A MATRIX APPROACH FOR GENERAL HIGHER ORDER LINEAR RECURRENCES

EMRAH KILIC ${ }^{1}$ AND PANTELIMON STĂNICĂ ${ }^{2}$

Abstract

We consider k sequences of generalized order- k linear recurrences with arbitrary initial conditions and coefficients, and we give their generalized Binet formulas and generating functions. We also obtain a new matrix method to derive explicit formulas for the sums of terms of the k sequences. Further, some relationships between determinants of certain Hessenberg matrices and the terms of these sequences are obtained.

1. Introduction

Linear recurrences have played (and will most certainly play) an important role in many areas of mathematics. A lot of authors have studied various properties of linear recurrences (such as the well-known Fibonacci and Pell sequences).

In [2], Er defined k linear recurring sequences of order at most k as shown: for $n>0$ and $1 \leq i \leq k$,

$$
g_{n}^{i}=\sum_{j=1}^{k} g_{n-j}^{i}
$$

with initial conditions

$$
g_{n}^{i}=\left\{\begin{array}{cc}
1 & \text { if } n=1-i, \\
0 & \text { otherwise },
\end{array} \text { for } 1-k \leq n \leq 0\right.
$$

where g_{n}^{i} is the n term of the i th generalized order- k Fibonacci sequence.
More generally, in [6], the author gave the generalized order- k Fibonacci and Pell (F-P) sequence as follows: for $m \geq 0, n>0$ and $1 \leq i \leq k$

$$
u_{n}^{i}=2^{m} u_{n-1}^{i}+u_{n-2}^{i}+\cdots+u_{n-k}^{i}
$$

with initial conditions

$$
u_{n}^{i}=\left\{\begin{array}{c}
1 \\
\text { if } n=1-i, \\
0
\end{array} \quad \text { otherwise }, \quad \text { for } 1-k \leq n \leq 0\right.
$$

where u_{n}^{i} is the n term of the i th generalized order- k F-P sequence.
When $m=0$, the generalized order- k F-P sequence $\left\{u_{n}^{i}\right\}$ is reduced to the generalized order- k Fibonacci sequence $\left\{g_{n}^{i}\right\}$. Also when $m=1$, the generalized order- k F-P sequence is reduced to the generalized order- k Pell sequence $\left\{P_{n}^{i}\right\}$ (for more details see [5]).

Define k sequences of k-th order linear recurrence relation $\left\{f_{n}^{i}\right\}$ as shown, for $n>0$ and $1 \leq i \leq k$

$$
\begin{equation*}
f_{n}^{i}=c_{1} f_{n-1}^{i}+c_{2} f_{n-2}^{i}+\cdots+c_{k} f_{n-k}^{i} \tag{1.1}
\end{equation*}
$$

[^0]with initial conditions
\[

f_{n}^{i}=\left\{$$
\begin{array}{cc}
1 & \text { if } n=1-i, \\
0 & \text { otherwise, }
\end{array}
$$ \quad for 1-k \leq n \leq 0\right.
\]

where $c_{j}, 1 \leq j \leq k$, are real constant coefficients, and f_{n}^{i} is the nth term of the i th sequence. When $k=2, c_{1}=c_{2}=1$, respectively, $k=c_{1}=2, c_{2}=1$ the sequence $\left\{f_{n}^{2}\right\}$ is reduced to the Fibonacci sequence $\left\{F_{n}\right\}$, respectively, the Pell sequence $\left\{P_{n}\right\}$.

Define the $k \times k$ companion matrix A and the matrix G_{n} as follows:

$$
A=\left[\begin{array}{ccccc}
c_{1} & c_{2} & \ldots & c_{k-1} & c_{k} \tag{1.2}\\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right] \text { and } G_{n}=\left[\begin{array}{cccc}
f_{n}^{1} & f_{n}^{2} & \ldots & f_{n}^{k} \\
f_{n-1}^{1} & f_{n-1}^{2} & \ldots & f_{n-1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n-k+1}^{1} & f_{n-k+1}^{2} & \cdots & f_{n-k+1}^{k}
\end{array}\right]
$$

Using the approach of Kalman [3], Er [2] showed that

$$
\begin{equation*}
G_{n}=A^{n} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{align*}
f_{n+1}^{i} & =c_{i} f_{n}^{1}+f_{n}^{i+1}, \text { for } 1 \leq i \leq k-1 \tag{1.4}\\
f_{n+1}^{k} & =c_{k} f_{n}^{1} \tag{1.5}
\end{align*}
$$

Matrix methods are helpful and convenient in solving certain problems stemming from linear recursion relations, such as that of finding an explicit expression for the nth term of the Fibonacci sequence (see [9]), or of analyzing the vibration of a weighted string [10, pp. 152-154]. Here we will consider a more general case using matrix methods to obtain some explicit formulas for the nth term of a general recurrence relation and the sums of terms of the recurrence. The general linear recurrence relations have been considered by many mathematicians (for references, one may see $[1,2,4,5]$). The authors of $[4,6,7]$ give the generalized Binet formula for the generalized order- k Fibonacci, Lucas and Pell numbers by matrix methods.

In this paper, we consider k sequences of general order- k linear recurrences with k arbitrary initial conditions and coefficients. Then we study the properties of k linear recursive sequences and derive many applications to matrices.

2. General linear recurrence with k initial conditions

Define a set of k sequences satisfying the generalized order- k linear recurrence $\left\{t_{n}^{i}\left(r_{1}, r_{2}, \ldots, r_{k}\right)\right\}$ as shown: for $n>0$ and $1 \leq i \leq k$

$$
t_{n}^{i}=c_{1} t_{n-1}^{i}+c_{2} t_{n-1}^{i}+\cdots+c_{k} t_{n-k}^{i}
$$

with k initial conditions

$$
t_{n}^{i}=\left\{\begin{array}{cc}
r_{1} & \text { if } n=1-i, \\
r_{2} & \text { if } n=2-i, \\
\vdots & \vdots \\
r_{k} & \text { if } n=k-i, \\
0 & \text { otherwise }
\end{array} \text { for } 1-k \leq n \leq 0\right.
$$

where the coefficients c_{i} and the initial conditions r_{i} are arbitrary, for $1 \leq i \leq k$, and t_{n}^{i} is the nth term of i th sequence. Clearly, $\left\{t_{n}^{i}(1,0, \ldots, 0)\right\}=\left\{f_{n}^{i}\right\}$, where f_{n}^{i} are given by (1.1).

