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Abstract— In this paper, a general algorithm is proposed for rate 
analysis and code design of linear index coding problems. 
Specifically a solution for minimum rank matrix completion 
problem over finite fields representing the linear index coding 
problem is devised in order to find the optimum transmission rate 
given vector length and size of the field. The new approach can be 
applied to both scalar and vector linear index coding. 
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I. INTRODUCTION 

    An index coding problem [1] arises when a single source 
intends to communicate to a number of receivers over a 
rate-limited noiseless broadcast channel. The sender has a 
number of messages and each receiver desires a specific 
subset of messages, while having another subset as side 
information. A single encoding of the messages can be 
transmitted in each channel use. The objective is to design 
an encoding scheme with minimum number of channel uses 
that satisfies all clients.  
     Research interest on this seemingly simple problem has 
been recently fueled by results demonstrating its relation to 
a number of fundamental problems. In particular, it is shown 
in [5][6] that network coding for multiple unicast is 
equivalent to a properly constructed index coding problem. 
The equivalence of topological interference management 
problem with index coding is investigated in [7][8]. 
 In [2], the index coding problem is analyzed based on 
graph theoretical approaches and it is shown that scalar 
linear index coding problem is equivalent to a rank 
minimization problem over a finite field. It is argued in 
[3][4] that the optimal length of a linear index coding 
problem is hard to identify or approximate even for scalar 
linear index codes. 
 Graph theoretical approaches to bound the performance 
of index coding is reported in e.g., [2][8][9]. In this paper 
we propose an algebraic solution for constructing a vector 
linear index code and identifying or approximating the 
optimal rate for an index coding problem by formulating it 
as a minimum rank matrix completion problem over finite 
fields.  
 Despite substantial interest in minimum rank matrix 
completion over Reals in recent years, the same problem 
over finite fields has rarely been studied. To the best of our 
knowledge the only related prior work on this topic is 
reported in [10]. The algorithm in [10] provides a matrix 

completion solution of a given rank, when a complete sub-
matrix with the same rank is available and the matrix 
completion solution is unique. The approach relies on 
identifying the complete sub-matrix by exhaustive search 
and completing the incomplete rows (columns) in its row 
(column) subspace in an iterative manner and by search.  
    In this paper, we propose a new algorithm for matrix 
completion with minimum rank over finite fields. In the new 
algorithm, first the complete sub-matrix of highest rank is 
identified using a heuristic scheme of polynomial 
complexity, and then row (column) projection is used to 
expand the complete sub-matrix iteratively. The goal of 
projection step is to find possible completions of an 
incomplete row or column such that they are in the span of 
the complete sub-matrix. During projection, block erasure 
channel decoding approaches are utilized for enhanced 
computational efficiency. The row and column projections 
are administered over a decision tree, which efficiently 
manages the completion in specific cases when multiple 
completion solutions are to be examined. This also 
accommodates the cases where the existing complete sub-
matrix is of a smaller rank compared to the (possibly 
unknown) optimum rank of the prospective complete 
matrix. As we shall demonstrate, the proposed algorithm 
provides a solution to identify or approximate the optimum 
rate for a general linear index coding problem, and to design 
the associate coding scheme for a given vector (block) 
length and field size.  
    The structure of this article is as follows. In Section II, the 
index coding problem and its associated minimum rank 
matrix completion problem over finite fields are elaborated. 
Section III presents the proposed algorithm for matrix 
completion and section IV presents the simulation results. 

II. PRELIMINARIES 

A. System Model 

An instance of the index coding problem is denoted by 

( )X, R , where 1 | |{ ,.., }XX x x=  is the collection of 

messages at the source ( | . |  shows the cardinality of a set, 

1( , , ) Σn
i i inx x x= … ∈ , and Σ {0,1, , 1}q= … − ), and R  is 

the set of receivers. Each receiver r R∈  is specified by a 
pair ( , )r rx H , where rx X∈  is the message which the 

receiver wishes to decode and \r rH X x⊂  is the set of 

messages available at the receiver as side information. 



