = F̄ (x, y) on ∂� (2)

where � = {(x, y)} ∈ R2 is the problem domain, ∂�—its boundary, F =
F (x, y) : � → R

(

C2
)

is the unknown scalar function, with given values F̄ (x, y)

at every boundary point. Let us assume that the grid �h ⊂ � of mutually per-

pendicular, nx horizontal and ny vertical lines, was generated, forming a mesh of

n = nx × ny regularly spaced points (Fig. 1). Function values Fi,j at those points

(i = 1, ..., nx, j = 1, ..., ny) constitute the set of unknowns, while values at all

boundary nodes (located on ∂�h ⊂ ∂�) are known. Regardless of whether the solu-

tion is sought at all grid points or at selected point (or group of points) only, it is

required to combine all known (boundary) and unknown (internal) function values

into one system of algebraic equations, providing the standard deterministic method

is applied. Its generation and solution may be time-consuming, especially in case

when �h is very dense (number of nodes n → ∞ or mesh size h → 0, e.g., due to

global mesh refinement).

Instead, the following stochastic procedure may be adopted, in case only one func-

tion value (e.g., at domain center point) is to be determined in relatively fast manner

and with reasonable accuracy:

1. Initiate the subsequent random walk starting from the given internal node
(

xi, yj

)

, randomly selecting one of the fourth equally possible direction senses

Fig. 1 Regular mesh of points with configuration of nodes (FD star) for a random walk and FD schemes
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(north, east, south, or west). Move to the closest neighboring node, located in

the selected direction ((i, j + 1), (i − 1, j), (i, j − 1) or (i + 1, j), respectively

(Fig. 1)), and repeat the random walk from this new node as long as the first

boundary node (xr , ys) is reached. Evaluate the function value at this boundary

node as follows:

F̄r,s = F̄ (xr , ys) (3)

and modify the number of its indications N
(e)
r,s by one (we initialize all N

(e)
r,s with

zeros).

2. Return to the node of interest
(

xi, yj

)

. Repeat the entire procedure described

above until all N random walks are performed (N is the assumed total number

of random walks).

3. Evaluate estimation of function value Fi,j , according to the Monte Carlo concept

(in which reaching the boundary node is treated as a success trial), by means of

the simple formula as follows:

Fi,j ≈
1

N

n
(e)
b

∑

r,s

F̄r,sN
(e)
r,s (4)

where n
(e)
b denotes the number of all boundary nodes with essential boundary

conditions (i.e., all boundary nodes in this case).

It has been proved [7] that this stochastic formula (4) corresponds to the finite

difference solution, obtained for the considered regular mesh of nodes �h, namely
{

Fi,j =
1

4
Fi,j+1 +

1

4
Fi−1,j +

1

4
Fi,j−1 +

1

4
Fi+1,j f or (i, j) ∈ �h

Fr,s = F̄r,s f or (r, s) ∈ ∂�h

(5)

The first equation in (5) is the difference equation, generated by means of the nodal

collocation technique [46]. It is based upon the standard difference (FD) opera-

tor of Laplace type [31], replacing the differential operator from (1) at the central

node (i, j) (Fig. 1), forming a configuration of five nodes, regularly spaced, called

a FD star or stencil [31, 45]. It should be noted here that the difference coefficients

assigned to four external nodal values (all equal to
1

4
) are the same as the probabil-

ities of direction sense selection. On the other hand, a function value at the central

node in (5) corresponds to the expected value defining the result of a random walk

in (4), i.e., Fi,j ∼ Ei,j =
n

(e)
b

∑

r,s

F̄r,sP
r,s
i,j . Here, P

r,s
i,j is the probability of random walk

termination at boundary point (r, s), starting from the internal point (i, j). The num-

ber of random walks N has the crucial influence on the accuracy of estimation (4).

Generally, the Monte Carlo solution error may be upper-bounded by the non-linear

function of N , namely

e = ||Fi,j − F̄i,j || <
1

√
N

(6)

However, this formula is valid for the simplest cases only, in which there is no curse

of dimensionality (i.e., mesh size h has no influence on the solution estimation). In
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more complex problems, discussion on the optimal selection of N (as well as the

relation between N and h) may be found in [20, 23, 28].