Next, we define a $k \times k$ matrix $H_{n}=\left[h_{i j}\right]$ by

$$
H_{n}=\left[\begin{array}{cccc}
t_{n}^{1} & t_{n}^{2} & \ldots & t_{n}^{k} \tag{2.1}\\
t_{n-1}^{1} & t_{n-1}^{2} & \ldots & t_{n-1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
t_{n-k+1}^{1} & t_{n-k+1}^{2} & \ldots & t_{n-k+1}^{k}
\end{array}\right]
$$

By Kalman's [3] approach, we find that

$$
\begin{equation*}
H_{n}=A H_{n-1} \text { and so, } H_{n}=A^{n-1} H_{1}, \tag{2.2}
\end{equation*}
$$

where the matrix A is given by (1.2).
Theorem 1. For $n>0$,

$$
t_{n}^{i}=\sum_{j=1}^{i} r_{i+1-j} f_{n}^{j}
$$

where f_{n}^{i} is defined as before.
Proof. From (2.2), we have $H_{n}=A^{n-1} H_{1}$. From (2.1) we get
$H_{1}=\left[\begin{array}{cccc}t_{1}^{1} & t_{1}^{2} & \cdots & t_{1}^{k} \\ t_{0}^{1} & t_{0}^{2} & \cdots & t_{0}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ t_{2-k}^{1} & t_{2-k}^{2} & \cdots & t_{2-k}^{k}\end{array}\right]=\left[\begin{array}{cccc}\sum_{j=1}^{1} c_{j} r_{2-j} & \sum_{j=1}^{2} c_{j} r_{3-j} & \ldots & \sum_{j=1}^{k} c_{j} r_{k+1-j} \\ r_{1} & r_{2} & \ldots & r_{k} \\ 0 & r_{1} & \cdots & r_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{1}\end{array}\right]$,
which implies that

$$
\begin{equation*}
H_{1}=A E \text {, } \tag{2.3}
\end{equation*}
$$

where the matrix E is the $k \times k$ upper tridiagonal matrix of the form

$$
E=\left[\begin{array}{ccccc}
r_{1} & r_{2} & r_{3} & \ldots & r_{k} \\
& r_{1} & r_{2} & \ldots & r_{k-1} \\
& & r_{1} & \ldots & r_{k-2} \\
& & & \ddots & \vdots \\
0 & & & & r_{1}
\end{array}\right]
$$

Using Er's approach [2] and (1.3), we obtain $A^{n}=G_{n}$. Since $H_{n}=A^{n-1} H_{1}$ and $H_{1}=A E$, we get

$$
\begin{equation*}
H_{n}=A^{n} E \tag{2.4}
\end{equation*}
$$

which can be re-written as

$$
\begin{equation*}
t_{n}^{i}=\sum_{j=1}^{i} r_{i+1-j} f_{n}^{j} \tag{2.5}
\end{equation*}
$$

and the proof is complete.
Therefore we see that the general recurrence with arbitrary initial conditions can be written as a linear combination of terms of the recurrence $\left\{f_{n}^{i}\right\}$. By this result, we can easily derive some properties of the recurrence $\left\{t_{n}^{i}\right\}$.

Corollary 1. For $n \in \mathbb{Z}$,

$$
\operatorname{det}\left(\begin{array}{cccc}
t_{n}^{1} & t_{n}^{2} & \cdots & t_{n}^{k} \\
t_{n-1}^{1} & t_{n-1}^{2} & \cdots & t_{n-1}^{k} \\
\vdots & \vdots & & \vdots \\
t_{n-k+1}^{1} & t_{n-k+1}^{2} & \cdots & t_{n-k+1}^{k}
\end{array}\right)=(-1)^{k+1} c_{k} r_{1}^{k}
$$

Proof. Let H_{n}, G_{n} and E be the matrices defined in the proof of Theorem 1. It is clear that $\operatorname{det} G_{n}=(-1)^{k+1} c_{k}$ and $\operatorname{det} E=r_{1}^{k}$. Taking the determinant in $H_{n}=G_{n} E$ shows our claim.

Corollary 1 is a vast generalization of the well known Cassini's identity for the Fibonacci numbers, that is, $F_{n}^{2}-F_{n-1} F_{n+1}=(-1)^{n-1}$.
Corollary 2. Let $x^{k}-c_{1} x^{k-1}-c_{2} x^{k-2}-\cdots-c_{k}=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{k}\right)$ and $e_{n}=\lambda_{1}^{n}+\lambda_{2}^{n}+\cdots+\lambda_{k}^{n}$. Then

$$
e_{n}=\sum_{i=1}^{k}\left(\sum_{m=1}^{i} r_{i+1-m} f_{n+1-t}^{m}\right)
$$

Proof. A is the companion matrix from (1.2) and $x^{k}-c_{1} x^{k-1}-c_{2} x^{k-2}-\cdots-c_{k}$ is its characteristic polynomial, whose roots (also, eigenvalues of A) are $\lambda_{1}, \ldots, \lambda_{k}$. Thus the eigenvalues of A^{n} are $\lambda_{1}^{n}, \ldots, \lambda_{k}^{n}$. Denote the trace of the matrix W by $\operatorname{tr}(W)$. By Theorem 1,

$$
\begin{aligned}
e_{n} & =\lambda_{1}^{n}+\lambda_{2}^{n}+\cdots+\lambda_{k}^{n}=\operatorname{tr}\left(H_{n}\right)=\operatorname{tr}\left(G_{n} E\right) \\
& =\sum_{i=1}^{k}\left(\sum_{m=1}^{i} r_{i+1-m} f_{n+1-t}^{m}\right)
\end{aligned}
$$

Thus the proof is complete.

3. Sums of the terms of recurrence $\left\{t_{n}^{k}\right\}$

In this section we deal with the sums of the terms of recurrence $\left\{t_{n}^{k}\right\}$ subscripted from 1 to n. By the result of Theorem 1, clearly

$$
\begin{equation*}
t_{n}^{k}=\sum_{j=1}^{k} r_{k-j+1} f_{n}^{j} \tag{3.1}
\end{equation*}
$$

The characteristic polynomial of both the matrix A and the sequence $\left\{f_{n}^{k}\right\}$ is $E(x)=x^{k}-c_{1} x^{k-1}-c_{2} x^{k-2}-\cdots-c_{k-1} x-c_{k}$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the characteristic roots of the equation.

Hypothesis 1. Throughout this paper, we suppose that the roots $\lambda_{1}, \ldots, \lambda_{k}$ are distinct (which happens if $\operatorname{gcd}\left(E, E^{\prime}\right)=1$) and not equal to 1 .
As special cases, we note that when $c_{i}=1$ for $1 \leq i \leq k$, the equation $x^{k}-$ $x^{k-1}-\cdots-x-1=0$ does not have multiple roots (see [7]). Also, when $c_{1}=2$ and $c_{i}=1$ for $2 \leq i \leq k$, the equation $x^{k}-2 x^{k-1}-x^{k-2}-\cdots-x-1=0$ does not have multiple roots (see [5]). For the case $c_{1}=2^{m}, c_{i}=1$ for $2 \leq i \leq k$ and $m \geq 0$, we refer to [6].

Let $V=\Lambda^{T}$ be a $k \times k$ Vandermonde matrix, where

$$
\Lambda=\left[\begin{array}{ccccc}
\lambda_{1}^{k-1} & \lambda_{1}^{k-2} & \ldots & \lambda_{1} & 1 \tag{3.2}\\
\lambda_{2}^{k-1} & \lambda_{2}^{k-2} & \ldots & \lambda_{2} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{k}^{k-1} & \lambda_{k}^{k-2} & \ldots & \lambda_{k} & 1
\end{array}\right]
$$

Let w_{k}^{i} be the column matrix

$$
w_{k}^{i}=\left[\begin{array}{c}
\lambda_{1}^{n+k-i} \\
\lambda_{2}^{n+k-i} \\
\vdots \\
\lambda_{k}^{n+k-i}
\end{array}\right]
$$

and $\Lambda_{j}^{(i)}$ be the $k \times k$ matrix obtained from Λ by replacing the j th column of Λ by w_{k}^{i}.