A ( , )C n q index code with l  transmissions (known as the 

length of index coding) is a function ( ) | l|
: Σ Σ

Xnf →   

( ) ( )( ) ( )1 | |
( ) , , ;    : Σ Σ  1 l n XiX f fX if f X l= … → ≤ ≤  

such that for each receiver r , there exists a decoding 

function l | |: Σ Σrn H n
rg + →  that ( )( ),r r rf X Hg x= . The 

transmission rate of an index code ( , )C n q  is denoted by 

( ), / ( , )n q n l n qλ = . If ( ),l n q  is the smallest such integer, 

( , )C n q  is an optimal index code and ( , )n qλ  is the optimal 

rate for the problem. The objective is to design an encoding 
scheme with minimum possible length. A scalar or vector 
(block) index code is identified when 1n =  or 1n > , 
respectively.  
    In this paper, we are interested in linear index coding in 

which the encoder, ( )f X , and decoders, ( )( ),r rg f X H , 

are linear in their variables. We assume without loss of 
generality that each receiver needs exactly one message. 
Obviously any receiver desiring more than one message can 
be replaced by a number of receivers each requesting one 
message with the same side information. 

B. Index Coding and Matrix Completion 

     Given an instance of linear index coding problem 

( ),S R  with block length n  and field size q , we 

construct an associated incomplete matrix M  in which: 
(1) Number of rows, a = number of messages 
(2) Number of columns, b = number of receivers 
(3) Each element ijm  of M  may be 1, 0, or X (erasure).  

If the receiver j  desires the message i , 1ijm = . If the 

receiver j  has the message i  as side information, we 

consider ijm X=  which reflects the fact that the message 

may be removed from the received signal if it arrives. 
Finally, if receiver j neither desires message i , nor has it as 
side information, 0ijm = , which shows that no interference 

from this message can be excluded from the desired 
message. Figs. 1.(a) and 1.(b) depict an index coding 
problem, and the structure of its equivalent incomplete 
matrix for binary scalar realization ( 1n = , 2q = ). 

 
Fig. 1. (a) An index coding problem: the messages are shown by black 
circles, and the receivers are shown by white circles. A black or red arrow 
connects a receiver to its desired source or what it has as side information. 
Fig. 1. (b) corresponding incomplete matrix 

 Indentifying unknown elements of the incomplete matrix 
in a way that the completed matrix has the minimum 
possible rank is equivalent to designing a binary scalar 
linear index code with minimum number of channel uses. A 
solution to the minimum rank matrix completion can be 
translated into a valid encoding scheme for the 

corresponding index coding problem. Suppose *M  is a 

solution of the matrix completion problem with rank *k , 

then there exist *k  independent columns and all other 
columns are linear combinations of them. Over i th 
transmission, a combination of the messages specified by 
the i th independent column is transmitted, each receiver 
can decode its desired message by linear combining of the 
received message according to the rule that its 
corresponding column is formed from the independent 
columns. As a result, the number of independent columns is 
the length of the index code, and minimum rank matrix 
completion is an approach to design a code with minimum 
possible length over a finite field. 

C. Vector Linear Index Coding 

    It is shown that in general, scalar linear index coding is 
not optimal, and vector linear index coding may be 
advantageous in certain cases [11]. Given the (incomplete) 
matrix of a scalar linear index coding problem, we may 
construct a matrix that corresponds to the associated time 
extended (vector) linear index coding problem. This is 
accomplished as follows: 

- A “1” is replaced by identity matrix *n nI   

- A “0” is replaced by zero matrix *0n n   

- An erasure is replaced by an all erasure matrix of 
size ( , )n n   

 These rules are based on the fact that each message in 

the ( )nGF q  can be substituted with n  messages in ( )GF q . 

Each receiver desiring a message in ( )nGF q  can be 

substituted with n  receivers with same set of side 
information each wanting a message in ( )GF q . 

III. ALGORITHM FOR MINIMUM RANK MATRIX 

COMPLETION  

 As stated, we aim at completing a matrix over a finite 
field with minimum rank. The proposed solution consists of 
two main steps. In the first step, maximal complete sub-
matrix of highest rank is identified, and in the second step, 
row and column projections are used iteratively by means of 
block erasure decoding techniques until the matrix is 
completed. Projection means attempting to complete one or 
more incomplete rows (columns) at each iteration in a way 
that they are in the span of the current complete sub-matrix. 
For the example of Fig. 1, Fig. 2 demonstrates the 
incomplete matrix and the two mentioned steps.  