Although the standard Monte Carlo method with random walk technique

(MC/RW) exhibits numerous advantages, for instance, an existence of an explicit for-

mula for an approximate solution, algorithm simplicity or low computational cost,

serious drawbacks may be noted either. First of all, the formula (4) works for reg-

ular meshes only, with equal and fixed mesh spacing (neither curvilinear edges nor

local mesh refinements may be introduced). Moreover, it may be applied to Laplace

equations only (no heterogeneity in right-hand side function), with constant mate-

rial coefficients. Furthermore, boundary conditions (2) may be of essential type only.

This paper, accompanied with the attached Matlab software, aims to extend the stan-

dard MC/RW method towards issues listed above. However, several aspects of the

approach have to be reformulated and extended, including the following:

– Selection of potential random walk directions for the case of arbitrarily irregular

cloud of nodes

– Determination of probabilities of a next move, depending on the equation type

– Significant reconstruction of the final MC/RW formula, taking all information

concerning the analyzed problem into account in a stochastic manner

3 Meshless Monte Carlo randomwalk technique

The following 2D elliptic equation is considered as follows:

∂2F

∂x2
+ a (x, y)

∂2F

∂y2
= f (x, y) in � (7)

with essential (Dirichlet)

F = F̄ (x, y) on ∂�e (8)

and natural (Neumann) boundary conditions

∂F

∂n
= q̄ (x, y) on ∂�n (9)

subjected to boundary parts ∂�e, ∂�n (∂� = ∂�e ∪ ∂�n). f ∈ C0 is a scalar right-

hand side function, a = a (x, y) ∈ C0 is a scalar positive material function, whereas

q̄ ∈ C1 is a given scalar flux function, applied in the direction represented by the

versor n (x, y) =
[

nx (x, y) , ny (x, y)
]t

, normal to the boundary ∂�n. This equa-

tion may be a representative mathematical model for a stationary heat flow analysis

[19]. Problem domain � may have complex geometry, therefore arbitrarily irregular

cloud of nodes �h = {(xi, yi) , i = 1, ..., n} ∈ R2, without any a-priori imposed

structure (like regular mesh, finite element [11], or mapping restrictions [16], has to

be considered. Such discretization format is typical for the wide group of compu-

tational solution approaches, namely meshless methods (MM, [29, 31, 33, 35, 45]).
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Moreover, in MM, the unknown function is approximated in terms of nodes only,

by means of various techniques, like partition of unity or moving weighted least

squares (MWLS, [18, 25, 31, 45, 46]). The MWLS approximation has been suc-

cessfully applied in one of the oldest meshless methods, meshless finite difference

method (MFDM, [10, 11, 16, 31, 45, 46]). The advantages of using MFDM and other

MM may be observed in problems with large deformations, concentrated loads, mov-

ing boundary, crack development, elastic-plastic boundary, contact of deformable

bodies, fluid free surface as well as in h-adaptive approach [12] since nodes may

be shifted, added, or removed without any larger influence on nodes topology. In

this research, we incorporate selected useful features of both the MWLS technique

and the MFDM in order to extend the standard MC/RW technique towards effective

stochastic analysis of (7) with (8) and (9).

3.1 Selection of randomwalk directions

A random selection of four mutually perpendicular direction senses, with equal prob-

abilities, which is natural for regular mesh, does not hold in case of irregular clouds

of nodes. New direction selection criteria have to be carried out, taking advantage

from the nodes’ irregular distribution. Let us consider the determination problem of

potential walk directions, starting from the central node (i) towards selected nodes

(j (i)), (j (i) = 1, 2, ..., m), as it is depicted in Fig. 2a. Both the total number of

nodes (m + 1) in such configuration (denoted as the MFD star, or stencil) and their

distribution should be assumed in such a manner that the resulting approximation

scheme remains non-singular and non-ill-conditioned. Thus, m is usually larger than

it is required from the order of differential operator (e.g., six nodes for 2D Laplace

equation). The following criteria may be applied here as follows:

1. The simplest criterion is based upon the distance from (i) to (j) nodes only

(Fig. 2b). Though very simple, it does not guarantee the well-conditioning.

Therefore, the optimal nodes selection techniques are based rather on the

topology information than distance between nodes only.

2. In 2D cross criterion [10, 16, 31, 45] (Fig. 2c), domain is divided into four zones.

Each of four semi-axes is assigned to one of these zones. A specified number

of nodes (usually 2), closest to the central node (point) is taken from every zone

separately; thus, the number of nodes in the MFD star is always constant.