The generalized Binet formula for the recurrence $\left\{f_{n}^{i}\right\}$ can be expressed using $V=\Lambda^{T}$ and $V_{j}^{(i)}=\Lambda_{j}^{(i)}$.

Theorem 2. For $n>0$ and $1 \leq i \leq k$,

$$
f_{n-i+1}^{j}=\frac{\operatorname{det}\left(V_{j}^{(i)}\right)}{\operatorname{det}(V)}
$$

Proof. Since the eigenvalues of A are distinct (by our Hypothesis 1), we infer that A is diagonalizable. It is readily seen that $A V=V D$, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. Since V is invertible, $V^{-1} A V=D$. Hence, A is similar to D. So we obtain $A^{n} V=V D^{n}$. Since $A^{n}=G_{n}=\left[g_{i j}\right]$, we obtain the following linear system of equations:

$$
\begin{array}{cc}
g_{i 1} \lambda_{1}^{k-1}+g_{i 2} \lambda_{1}^{k-2}+\cdots+g_{i k} & =\lambda_{1}^{n+k-i} \\
g_{i 1} \lambda_{2}^{k-1}+g_{i 2} \lambda_{2}^{k-2}+\cdots+g_{i k} & =\lambda_{2}^{n+k-i} \\
\vdots & \vdots \\
g_{i 1} \lambda_{k}^{k-1}+g_{i 2} \lambda_{k}^{k-2}+\cdots+g_{i k} & =\lambda_{k}^{n+k-i}
\end{array}
$$

Thus, for $j=1,2, \ldots, k$, we get $g_{i j}=\frac{\operatorname{det}\left(\Lambda_{j}^{(i)}\right)}{\operatorname{det}(\Lambda)}$, where $G_{n}=\left[g_{i j}\right]$ and $g_{i j}=$ f_{n-i+1}^{j}. The proof is complete.

Corollary 3. For $n>0$, we have $t_{n}^{i}=\frac{1}{\operatorname{det}(\Lambda)} \sum_{j=1}^{i} r_{k+1-j} \operatorname{det}\left(\Lambda_{j}^{(1)}\right)$.
For example, when $c_{1}=2$ and $c_{i}=1$ for all $2 \leq j \leq k$, the sequence $\left\{f_{n}^{i}\right\}$ is reduced to the generalized order- k Pell sequence $\left\{P_{n}^{i}\right\}$ and so the sums of the generalized order- k Pell numbers is given by

$$
\sum_{i=1}^{n} P_{i}^{k}=\left(P_{n}^{1}+P_{n}^{2}+\cdots+P_{n}^{k}-1\right) / k
$$

When $k=3, c_{i}=1$ for $1 \leq i \leq 3$, the sequence $\left\{f_{n}^{i}\right\}$ is reduced to the generalized Tribonacci sequence $\left\{T_{n}^{i}\right\}$ and so

$$
\sum_{i=1}^{n} T_{i}^{3}=\left(T_{n}^{1}+T_{n}^{2}+T_{n}^{3}-1\right) / 2
$$

and by the definition of the $\left\{T_{n}^{i}\right\}$, we have $T_{n}^{1}=T_{n+1}^{3}$ and $T_{n}^{2}=T_{n}^{3}+T_{n-1}^{3}$. For easy writing, we denote T_{n}^{3} by T_{n}. Thus we can write

$$
\sum_{i=1}^{n} T_{i}=\left(T_{n+1}+2 T_{n}+T_{n-1}-1\right) / 2=\left(T_{n+2}+T_{n}-1\right) / 2
$$

We expand our matrix method to find all sums of terms of k sequences of generalized order- k recurrences $\left\{f_{n}^{i}\right\}$ subscripted 1 to n for all $1 \leq i \leq k$.

Define the following two sums: for $1 \leq i \leq k$, let $S_{n}^{(i)}=\sum_{m=1}^{n-1} f_{m}^{i}$ and $T_{n}^{(i)}=$ $\sum_{m=1-i}^{n-i} f_{m}^{i}$. Then $T_{n}^{(i)}=S_{n-i+1}^{(i)}+1$, since

$$
f_{n}^{i}=\left\{\begin{array}{cc}
1 & \text { if } i=1-n, \\
0 & \text { otherwise },
\end{array} \quad \text { for } 1-k \leq n \leq 0\right.
$$

Further,

$$
\begin{align*}
S_{n+1}^{(i)} & =f_{n}^{i}+S_{n}^{(i)} \tag{3.3}\\
T_{n+1}^{(i)} & =f_{n-i+1}^{i}+T_{n}^{(i)} \tag{3.4}
\end{align*}
$$

We next define two $(k+1) \times(k+1)$ matrices as follows:

$$
B_{i}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & & 0 \\
0 & & & & \\
\vdots & & & & \\
0 & & & A & \\
1 & & & \\
0 & & & & \\
\vdots & & & & \\
0 & & &
\end{array}\right] \leftarrow(i+1) \text { st row }
$$

and

$$
Y_{n, i}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & & 0 \\
S_{n}^{(i)} & & & & \\
S_{n-1}^{(i)} & & & & \\
\vdots & & & G_{n} & \\
S_{n-i+2}^{(i)} & & & \\
T_{n}^{(i)} & & & \text { 1st row } \\
T_{n-1}^{(i)} & & & \text { 2nd row } \\
\vdots & & & \vdots \\
\vdots & (i-1) \text { st row } \\
\leftarrow & i \text { th row } \\
T_{n-k+i}^{(i)} & & & & \\
\vdots & & \vdots \\
& & k \text { th row } \\
& & & &
\end{array}\right.
$$

where the matrices A and G_{n} were defined before. We have the following result.
Theorem 3. For $n>0$,

$$
Y_{n, i}=B_{i}^{n}
$$

Proof. Combining the identities (3.3) and (3.4), we obtain

$$
Y_{n+1, i}=Y_{n, i} B_{i}=\cdots=Y_{1, i} B_{i}^{n}
$$

From the definitions of $\left\{T_{n}^{(i)}\right\}$ and $\left\{S_{n}^{(i)}\right\}$, we can easily check that $Y_{1, i}=B_{i}$, and the theorem is proven.

Now we are going to derive an explicit expression for every $\operatorname{sum} S_{n}^{(i)}$ for $1 \leq i \leq k$ by matrix methods.

We first make some observations. If we expand $\operatorname{det} B_{i}$ with respect to the first row, we get

$$
\operatorname{det} B_{i}=\operatorname{det} A
$$

and the characteristic polynomials of A, B_{i} satisfy

$$
C_{B_{i}}(\lambda)=(1-\lambda) C_{A}(\lambda) .
$$

Since $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the roots of $C_{A}(\lambda)$ (distinct and nonequal to 1), the eigenvalues of matrix B_{i} are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, 1$. Therefore the eigenvalues of the matrix B_{i} are distinct, and so B_{i} is diagonalizable.

For easy writing, let

$$
\mu_{i}=\frac{\sum_{t=i}^{k} c_{t}}{1-\sum_{t=1}^{k} c_{t}} \text { for } 1<i \leq k \text { and } \mu_{1}=\frac{1}{1-\sum_{t=1}^{k} c_{t}} .
$$

The following $(k+1) \times(k+1)$ matrix for $1<i \leq k$

$$
P=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
\mu_{i} & \lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \ldots & \lambda_{k}^{k-1} \\
\mu_{i} & \lambda_{1}^{k-2} & \lambda_{2}^{k-2} & \ldots & \lambda_{k}^{k-2} \\
\vdots & \vdots & \vdots & & \vdots \\
\mu_{i} & \lambda_{1}^{k-i+1} & \lambda_{2}^{k-i+1} & & \lambda_{k}^{k-i+1} \\
\mu_{i}+1 & \lambda_{1}^{k-i} & \lambda_{2}^{k-i} & & \lambda_{k}^{k-i} \\
\mu_{i}+1 & \lambda_{1}^{k-i-1} & \lambda_{2}^{k-i-1} & & \lambda_{k}^{k-i-1} \\
\vdots & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{k} \\
\mu_{i}+1 & 1 & 1 & \ldots & 1
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
\mu_{i} & & & & \\
\mu_{i} & & & \\
\vdots & & V & \\
\mu_{i} & & & \\
\mu_{i}+1 & & & \\
\vdots & & & \\
\mu_{i}+1 & & &
\end{array}\right]
$$

satisfies $B_{i} P=P D_{1}$, where D_{1} is the $(k+1) \times(k+1)$ diagonal matrix defined previously, $D_{1}=\operatorname{diag}\left(1, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. Here we note that if we expand $\operatorname{det} P$ with respect to the first row, then we get $\operatorname{det} P=\operatorname{det} \Lambda$. Since Λ is the Vandermonde matrix, the matrix P is invertible.
Theorem 4. For $n>0$ and $1<i<k$,

$$
S_{n}^{(i)}=\mu_{i}\left(1-\sum_{j=1}^{k} f_{n}^{j}\right)-\sum_{m=i}^{k} f_{n}^{m}
$$

and

$$
S_{n}^{(1)}=\mu_{1}\left(1-\sum_{j=1}^{k} f_{n}^{j}\right) .
$$

Proof. Since $B_{i} P=P D_{1}$ for $1<i \leq k$ and the matrix P is invertible, we write $B_{i}^{n} P=P D_{1}^{n}$ and so $Y_{n, i} P=P D_{1}^{n}$. By equating the $(2,1)$ entries of the equality $Y_{n, i} P=P D_{1}^{n}$, we have the conclusion.

For the case $i=1$, one can see that $B P_{1}=P_{1} D_{1}$ where the $(k+1) \times(k+1)$ matrices B and P_{1} are as follows

$$
B=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
1 & & & \\
0 & & A & \\
\vdots & & & \\
0 & & &
\end{array}\right] \text { and } P_{1}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
\mu_{1} & & & \\
\vdots & & V & \\
\mu_{1} & & &
\end{array}\right]
$$

By induction on n, we see that

$$
Y=B^{n}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
S_{n}^{(i)} & & & \\
S_{n-1}^{(i)} & & G_{n} & \\
\vdots & & & \\
S_{n-k+1}^{(i)} & & &
\end{array}\right]
$$

Similar to the cases $1<i \leq k$, the proof is easily seen for the case $i=1$.
As a consequence of Theorem 4, we get

$$
S_{n}=\sum_{i=1}^{n} f_{i}^{k}=\frac{c_{k}\left(\sum_{j=1}^{k} f_{n}^{j}-1\right)}{c_{1}+c_{2}+\cdots+c_{k}-1} .
$$

Let $V_{i, j}$ be a $k \times k$ matrix obtained from the Vandermonde matrix V by replacing the j th column of V by e_{i} where $V=\Lambda^{T}$ is defined as in (3.2) and e_{i} is the i th element of the natural basis for \mathbb{R}^{n}, that is,

$$
e_{i}=(0, \ldots, 0, \underset{\substack{\uparrow \\ i \mathrm{th}}}{1}, 0, \ldots 0)^{T}
$$

and

$$
V_{i, j}=\left[\begin{array}{ccccccc}
\lambda_{1}^{k-1} & \ldots & \lambda_{j-1}^{k-1} & 0 & \lambda_{j+1}^{k-1} & \ldots & \lambda_{k}^{k-1} \\
\lambda_{1}^{k-2} & \ldots & \lambda_{j-1}^{k-2} & 0 & \lambda_{j+1}^{k-1} & \ldots & \lambda_{k}^{k-2} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
\lambda_{1}^{k-i+1} & \ldots & \lambda_{j-1}^{k-i+1} & 0 & \lambda_{j+i+1}^{k-1} & \ldots & \lambda_{k}^{k-i+1} \\
\lambda_{1}^{k-i} & \ldots & \lambda_{j-1}^{k-i} & 1 & \lambda_{j-i}^{k-1} & \ldots & \lambda_{k}^{k-i} \\
\lambda_{1}^{k-i-1} & \ldots & \lambda_{j-1}^{k-1} & 0 & \lambda_{j+1}^{k-1-1} & \ldots & \lambda_{k}^{k-i-1} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
\lambda_{1} & \ldots & \lambda_{j-1} & 0 & \lambda_{j+1} & \ldots & \lambda_{k} \\
1 & \ldots & 1 & 0 & 1 & \ldots & 1
\end{array}\right] .
$$

Let $q_{j}^{(i)}=\frac{\left|V_{i, j}\right|}{|V|}$.

Theorem 5. For any integer n and $1 \leq i \leq k$,

$$
f_{n}^{i}=\sum_{j=1}^{k} q_{j}^{(i)} \lambda_{j}^{n+k-1}
$$

Proof. We consider the following system of k linear equations in k unknowns $x_{1}, x_{2}, \ldots, x_{k}$:

$$
\left[\begin{array}{cccc}
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \ldots & \lambda_{k}^{k-1} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{k-i} & \lambda_{2}^{k-i} & \ldots & \lambda_{k}^{k-i} \\
\vdots & \vdots & & \vdots \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{k} \\
1 & 1 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{j} \\
\vdots \\
x_{k}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]}_{e_{i}}
$$

Using Vandermonde's determinants and Cramer rule, we get

$$
q_{j}^{(i)}=\frac{\left|V_{i, j}\right|}{|V|}(i=1,2, \ldots, k)
$$

and so, for $n, k>0$ and $1 \leq i \leq k, f_{n}^{i}=\sum_{j=1}^{k} q_{j}^{(i)} \lambda_{j}^{n+k-1}$, which completes the proof.

Consequently, we extend the result of Theorem 5 to the general order linear recurrences $\left\{t_{n}^{i}\right\}$ by the result given by (2.5).