3. In more complex Voronoi neighbous criterion [31, 45] (Fig. 2d), only those nodes

are selected to the MFD star which are the Voronoi neighbors (product of domain

partitioning into a set of Voronoi polygons; each polygon is assigned to a par-

ticular node). Voronoi neighbors are those polygons which have common side

(strong neighbors) or common vertex (weak neighbors). It should be stressed

that the Voronoi neighbors criterion does not assure the same number of nodes in

every star. Moreover, the number of nodes is variable and may not be sufficient

to build full FD operator of the specified order. However, such star may be com-

pleted by additional nodes to preserve the required approximation order as well

as good conditioning (e.g., the last selected ninth node in Fig. 2d, with attached

dashed ray, results from the assumed distance criterion).
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Fig. 2 Cloud of nodes (a) and three main criteria for star selection (b, c, d)

Regardless of the applied selection technique, the final MFD star is ascribed by

the topological (m + 1) × 4 matrix S, namely

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0(i) x0 = xi y0 = yi

1 1(i) x1 y1

2 2(i) x2 y2

... ... ... ...

j j (i) xj yj

... ... ... ...

m m(i) xm ym

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

containing local and global nodes’ numbers as well as (x, y) coordinates of selected

nodes corresponding to potential move directions, respectively, sorted in ascending

order.

3.2 Determination of direction selection probabilities

Once m potential directions are assigned to the node (i), a procedure continues

with the random selection of one of those directions. Respectively to the stan-

dard MC/RW method, probabilities of direction selection may be derived from the

meshless FD operator, replacing the left-hand side differential operator from (7).
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Moreover, the selection probability P
(i)
j , attached to the j (i)th star node/direction,

should be proportional to the distance from node (i) to node (j (i)). Therefore,

appropriate approximation scheme has to be determined. We use here the MWLS

technique, which is based upon the Taylor series expansion of all star nodal values

with respect to the central star node (i). In such a manner, resulting approximation

coefficients have simple interpretation as local derivatives, up to the assumed pth

order. Fundamentals and general remarks concerning the MWLS technique may be

found in [18, 25, 31], whereas details of its application for the second-order dif-

ferential equations are given in [45, 46, 48]. Comparison of MWLS (with singular

weight functions) and MLS (with non-singular weight functions) techniques with

other meshless approximation methods may be found in [29, 31, 33, 35]. Here, we

focus on the final approximation formula (for p = 2) as follows:

DF = Mq, M = (PT W2P)−1PT W2 (11)

which may be obtained after the minimization of the appropriate weighted error func-

tional. P is the (m+1)×6 matrix of local interpolants hx(j) = xj −xi , hy(j) = yj −yi

(defined in S), W is a diagonal (m+1)× (m+1) weight matrix, M is the 6× (m+1)

difference coefficients matrix, DF is the 6×1 approximation coefficients vector, and

q is the (m + 1) × 1 vector of degrees of freedom:

P =

⎡

⎢

⎢

⎢

⎣

1 hx(0) hy(0) 0.5h2
x(0) hx(1)hy(0) 0.5h2

y(0)

1 hx(1) hy(1) 0.5h2
x(1) hx(1)hy(1) 0.5h2

y(1)

... ... ... ... ... ...

1 hx(m) hy(m) 0.5h2
x(m) hx(m)hy(m) 0.5h2

y(m)

⎤

⎥

⎥

⎥

⎦

(12)

W =

⎡

⎢

⎢

⎣

ω0 0 ... 0

0 ω1 ... 0

... ... ... ...

0 0 ... ωm

⎤

⎥

⎥

⎦

, DF =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F

F ′
x

F ′
y

F ′′
xx

F ′′
xy

F ′′
yy

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F0(i)

F1(i)

F2(i)

F3(i)

...

Fm(i)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

in which the singular weights are applied as follows:

ωj =
1

(√

h2
x(j) + h2

y(j)

)3

+ ǫ

, j = 0, 1, 2, ..., m (14)

with ǫ being a relatively small though non-zero (up to the machine precision) num-

ber (e.g., ǫ ∼ 10−15 for double precision real numbers). Therefore, interpolation is

forced at the central star node, in spite of using larger number of nodes than it is

required from the assumed second-order differential operator order in (7) and the

first-order differential operator in (9). Once M is determined, values of all derivatives

included in DF as well as value of any arbitrary differential operators (up to the sec-
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ond order) may be composed. By means of collocation technique at subsequent nodes

with unknown function values, appropriate difference equations may be generated as

follows:
mi
∑

j=0

(

M4,j + a (xi, yi) M6,j

)

Fj (i) = f (xi, yi) (15)

Fk = F̄ (xk, yk) (16)
mb
∑

j=0

(

nx (xl, yl)M2,j + ny (xl, yl) M3,j

)

Fj (l) = q̄ (xl, yl) (17)

for nodes (i) ∈ �, (k) ∈ ∂�e, (l) ∈ ∂�n, respectively. Here, mi is the number

of directions for the internal node, whereas mb is the number of directions for the

boundary node.

By rearranging terms in (15) and (17), one obtains the selection probabilities P
(i)
j

and P
(l)
j of each j th potential direction of the subsequent random walk (Fig. 3),

initialized from the ith or lth node, respectively

P
(i)
j = −

M4,j + a (xi, yi) M6,j

M4,i + a (xi, yi) M6,i

, j = 1, ..., mi (18)

P
(l)
j = −

nx (xl, yl) M2,j + ny (xl, yl) M3,j

nx (xl, yl) M2,l + ny (xl, yl) M3,l

, j = 1, ..., mb (19)

Fig. 3 Meshless random walk technique for an irregular cloud of nodes
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It should be noted that

mi
∑

j=1

P
(i)
j =

mb
∑

j=1

P
(l)
j = 1, which is the probability of a certain

event. In other words, the probability of selection of any other direction, not included

within the FD star assigned to the ith or lth node, equals zero.

3.3 ModifiedMonte Carlo randomwalk formula

The principles of a random walk technique remain unmodified. We start from the

specified arbitrary node located inside the domain (marked as a green circle in

Fig. 3) or on its boundary with natural boundary conditions, where the function F is

unknown (marked as a blue circle in Fig. 3). We proceed until the first node located

on the boundary with essential boundary conditions is reached (marked as red cir-

cle in Fig. 3). Eventually, the final closed-form formula for the stochastic estimation

of unknown function value Fj , by means of the meshless Monte Carlo method with

random walk technique is as follows:

Fj ≈
1

N

⎛

⎜

⎝

n
(e)
b

∑

k

F̄kN
(e)
k +

n
(n)
b

∑

l

q̄l

nx(l)M
(l)
2,l + ny(l)M

(l)
3,l

N
(n)
l +

+
ni

∑

i

fi

M
(i)
4,i + aiM

(i)
6,i

N
(i)
i

)

, j ∈
[

1, ..., ni + n
(n)
b

]

(20)

It takes into account series of all N random walks as well as all additional right-

hand side components from (15) and (17). Here, F̄k = F̄ (xk, yk), q̄l = q̄ (xl, yl),

fi = f (xi, yi), ai = a (xi, yi), nx(l) = nx (xl, yl) and ny(l) = ny (xl, yl). Vari-

ous difference coefficients M correspond to both internal (M(i)) as well as boundary

nodes (M(l)). Moreover, n
(e)
b is the number of boundary nodes located on ∂�e, n

(n)
b

is the number of boundary nodes located on ∂�n, ni is the number of internal nodes

(n
(e)
b + n

(n)
b + ni = n), whereas N

(e)
k , N

(n)
l , and N

(i)
i are the numbers (counters) of

kth, lth, and ith nodes’ random walk indications, respectively. It should be empha-

sized here that the simplified error estimation formula (6) no longer holds, since the

final MC solution (20) depends on both the number of random walks N and the phys-

ical discretization parameter(s) h, included in difference coefficients M . Therefore,

new combined stochastic-deterministic-type estimation ε has to be defined, in the

following general form as follows:

e = ||Fj − F̄j || < ε (N, h) (21)

Determination of ε as well as the optimal relation between N and h, will be

considered in the following author’s papers.
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4 AMatlab software-general information

All original author’s concepts and ideas, briefly presented in previous section,

were successfully implemented in Matlab. The software is available from Netlib

(http://www.netlib.org/numeralgo/) as the na52 package. It has been prepared and

tested in Matlab R2014b; however, it does not contain any unusual functions and

syntax that might cause any problems while using other Matlab versions. A user is

supplied with one archive file (meshlessMCRW 2D.zip) which contains several script

and function files. It has to be downloaded and extracted to the destination folder.