Corollary 4. For any integer n and $1 \leq i \leq k$,

$$
t_{n}^{i}=\sum_{j=1}^{i} \sum_{s=1}^{k} r_{i+1-j} q_{s}^{(j)} \lambda_{s}^{n+k-1}
$$

As an example, we consider the sequence $\left\{T_{n}^{i}\right\}$,

$$
T_{n}^{i}=T_{n-1}^{i}+3 T_{n-2}^{i}+T_{n-2}^{i}, n \geq 2,1 \leq i \leq 3
$$

with

$$
T_{n}^{i}=\left\{\begin{array}{cc}
1 & \text { if } i=1-n, \\
0 & \text { otherwise },
\end{array} \text { for } 1-k \leq n \leq 0,\right.
$$

displayed in the following table

$i \backslash n$	1	2	3	4	5	6	7	8		$\left\{T_{n}^{1}\right\}$
1	1	4	8	21	49	120	288	697	\ldots	$\left\{\begin{array}{l}\text { 2 }\end{array}\right\}$
2	3	4	13	28	71	168	409	984	\ldots	$\left\{T_{n}^{2}\right.$
3	1	1	4	8	21	49	120	288	\ldots	$\left\{T_{n}^{3}\right\}$

Here we note that $\gamma_{1}=-1, \gamma_{2}=1+\sqrt{2}, \gamma_{3}=1-\sqrt{2}$ and

$$
\begin{aligned}
& q_{1}^{(1)}=\frac{1}{\left(\gamma_{1}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{2}\right)}, q_{2}^{(1)}=\frac{1}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{2}-\gamma_{1}\right)}, q_{3}^{(1)}=\frac{1}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{3}\right)}, \\
& q_{1}^{(2)}=-\frac{\gamma_{2}+\gamma_{3}}{\left(\gamma_{1}-\gamma_{2}\right)\left(\gamma_{1}-\gamma_{3}\right)}, q_{2}^{(2)}=\frac{\gamma_{1}+\gamma_{3}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{2}\right)}, q_{3}^{(2)}=-\frac{\gamma_{1}+\gamma_{2}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{3}\right)}, \\
& q_{1}^{(3)}=\frac{\gamma_{2} \gamma_{3}}{\left(\gamma_{1}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{2}\right)}, q_{2}^{(3)}=-\frac{\gamma_{1} \gamma_{3}}{\left(\gamma_{1}-\gamma_{2}\right)\left(\gamma_{2}-\gamma_{3}\right)}, q_{3}^{(3)}=\frac{\gamma_{1} \gamma_{2}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{3}\right)} .
\end{aligned}
$$

Therefore, by Theorem 5, we get

$$
\begin{aligned}
T_{n}^{1} & =\frac{\gamma_{1}^{n+2}}{\left(\gamma_{1}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{2}\right)}+\frac{\gamma_{2}^{n+2}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{2}-\gamma_{1}\right)}+\frac{\gamma_{3}^{n+2}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{3}\right)} \\
T_{n}^{2} & =-\frac{\left(\gamma_{2}+\gamma_{3}\right) \gamma_{1}^{n+2}}{\left(\gamma_{1}-\gamma_{2}\right)\left(\gamma_{1}-\gamma_{3}\right)}+\frac{\left(\gamma_{1}+\gamma_{3}\right) \gamma_{2}^{n+2}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{2}\right)}-\frac{\left(\gamma_{1}+\gamma_{2}\right) \gamma_{3}^{n+2}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{3}\right)}
\end{aligned}
$$

and since $\gamma_{1} \gamma_{2} \gamma_{3}=1$,

$$
\begin{aligned}
T_{n}^{3} & =\frac{\gamma_{2} \gamma_{3} \gamma_{1}^{n+2}}{\left(\gamma_{1}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{2}\right)}-\frac{\gamma_{1} \gamma_{3} \gamma_{2}^{n+2}}{\left(\gamma_{1}-\gamma_{2}\right)\left(\gamma_{2}-\gamma_{3}\right)}+\frac{\gamma_{1} \gamma_{2} \gamma_{3}^{n+2}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{3}\right)} \\
& =\frac{\gamma_{1}^{n+1}}{\left(\gamma_{1}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{2}\right)}+\frac{\gamma_{2}^{n+1}}{\left(\gamma_{2}-\gamma_{1}\right)\left(\gamma_{2}-\gamma_{3}\right)}+\frac{\gamma_{3}^{n+1}}{\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{1}-\gamma_{3}\right)} \\
& =T_{n-1}^{1}
\end{aligned}
$$

Observe (from Table 1) that $T_{n}^{3}=T_{n-1}^{1}$.

4. Generating Functions

In this section we derive the family of generating functions $G(i, x)=\sum_{n=0}^{\infty} f_{n}^{i} x^{n}$ for the generalized order- k recurrences $\left\{f_{n}^{i}\right\}$ for all $i, 1 \leq i \leq k$.

Theorem 6. For $1 \leq i \leq k$,

$$
G(i, x)=\frac{f_{0}^{i}+\sum_{m=1}^{k-1}\left(\sum_{v=m+1}^{k} c_{v} f_{m-v}^{i}\right) x^{m}}{1-c_{1} x-c_{2} x^{2}-\cdots-c_{k} x^{k}}
$$

Proof. Let $G(i, x)=f_{0}^{i} x^{0}+f_{1}^{i} x^{1}+f_{2}^{i} x^{2}+\cdots+f_{n}^{i} x^{n}+\cdots$. Consider

$$
\begin{aligned}
& \left(1-c_{1} x-c_{2} x^{2}-\cdots-c_{k} x^{k}\right) G(i, x) \\
& =f_{0}^{i}+f_{1}^{i} x+f_{2}^{i} x^{2}+\cdots+f_{k}^{i} x^{k}+\cdots+f_{n}^{i} x^{n}+\cdots \\
& -c_{1} f_{0}^{i} x-c_{1} f_{1}^{i} x^{2}-c_{1} f_{2}^{i} x^{3}-\cdots-c_{1} f_{k-1}^{i} x^{k}-\cdots-c_{1} f_{n-1}^{i} x^{n}-\cdots \\
& -c_{k} f_{0}^{i} x^{k}-c_{k} f_{1}^{i} x^{k+1}-c_{k} f_{2}^{i} x^{k+2}-\cdots-c_{k} f_{n-k}^{i} x^{n}-\cdots \\
& =f_{0}^{i}+\left(f_{1}^{i}-c_{1} f_{0}^{i}\right) x+\left(f_{2}^{i}-c_{1} f_{1}^{i}-c_{2} f_{0}^{i}\right) x^{2}+\cdots+ \\
& \left(f_{k-1}^{i}-c_{1} f_{k-2}^{i}-c_{2} f_{k-3}^{i}-\cdots-c_{k-1} f_{0}^{i}\right) x^{k-1} \\
& +\left(f_{k}^{i}-c_{1} f_{k-1}^{i}-c_{2} f_{k-2}^{i}-\cdots-c_{k-1}^{i} f_{0}^{i}-c_{k} f_{1}^{i}\right) x^{k}+\cdots+ \\
& \left(f_{n}^{i}-c_{1} f_{n-1}^{i}-c_{2} f_{n-2}^{i}-\cdots-c_{k} f_{n-k}^{i}\right) x^{n}+\cdots
\end{aligned}
$$

Now we compute the coefficients of x^{n} of the equation above. From the definition of $\left\{f_{n}^{i}\right\}$, we get

$$
\begin{aligned}
f_{1}^{i}= & c_{1} f_{0}^{i}+c_{2} f_{-1}^{i}+\cdots+c_{k} f_{1-k}^{i} \\
& \vdots \\
f_{k-1}^{i}= & c_{1} f_{k-2}^{i}+c_{2} f_{k-3}^{i}+\cdots+c_{k-1} f_{0}^{i}+c_{k} f_{-1}^{i} \\
& \vdots \\
f_{n}^{i}= & c_{1} f_{n-1}^{i}+c_{2} f_{n-2}^{i}+\cdots+c_{k} f_{n-k}^{i} .
\end{aligned}
$$ and so

$$
\begin{aligned}
f_{1}^{i}-c_{1} f_{0}^{i}= & c_{2} f_{-1}^{i}+\cdots+c_{k} f_{1-k}^{i} \\
f_{2}^{i}-c_{1} f_{1}^{i}-c_{2} f_{0}^{i}= & c_{3} f_{-1}^{i}+\cdots+c_{k} f_{2-k}^{i} \\
& \vdots \\
f_{k-1}^{i}-c_{1} f_{k-2}^{i}-c_{2} f_{k-3}^{i}-\cdots-c_{k-1} f_{0}^{i}= & c_{k} f_{-1}^{i} .
\end{aligned}
$$

Then for $n \geq k$, by the definition of $\left\{f_{n}^{i}\right\}$, the coefficients of x^{n} are all 0 .
For example, for fixed k and $1 \leq i \leq k$, we take $i=1$. Thus

$$
G(1, x)=f_{0}^{1} x^{0}+f_{1}^{1} x^{1}+f_{2}^{1} x^{2}+\cdots+f_{n}^{1} x^{n}+\cdots .
$$

From the definition of $\left\{f_{n}^{i}\right\}$, the initial conditions of the recurrence $\left\{f_{n}^{1}\right\}$ are given by

$$
f_{n}^{1}=\left\{\begin{array}{ll}
1 & \text { if } n=0, \\
0 & \text { otherwise, }
\end{array} \quad \text { for } 1-k \leq n \leq 0\right.
$$

which implies

$$
\begin{equation*}
G(1, x)=\frac{1}{1-c_{1} x-c_{2} x^{2}-\cdots-c_{k} x^{k}} \tag{4.1}
\end{equation*}
$$

More generally, we derive the generating function of recurrence $\left\{t_{n}^{i}\right\}$, namely $g(i, x)=\sum_{k \geq 0} t_{k}^{i} x^{k}$.
Corollary 5. For $1 \leq i \leq k$,

$$
g(i, x)=\frac{t_{0}^{i}+\sum_{m=1}^{k-1}\left(\sum_{v=m+1}^{k} c_{v} t_{m-v}^{i}\right) x^{m}}{1-c_{1} x-c_{2} x^{2}-\cdots-c_{k} x^{k}}
$$

As an example, if we take $k=i=2, c_{1}=c_{2}=1$ and $r_{1}=-1, r_{2}=0$, then the sequence $\left\{t_{n}^{2}\right\}$ is

$$
1,3,4,7,11,18,29, \ldots
$$

which is the well known Lucas sequence $\left\{L_{n}\right\}$. Then by Corollary 5 , we obtain

$$
g(2, x)=\sum_{n=0}^{\infty} t_{n}^{2} x^{n}=\sum_{n=0}^{\infty} L_{n} x^{n}=\frac{t_{0}^{i}-\left(t_{-1}^{i}\right) x^{1}}{1-x-x^{2}}
$$

where $t_{0}^{2}=r_{2}=2$ and $t_{-1}^{2}=r_{1}=1$. Thus we have the well known result for the Lucas numbers:

$$
\sum_{n=0}^{\infty} L_{n} x^{n}=\frac{2-x}{1-x-x^{2}}
$$

5. n TH POWERS OF A COMPANION AND k-SUPERDIAGONAL DETERMINANTS

In [8], the author gave a relationship between determinants of certain $n \times n k$ superdiagonal matrices and the terms of the nth power of matrix A given by (1.2). In this section, we derive some new relationships between some Hessenberg determinants and the terms of generalized recurrences $\left\{f_{n}^{i}\right\}$ for all $1 \leq i \leq k$.

Here, we recall a result of [8]. Define an $n \times n k$-superdiagonal matrix M_{n} in the following form:

$$
M_{n}=\left[\begin{array}{ccccccc}
c_{1} & c_{2} & \ldots & c_{k} & & & 0 \\
-1 & c_{1} & c_{2} & \ldots & c_{k} & & \\
& -1 & c_{1} & c_{2} & \ldots & \ddots & \\
& & & & \ddots & \ldots & \vdots \\
0 & & & & & -1 & c_{1}
\end{array}\right]
$$

Lemma 1. For $n>0$,

$$
\operatorname{det} M_{n}=f_{n}^{1}
$$

Indeed, expanding $\operatorname{det} M_{n}$ by the elements of the first row gives us

$$
\begin{align*}
\operatorname{det} M_{n} & =c_{1} \operatorname{det} M_{n-1}+c_{2} \operatorname{det} M_{n-2}+\cdots+c_{k} \operatorname{det} M_{n-k} \tag{5.1}\\
& =f_{n}^{1}=c_{1} f_{n-1}^{1}+c_{2} f_{n-2}^{1}+\cdots+c_{k} f_{n-k}^{1} \tag{5.2}
\end{align*}
$$

Now we extend the above result for the generalized sequences $\left\{f_{n}^{i}\right\}$ for $1 \leq$ $i \leq k$. For this purpose we introduce some new notations: For $1 \leq t \leq k$, let $M_{n}(t, t+1, \ldots, k ; r)=\left[\hat{m}_{i j}\right]$ denote the matrix obtained from $M_{n}=\left[m_{i j}\right]$ with $\hat{m}_{i j}=0$ for $i \leq j \leq r, i \in\{t, t+1, \ldots, k\}$ and otherwise $\hat{m}_{i j}=m_{i j}$. Clearly $M_{n}(1,2, \ldots, k ; 0)=M_{n}$.

Recalling that $G_{n}=\left[g_{i j}\right]=A^{n}$, we give the following theorem for the diagonal elements $g_{j j}=f_{n-j}^{(j+1)}$.
Theorem 7. For $n>j$ and $1 \leq j \leq k-1$,

$$
\operatorname{det} M_{n}(1 ; j)=f_{n-j}^{j+1}
$$

where $\operatorname{det} M_{n}(1 ; 0)=f_{n}^{1}$.
Proof. First consider the case $j=1$. If we expand the $\operatorname{det} M_{n}(1 ; 1)$ by the elements of the first row, then

$$
\begin{aligned}
\operatorname{det} M_{n}(1 ; 1) & =0\left(\operatorname{det} M_{n-1}\right)+c_{2} \operatorname{det} M_{n-2}+\cdots+c_{k} \operatorname{det} M_{n-k} \\
& =c_{2} \operatorname{det} M_{n-2}+\cdots+c_{k} \operatorname{det} M_{n-k}
\end{aligned}
$$

By (5.1) and (5.2),

$$
\begin{aligned}
\operatorname{det} M_{n}(1 ; 1) & =c_{2} f_{n-2}^{1}+c_{3} f_{n-3}^{1}+\cdots+c_{k} f_{n-k}^{1} \\
& =f_{n}^{1}-c_{1} f_{n-1}^{1}=f_{n-1}^{2}
\end{aligned}
$$

Thus the proof is complete for the case $j=1$.
Now, we take the general case for $1 \leq j \leq k-1$. By expanding $\operatorname{det} M_{n}(1 ; j)$ with respect to the first row, we get

$$
\operatorname{det} M_{n}(1 ; j)=\operatorname{det}\left[\begin{array}{llllllllll}
0 & \ldots & 0 & c_{j+1} & c_{j+2} & \ldots & c_{k} & 0 & \ldots & 0
\end{array}\right]
$$

which, by (5.1) and (5.2), becomes

$$
\begin{aligned}
\operatorname{det} M_{n}(1 ; j) & =c_{j+1} \operatorname{det} M_{n-j-1}+c_{j+2} \operatorname{det} M_{n-j-2}+\cdots+c_{k} \operatorname{det} M_{n-k} \\
& =c_{j+1} f_{n-j-1}^{1}+c_{j+2} f_{n-j-2}^{1}+\cdots+c_{k} f_{n-k}^{1} .
\end{aligned}
$$