The following files are included:

– MAIN.m file - the main script file which should be opened in Matlab editor and

run—all input parameters are defined there

– analyt sol.m - the function file, which formulates the true (analytical) solution

F = F (x, y), and its derivatives

– fun a.m - the function file, which formulates the material function a = a (x, y),

– fun f.m - the function file, which evaluates the values of the right-hand side

function f = f (x, y)

– fun q.m - the function file, which evaluates the values of the flux function q̄ =
q̄ (x, y)

– mesh generation.m - the function file, which is responsible for generation of

regular / irregular (randomly distorted) cloud of nodes, for three basic domain

types, or it loads an appropriate disc text file, with mesh data

– star select.m - the function file, which selects the nodes into FD star at any

arbitrary point, by means of two available criteria: distance and cross ones,

– MWLS appro.m - the function file, which evaluates the difference coefficients

matrix M by means of the MWLS technique

– meshless FDM solution.m - the function file, which solves the elliptic equation

by means of the meshless FDM

– plot domain mesh.m - the script file, which plots the domain contours and/or

cloud of nodes

Besides the MAIN.M and per chance fun a.m files, there is no need to modify any

other files. All input parameters, included in the MAIN.m file, constitute the subse-

quent components of the DATA class object. Its all fields (variables) are listed and

briefly described below:

– mode - algorithm type (1, one selected point with an unknown value, fixed n and

N ; 2, one selected point with an unknown value, fixed n, convergence analysis

with respect to N ; 3, full analysis at all nodes, for fixed N)

– domain type - built-in shapes: #1, rectangle; #2, circle; #3, equilateral triangle

and shapes saved in disc files (#4, railroad rail; #5, rectangle with two voids and

curved edge,#6 - horseshoe-shaped domain), Fig. 4

– x lb,y lb - coordinates of the left bottom corner of rectangle and triangle

– a,b - sides of a rectangle

– c - a side of a triangle

– r - a radius of a circle
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Fig. 4 Available domain shapes with exemplary meshless discretizations

– x 0,y 0 - coordinates of the circle center point

– n x,n y,n h - nodes densities for rectangular and triangular meshes (n x,n y) as

well as for a circular mesh (n h)

– dist amp - distortion amplitude for irregular clouds generated from regular

meshes (∈ [0, 0.5], 0 stands for perfectly regular mesh)

– N - fixed number of random walks (for modes = 1,3)

– N init - initial number of random walks for convergence analysis (mode = 2)

– dN - random walks increment number (for mode = 2)

– adap N - number of steps in convergence analysis with respect to the number of

random walks (for mode = 2)

– sol type - analytical solution type:

#1: F̄ (x, y) = x + y (Laplace equation, heterogeneous essential boundary con-

ditions, exact FD result);

#2: F̄ (x, y) = x2 + y2, (Poisson equation, heterogeneous essential boundary

conditions, exact FD result);

#3: F̄ (x, y) =
x + y

x2 + y2
, (Laplace equation, heterogeneous essential boundary

conditions, discontinuous solution);

#4: F̄ (x, y) = x(x − a)y(y − b), (Poisson equation, homogeneous essential

boundary conditions (for rectangle only));

#5: F̄ (x, y) = x4 + y4, (Poisson equation, heterogeneous boundary conditions,

large gradients);
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#6: F̄ (x, y) = ab sin(xπ/a + yπ/b); (Poisson equation, heterogeneous bound-

ary conditions, smooth gradients);

#7: F̄ (x, y) = exp(−α(x2 + (y − βx)2), (Poisson equation, heterogeneous

boundary conditions, large gradients),

in which a, b are the rectangle sides, while α and β are implicitly set to 5 and

9/10, respectively.

– m int - number of nodes in the FD stars inside the domain (mi)

– m bound - number of nodes in the FD stars in the boundary nodes with natural

boundary conditions (mb)

– ord bound - approximation order for boundary approximation schemes (1 or 2)

– bound cond - boundary conditions code; all boundary parts are with essential

boundary conditions, if equal 1; if equal 2–selected parts have natural boundary

conditions applied: two vertical rectangle sides, the upper half of a circle as well

as the horizontal triangle side

– select crit - star selection criterion: 1, distance; 2, cross (Voronoi neighbors cri-

terion is not implemented yet, due to the requirement of the constrained Voronoi

partitioning—work is in progress),

– m smooth - number of nodes in the FD stars for smoothing purposes (for mode

= 3),

– g smooth - value of a smoothing parameter g (for mode = 3)

– rw graph - graphical tracking of random walk paths (0, off; 1, on) (for mode = 1)

– sol graphs - graphs of the final solutions (0, off; 1, on) (for mode = 3)

– MC sol - meshless Monte Carlo with random walk analysis (0, off; 1, on)

– mesh plot - domain and mesh plotting (0, off; 1, on)

– font weight - font weight of figures’ labels (“normal,” “bold”)

– marker size - marker size of plots’ points

– font size - font size of figures’ labels

– graph view - graph view style (2, 2D with colorbars displayed; 3, 3D)

Three main modes are described below in more detailed manner.

4.1 Determination of the approximated solution at the selected

point, for the fixed number of randomwalks (mode=1)

The simplest program mode allows for the determination of one unknown function

value approximation at the selected point of the domain (or its boundary, assuming

the natural conditions are subjected). Coordinates of this point (variables x0,y0) may

be user-defined or default values may be proceeded. In case a regular mesh is applied

(dist amp = 0), this given point may not belong to the mesh itself. In that case, solu-

tion is obtained at the mesh node, closest to that point. However, in case of irregular

cloud (dist amp > 0), the closest internal node is moved to this point (total number

of nodes remains unchanged) or additional boundary node is added (the total num-

ber of nodes is increased by 1). The simplified flow chart of this algorithm mode is

shown in Fig. 5. Graphical interface produces a mesh/cloud of nodes scheme, with

the selected point indicated (Matlab’s Fig. 1). Moreover, text results are displayed in

Matlab’s Command Window. Additionally, if a user sets variable rw graph equal to
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Fig. 5 The flow chart for mode = 1

one, all random walk paths are graphically displayed in Matlab’s Fig. 1, in a form of

a simple animation.

4.2 Determination of the approximated solution at the selected

point, for the series of randomwalks’ numbers (mode=2)

The second mode may be treated as a generalization of the first one. Instead of

one fixed number of random walks (N), a user defines an initial number of random
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walks (variable N init), increment (variable dN) as well as number of steps (vari-

able adap N). Compared to the flow chart for the first mode, one additional loop

appears, which selects the subsequent numbers of random walks out of the series

N init, N init+dN, N init+2dN, ..., N init+ adap N ·dN . However, this slightly

modified flow chart has been omitted here. As the final result, the convergence graph

is generated (Matlab’s Fig. 2), in which three types of solution error are calculated

for each number of random walks, namely

– The Monte Carlo exact solution error, |FMC − F̄ |, which varies for each number

of random walks

– The Monte Carlo estimated solution error, in which the exact solution F̄ is

replaced by the FDM solution FFDM, namely |FMC − F̄ | ≈ |FMC − FFDM|, and

which varies for each number of random walks

– The FDM solution error, |FFDM − F̄ |, which is fixed for the entire convergence

analysis

Moreover, both reference solutions, F̄ and FFDM, are fixed, since the deterministic

methods do not rely on the number of random walks. Additionally, the theoretical

convergence curve is plotted for the sake of comparison, according to (6).

4.3 Determination of the approximated solution at all nodes, for the fixed

number of randomwalks (mode=3)

Though the proposed approach is tailored to estimate the solution of elliptic equations

at selected points, it would be interesting to apply the final formula (20) to all nodes

with unknown function value, located inside the domain and on its boundary part

with natural boundary conditions. In that case, one has to deal with different levels of

the rough Monte Carlo solution accuracy, which may change from node to node, due

to stochastic error, even though the same number of random walks is used each time.

Therefore, the appropriate smoothing may be required to keep the reasonable balance

in the solution error. It may be performed by means of the MWLS approximation (11)

as well. However, this time the larger number of nodes in FD stars as well as non-

singular weight functions [31] should be used, with built-in smoothing parameter g

as follows:

ω2
j =

(

h2
x(j) + h2

y(j) +
g4

h2
x(j) + h2

y(j) + g2 + ǫ

)−3

(22)

Parameter g is a positive scalar number, selected arbitrarily, by observing the smooth-

ing effect or adaptively, in order to minimize the local curvature of the approximating

function. Setting g = 0 in (22) leads to singular weights (14) (no smoothing applied).