From (5.2) and after repeating j times the identity (1.4), we get

$$
\begin{aligned}
\operatorname{det} M_{n}(1 ; j)= & c_{j+1} f_{n-j-1}^{1}+c_{j+2} f_{n-j-2}^{1}+\cdots+c_{k} f_{n-k}^{1} \\
= & f_{n}^{1}-c_{1} f_{n-1}^{1}-c_{2} f_{n-2}^{1}-\cdots-c_{j} f_{n-j}^{1} \\
= & f_{n-1}^{2}-c_{2} f_{n-2}^{1}-c_{3} f_{n-3}^{1}-\cdots-c_{j} f_{n-j}^{1} \\
& \cdots \\
= & f_{n-j+1}^{j}-c_{j} f_{n-j}^{1}=f_{n-j}^{j+1},
\end{aligned}
$$

and the proof is complete.
According to the definition of $M_{n}(t, t+1, \ldots, k ; r)$, the matrix $M_{n}(2,3 ; n)$ can be expressed in the compact form

$$
M_{n}(2,3 ; n)=\left[\begin{array}{cccccccccc}
c_{1} & c_{2} & \ldots & c_{k} & 0 & \ldots & \ldots & \ldots & \ldots & 0 \\
-1 & 0 & 0 & \ldots & 0 & 0 & \ldots & \ldots & \ldots & 0 \\
& -1 & 0 & 0 & \ldots & 0 & 0 & \ldots & \ldots & 0 \\
& & -1 & c_{1} & c_{2} & \ldots & c_{k} & 0 & \ldots & 0 \\
& & & \ddots & \ddots & \ddots & \ldots & \ddots & \ddots & \vdots \\
& & & & -1 & c_{1} & c_{2} & \ldots & c_{k} & 0 \\
& & & & & -1 & c_{1} & c_{2} & \ldots & c_{k} \\
& & & & & & \ddots & \ddots & \ldots & \vdots \\
0 & & & & & & & -1 & c_{1} & c_{2} \\
& & & & & -1 & c_{1}
\end{array}\right] .
$$

Theorem 8. For $n>k+2$,

$$
\operatorname{det} M_{n+1}(2,3, \ldots, k ; n)=f_{n-k+2}^{k}
$$

Proof. First we consider the case of $k=2$, and $\operatorname{det} M_{n+1}(2 ; n)$. The matrix $M_{n}(2 ; n)$ has the following form:

$$
M_{n}(2 ; n)=\left[\begin{array}{ccccccccc}
c_{1} & c_{2} & \ldots & c_{k} & 0 & \ldots & \ldots & \ldots & 0 \\
-1 & 0 & 0 & \ldots & 0 & 0 & \ldots & \ldots & 0 \\
& -1 & c_{1} & c_{2} & \ldots & c_{k} & 0 & \ldots & 0 \\
& & \ddots & \ddots & \ddots & \ldots & \ddots & \ddots & \vdots \\
& & & -1 & c_{1} & c_{2} & \ldots & c_{k} & 0 \\
& & & & -1 & c_{1} & c_{2} & \ldots & c_{k} \\
& & & & & \ddots & \ddots & \ldots & \vdots \\
& & & & & & -1 & c_{1} & c_{2} \\
& & & & & & & -1 & c_{1}
\end{array}\right] .
$$

Expanding $\operatorname{det} M_{n+1}(2 ; n)$ with respect to the first row, we obtain

$$
\operatorname{det} M_{n+1}(2 ; n)=c_{2} \operatorname{det} M_{n-1}+c_{3} \operatorname{det} M_{n-2}+\cdots+c_{k} \operatorname{det} M_{n-k+1} .
$$

Since the first principal subdeterminant include a zero row, by Lemma 1, we write

$$
\begin{aligned}
\operatorname{det} M_{n+1}(2 ; n) & =c_{2} f_{n-1}^{1}+c_{3} f_{n-3}^{1}+\cdots+c_{k} f_{n-k+1}^{1} \\
& =-c_{1} f_{n}^{1}+c_{1} f_{n}^{1}+c_{2} f_{n-1}^{1}+c_{3} f_{n-3}^{1}+\cdots+c_{k} f_{n-k+1}^{1} \\
& =-c_{1} f_{n}^{1}+f_{n+1}^{1}
\end{aligned}
$$

By (1.4), we obtain $\operatorname{det} M_{n+1}(2 ; n)=-c_{1} f_{n}^{1}+f_{n+1}^{1}=f_{n}^{2}$. Thus the proof is complete for $k=2$.

Continuing this expanding process with respect to the first row for the $\operatorname{det} M_{n+1}(2,3, \ldots, k ; n)$, for $j \geq 2$, we get

$$
\operatorname{det} M_{n+1}(2,3, \ldots, j ; n)=c_{j} \operatorname{det} M_{n-j+1}+c_{j+1} \operatorname{det} M_{n-j}+\cdots+c_{k} \operatorname{det} M_{n-k+1}
$$

which, by Lemma 1 , gives

$$
\begin{aligned}
& \operatorname{det} M_{n+1}(2,3, \ldots, j ; n)=c_{j} f_{n-j+1}^{1}+c_{3} f_{n-j}^{1}+\cdots+c_{k} f_{n-k+1}^{1} \\
& =\left(c_{1} f_{n}^{1}+c_{2} f_{n-1}^{1}+\cdots+c_{j-1} f_{n-j+2}^{1}\right)-\left(c_{1} f_{n}^{1}+c_{2} f_{n-1}^{1}+\cdots+c_{j-1} f_{n-j+2}^{1}\right) \\
& +c_{j} f_{n-j+1}^{1}+c_{3} f_{n-j}^{1}+\cdots+c_{k} f_{n-k+1}^{1} \\
& =f_{n+1}^{1}-\left(c_{1} f_{n}^{1}+c_{2} f_{n-1}^{1}+\cdots+c_{j-1} f_{n-j+2}^{1}\right)
\end{aligned}
$$

By (1.4), we obtain

$$
\begin{aligned}
\operatorname{det} M_{n+1}(2,3, \ldots, j ; n) & =f_{n+1}^{1}-c_{1} f_{n}^{1}-c_{2} f_{n-1}^{1}-\cdots-c_{j-1} f_{n-j+2}^{1} \\
& =f_{n}^{2}-c_{2} f_{n-1}^{1}-\cdots-c_{j-1} f_{n-j+2}^{1} \\
& \vdots \\
& =f_{n-j+3}^{j-1}-c_{j-1} f_{n-j+2}^{1}=f_{n-j+2}^{j},
\end{aligned}
$$

and the proof is complete.
Now we present further relations including other entries of G_{n} and the determinant of certain matrices.