It should be stressed here, that this additional a-posteriori MWLS approximation may

be used for recovery of nodal values of the solution derivatives Fx and Fy as well.

The complete flow chart of this algorithm mode is presented in Fig. 6. In addition to

the standard text results displayed in Matlab’s Command Window, a user is supplied

with graphs of three solutions, namely true solution, FD solution, and Monte Carlo
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Fig. 6 The flow chart for mode = 3

solution as well as the differences of the above (Matlab’s Fig. 3). Moreover, com-

parison of solutions’ first derivatives is presented in Matlab’s Fig. 4. All graphs are

plotted using the additional background plotting mesh of Delaunay triangles [16, 31].
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5 Numerical experiments and software testing

A variety of tests were executed in order to examine both the proposed approach and

the attached Matlab software. Selected results are presented and briefly discussed.

Illustrations of mode = 1 with rw graph set to 1 are shown in Fig. 7, for various

domain types with mixed boundary conditions as well as for various analytical solu-

tions. N = 100 random walks were applied, on very coarse irregular clouds, with

small numbers of nodes. All other input parameters have their default values. The

following points with unknown solution were examined, namely: (1.3333, 1.3333)

(Fig. 7a), (0.5, 0.86603), (Fig. 7b), (1, 1.1547) (Fig. 7c), and (0, 2.5) (Fig. 7d). The

final distribution of all non-zero indication numbers (N
(e)
k , N

(n)
l , and N

(i)
i ) as well as

non-zero nodal values (F̄k , q̄l , and fi), assigned to appropriate nodes (thus giving the

non-zero components to the final MC formula), is shown in subsequent graphs. It may

be observed how many times the particular node has been reached during the random

walk process. Moreover, the exemplary random walk path is plotted (Fig. 7a). The

final rough solution estimation as well as its true and numerical errors are presented

in the graphs’ labels.

The following tests concern the solution convergence with respect to the number

of random walks (mode = 2). The series of 50 increasing numbers of walks, starting

from N = 50 and with increment dN = 200, were performed. The same domain and

Fig. 7 Results of random walks for mode = 1
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solution types were applied as for mode = 1. Results (solution errors) are presented in

Fig. 8. The MC solution error is perfectly upper-bounded by its a-priori estimation,

corresponding to (6), for the simplest case only (Fig. 8a), whereas it is no longer

valid for other cases. Nevertheless, in each case, very good agreement between the

FD and MC/RW solutions may be observed, even though there may be enormous true

errors (Fig. 8b), caused by a very coarse discretization, when compared to the exact

solution.

Eventually, the full analysis of the elliptic (7) was carried out. Non-constant mate-

rial function a(x, y) =
1

1 + cos2
(

(x + y)
π

3

) was set. The meshless Monte Carlo

random walk stochastic formula (20) was applied to every unknown function value

at all nodes located inside the domain and on its boundary part with natural boundary

conditions (if applicable). Additional a-posteriori solution smoothing was performed,

according to (22). Graphs of the final solution, the solution errors as well as its first

derivatives are presented in Figs. 9 and 10 (circular domain, with n = 128 nodes

irregularly scattered, with N = 500 and solution #2). For this solution type, FD anal-

ysis produces the exact solution, within the second polynomial order assumed, up to

the machine precision. However, the Monte Carlo solution approach yields a rough

solution estimation only, as it is highly influenced by a stochastic error. Solution and

Fig. 8 Results of solution convergence for mode = 2
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Fig. 9 Full analysis of elliptic equation—comparison of solutions and solution errors (circular domain #2,

solution #2—mode = 3)

its derivatives comparisons for the additional domain types (#5 and #6), with data

available from attached disc files, are presented in Figs. 11 and 12 (domain #5, rect-

angle with two voids and curved edge, with n = 442 nodes irregularly scattered, with

N = 1000 and solution #6) as well as in Figs. 13 and 14 (domain #6, of a horse-

shoe shape, with n = 263 nodes irregularly scattered, with N = 1000 and solution

Fig. 10 Full analysis of elliptic equation - comparison of the solution’s first derivatives (circular domain

#2, solution #2—mode = 3
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#6). All corresponding graphs show very good agreement between the exact solution,

the FDM solution, as well as the meshless MC solution. In fact, the following corol-

lary may be formulated: the MC solution is the stochastic approximation of the FDM

solution, whereas the FDM solution is the deterministic approximation of the exact

solution.

Clouds of nodes generated for the first three domain types (#1, #2, and #3) may

be refined in an arbitrary manner by means of the mesh generator, being a part of the

presented software (the function file mesh generation.m). However, the last three,

more complex domain types have fixed discretization, loaded from the external disc

files, as the generation of discretization for more complex shapes would require more

sophisticated software. Furthermore, it should be mentioned that the presented Mat-

lab software may be extended by a user in many potential directions, without any

difficulties. The modification of the material function may be done in fun a.m func-

tion file. New exact solution requires adding new conditional branch (formulae for

solution and its derivatives in explicit manner) in analyt sol.m. In case the analyt-

ical solution is not known, appropriate boundary conditions as well as right-hand

side functions may be formulated in analyt sol.m, fun f.m and fun q.m. A brand new

domain shape may be defined in mesh generation.m or another text file with mesh

data should be prepared (number of nodes, nodes coordinates and boundary codes

(0, internal node; 1, boundary node with essential boundary conditions; 2, boundary

node with essential boundary conditions) as well as the number of Delaunay triangles

and a list of all triangles’ vertices—for potential graphical purposes only).

Fig. 11 Full analysis of elliptic equation - comparison of solutions and solution errors (rectangle with two

voids and curved edge—domain #5, solution #6—mode = 3
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Fig. 12 Full analysis of elliptic equation—comparison of the solution first derivatives (rectangle with two

voids and curved edge—domain #5, solution #6—mode = 3

Fig. 13 Full analysis of elliptic equation—comparison of solutions and solution errors (horseshoe-shaped

domain #6, solution #6—mode = 3
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Fig. 14 Full analysis of elliptic equation—comparison of the solution first derivatives (horseshoe-shaped

domain #6, solution #6—mode = 3

6 Final remarks

This research focuses on the modified, meshless Monte Carlo method with random

walk (MC/RW) solution approach. It is based on the appropriate discretization and

approximation techniques, typical for meshless modeling of boundary value prob-

lems. When compared to the standard MC/RW method, it allows for the analysis of

wider class of elliptic problems, with non-homogeneous right-hand side functions,

variable material coefficients as well as mixed (essential and natural) boundary con-

ditions. Moreover, arbitrarily irregular meshes and unstructured clouds of nodes may

be applied. Therefore, analysis of more complex domain shapes is possible.

The proposed approach is based upon the random generation of indications net

(random walk technique) starting from the fixed point (node), at which solution esti-

mation is required. Selection probabilities of subsequent walk directions depend on

the meshless nodes configuration (equivalent to the FD star) as well as the difference

coefficients corresponding to differential operators, obtained by means of the moving

weighted least squares approximation. Finally, the Monte Carlo concept is incorpo-

rated, according to which the random walk terminates at boundary node located on

boundary part with essential boundary conditions (with known solution). Therefore,

fast and reasonably accurate solution estimation at node is possible. Moreover, the

generation of a large system of equations, combining all unknown function values

may be omitted. Full analysis (convenient for potential parallelization) of all internal

and boundary nodes with unknown solution has been discussed. Additional post-

processing includes the recovering of solution’s derivatives as well as the alternative

smoothing of nodal results, which leads to significant reduction of a stochastic error.

Numerical Algorithms (2020) 83:565–591588



All those original author’s concepts have been implemented in the attached Mat-

lab software. It may work in three various modes, namely 1. determination of an

approximated solution at specified node, 2. solution convergence analysis on the set

of random walks’ numbers, 3. determination of an approximated solution at all nodes.

Graphical interface allows for visualization of the random walk structure and indi-

cations’ numbers (mode=1), convergence graph (mode=2) as well as graphs of the

true, FD and Monte Carlo solutions, corresponding errors and solution’s derivatives

(mode=3). Six types of domain geometries as well as seven types of the analytical

solutions are included. Algorithm’s flow charts and the selected results of software

usage are presented.

Further research includes, for instance, application of the meshless Monte Carlo

random walk solution approach to analysis of the 3D elliptic equations as well as non-

linear and non-stationary thermo-mechanical problems. In case the reference problem

has to be solved multiple times (e.g., within an incremental-iterative procedure or

an implicit time integration scheme), series of random walks forming indications

net, are performed only once. Afterwards, the meshless Monte Carlo formula (20)

is applied to each solution increment, allowing for the significant reduction of the

computational effort.
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