Define the $n \times n$ matrix $M_{n}\left(c_{i, k}\right)$ in the compact form:

$$
M_{n}\left(c_{i, k}\right)=\left[\begin{array}{ccccccc}
c_{i} & c_{i+1} & \cdots & c_{k} & 0 & \cdots & 0 \\
-1 & & & & & & \\
0 & & M_{n-1} & & & & \\
\vdots & & & & & & \\
0 & & & & & &
\end{array}\right]
$$

where M_{n} is defined as before.
For $2 \leq t \leq r$, let $M_{n}\left(c_{i, k}, t, t+1, \ldots, r\right)=\left[\check{m}_{i j}\right]$ denote the $n \times n$ matrix obtained from $M_{n}\left(c_{i, k}\right)=\left[\tilde{m}_{i j}\right]$ with taking $\check{m}_{i j}=0$ for $i \leq j \leq r, i \in\{t, t+1, \ldots, n\}$ and otherwise $\check{m}_{i j}=\tilde{m}_{i j}$.

For example, $M_{7}\left(c_{2,4}, 3,4\right)$ takes the form:

$$
M_{7}\left(c_{2,4}, 3,4\right)=\left[\begin{array}{ccccccc}
c_{2} & c_{3} & c_{4} & 0 & 0 & 0 & 0 \\
-1 & c_{1} & c_{2} & c_{3} & c_{3} & c_{4} & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & c_{1} & c_{2} & c_{3} \\
0 & 0 & 0 & 0 & -1 & c_{1} & c_{2} \\
0 & 0 & 0 & 0 & 0 & -1 & c_{1}
\end{array}\right] .
$$

Theorem 9. For $n>j-1,2 \leq r \leq k-1$ and $2 \leq j \leq k$

$$
\operatorname{det} M_{n}\left(c_{r, k}, 2,3, \ldots, j\right)=g_{j-1, j+r-1}=f_{n-j+1}^{j+r-1}
$$

where $G_{n}=\left[g_{i j}\right]$.

Proof. First we prove the case $r=2$ and $2 \leq j \leq k$. If we expand $\operatorname{det} M_{n}\left(c_{2, k}, 2,3, \ldots, j\right)$ by the Laplace expansion of determinant, then we obtain the following equation by combining (5.1) and (5.2)

$$
\begin{aligned}
& \operatorname{det} M_{n}\left(c_{2, k}, 2,3, \ldots, j\right) \\
& =c_{j+1} \operatorname{det} M_{n-j}+c_{j+2} \operatorname{det} M_{n-j-1}+\cdots+c_{k} \operatorname{det} M_{n-k+1} \\
& =c_{j+1} f_{n-j}^{1}+c_{j+2} f_{n-j-1}^{1}+\cdots+c_{k} f_{n-k+1}^{1}
\end{aligned}
$$

By adding and subtracting $c_{1} f_{n}^{1}+c_{2} f_{n-1}^{1}+\cdots+c_{j} f_{n-j+1}^{1}$ to both sides of the above equation, we get

$$
\begin{aligned}
& \operatorname{det} M_{n}\left(c_{2, k}, 2,3, \ldots, j\right) \\
& =\left(c_{1} f_{n}^{1}+\cdots+c_{j} f_{n-j+1}^{1}\right)+c_{j+1} f_{n-j}^{1}+\cdots+c_{k} f_{n-k+1}^{1} \\
& \quad \quad-\left(c_{1} f_{n}^{1}+c_{2} f_{n-1}^{1}+\cdots+c_{j} f_{n-j+1}^{1}\right) \\
& =f_{n+1}^{1}-c_{1} f_{n}^{1}-c_{2} f_{n-1}^{1}-\cdots-c_{j} f_{n-j+1}^{1} .
\end{aligned}
$$

By (1.4), we get

$$
\begin{aligned}
\operatorname{det} M_{n}\left(c_{2, k}, 2,3, \ldots, j\right)= & f_{n}^{2}-c_{2} f_{n-1}^{1}-c_{3} f_{n-2}^{1}-\cdots-c_{j} f_{n-j+1}^{1} \\
= & f_{n-1}^{3}-c_{3} f_{n-2}^{1}-\cdots-c_{j} f_{n-j+1}^{1} \\
& \vdots \\
= & f_{n-j+2}^{j}-c_{j} f_{n-j+1}^{1}=f_{n-j+1}^{j+1} .
\end{aligned}
$$

Thus the proof is complete for $r=2$.
Now we consider the case $r>2$. If j is greater than $k-2$, then the matrix $M_{n}\left(c_{r, k}, 2,3, \ldots, j\right)$ has a zero row and so we ignore this case. For $r>2$ and $j \leq k-2$, we obtain, by (1.4), (5.1) and (5.2)

$$
\begin{aligned}
& \operatorname{det} M_{n}\left(c_{r, k}, 2,3, \ldots, j\right) \\
& =c_{r+j-1} \operatorname{det} M_{n-j}+\cdots+c_{k} \operatorname{det} M_{n-k+1} \\
& =c_{r+j-1} f_{n-j}^{1}+c_{r+j} f_{n-j-1}^{1}+\cdots+c_{k} f_{n-k+1}^{1} \\
& =f_{n+1}^{1}-c_{1} f_{n}^{1}-c_{2} f_{n-1}^{1}-\cdots-c_{r+j-2} f_{n-j+1}^{1} \\
& =f_{n}^{2}-c_{2} f_{n-1}^{1}-\cdots-c_{r+j-2} f_{n-j+1}^{1} \\
& \vdots \\
& =f_{n-j+2}^{r+j-2}-c_{r+j-2} f_{n-j+1}^{1}=f_{n-j+1}^{r+j-1},
\end{aligned}
$$

which completes the proof for all cases.
Acknowledgements. The authors would like to thank the referees for constructive comments, which improved the presentation of the paper.

References

[1] L.E. Dickson, History of the Theory of Numbers, Vol. I, Ch. XVII, New York.
[2] M.C. Er, Sums of Fibonacci numbers by matrix methods, Fibonacci Quart. 22 (3) (1984), 204-207.
[3] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1) (1982), 73-76.
[4] E. Kilic, D. Tasci, On the generalized order- k Fibonacci and Lucas numbers, Rocky Mountain J. Math. 36 (6) (2006), 1915-1926.
[5] E. Kilic, D. Tasci, The generalized Binet formula, representation and sums of the generalized order- k Pell Numbers, Taiwanese J. Math. 10 (6) (2006), 1661-1670.
[6] E. Kilic, The generalized order- k Fibonacci-Pell sequence by matrix methods, J. Comput. and Appl. Math, 209 (2) (2007), 133-145.
[7] E.P. Miles Jr., Generalized Fibonacci numbers and associated matrices, Amer. Math. Month. 67 (1960), 745-752.
[8] H. Minc, Permanents of (0,1)-circulants, Canad. Math. Bull. 7 (1964) (2), 253-263.
[9] R.A. Rosenbaum, An Application of Matrices to Linear Recursion Relations, Amer. Math. Month. 66 (9) (1959), 792-793.
[10] J.C. Slater and N. Frank, Mechanics, New York, 1947.
${ }^{1}$ TobB Economics and Technology University Mathematics Department 06560 Ankara Turkey

E-mail address: ${ }^{1}$ ekilic@etu.edu.tr
${ }^{2}$ Naval Postgraduate School, Applied Mathematics Department, Monterey, CA 93943, USA

E-mail address: ${ }^{2}$ pstanica@nps.edu

[^0]: 2000 Mathematics Subject Classification. 11B37, 40C05, 15A36, 15A15.
 Key words and phrases. Higher order recurrence, generating matrix, sum, matrix method.