 

  
(a) (b) (c) 

Fig. 2. (a) identification of maximal complete sub-matrix of highest rank,  
(b) row projection, (c) column projection for matrix completion  
 
 In projection step, there might be none or more than one 
solution for completing rows (columns) such that they are in 
the row (column) span of the complete sub-matrix. If no 
solution exists the rank of the matrix is to be increased. In 
both cases and in order to administer ways of completing 
the matrix, a decision tree is formed. 
 In the sequel, we first present the proposed algorithm for 
identifying the maximal complete sub-matrix of highest 
rank. Next, the structure of the decision tree is elaborated. 
Subsequently, we present the proposed row or column 
projection scheme based on erasure decoding, and then a 
pruning method is introduced to manage the growth of the 
tree. 

A. Identification of Maximal Complete Sub-matrix of 
Highest Rank 

    Consider the incomplete matrix a bM × , and a complete 

sub-matrix 1 2( , )M I I  identified by rows 1 {1,2, ,a}I ⊂ … , 

and columns 2 {1,2, , b}I ⊂ …  and of rank k . Given the 

matrix M , we would like to find the maximal sub-matrix of 

highest rank. In other words, we wish to find 1I , 2I , and k  

such that: 

(1) 1 2( , )M I I  is complete. 

(2) No other complete sub-matrix could be found with a 

rank higher than k . 

(3) 1 2( , )M I I  is not sub-matrix of any other matrices having 

above properties. 
    The proposed algorithm starts with an initial complete 
sub-matrix and tries to improve it iteratively. Consider an 

iteration in which improving the row set, 1I , is intended. 

Let { }1 11, ,a \I I= …  be the complement set of 1I . The 

algorithm checks each row in 1 2( , )M I I  with preference to 

rows with smaller number of erasures. Assume 1i I∈  is 

selected and 1 1' { }I I i= ∪ ; next, all incomplete columns in 

1 2( ', )M I I  are eliminated resulting new column set 2 'I . If 

rank of 1 2( ', ')M I I  is higher than 1 2( , )M I I , the index sets 

are updated to new sets 1 'I  and 2 'I . A similar approach for 

column set improvement is taken in turn. These operations 

are repeated iteratively until no changes are detected over 
N  iterations. The related algorithm is presented in Fig. 3.  

 
Algorithm 1 
Input: incomplete matrix a bM ×  

Output: 1I , 2I and k  

Initialize: { }1 21, ,a , Φ, 0, 100I I k N= … = = =  

Until (No change detected over N iterations in sequence) 

 Set 1 1 2/ (| | | |)th I I I= +  

 If ([0 1])rand th>  

 Choose row set for improvement 
 Else 
  Choose column set for improvement 
 End 
 Set 1 'I , 2 'I  

 If ( 1 2( ( ' , ' ))rank M I I k> ) 

 Update  1I , 2I and k  

 End 
End 

Fig. 3. Algorithm for maximal complete sub-matrix identification 

 
 While it is preferred to identify the maximal complete 
sub-matrix of highest rank within the matrix M , we can 
proceed to the subsequent steps for matrix completion even 
with a sub-optimal choice. As such, we may limit the 
number of iterations in Algorithm 1 to N  iterations. Indeed, 
the choice of N  provides a complexity trade-off between 
the two steps of the proposed matrix completion algorithm. 
The computational complexity of Algorithm 1 in each 
iteration is mainly due to computing the rank, hence the 

algorithm is of polynomial complexity 3(min(a, b) )O . 

B. Decision Tree for Matrix Completion 

 Each branch in the decision tree is a possible way for 
completing the matrix with a given rank. The single initial 
branch in the tree corresponds to the initial incomplete 
matrix. Components of each branch are: 

• Partially completed matrix: M  
• Index sets showing complete sub-matrix: 1 2,I I  

• Rank of the complete sub-matrix in the branch: k  
• Projection direction in the branch 

Fig. 4 depicts a possible realization for the decision tree. 
 

 
Fig. 4 A sample structure for the decision tree 

 



 Consider the horizontal projection in a branch. The 
vertical projection may be carried out in a similar fashion. 
There are three possible situations: 
1. There are one or more incomplete rows that may be 

completed uniquely in the subspace spanned by the rows 
of the current complete sub-matrix. We complete these 
rows, update the complete sub-matrix and switch the 
projection direction over the next branch. 

2. There is no row that may be completed uniquely as 
linear combinations of rows of the current complete sub-
matrix. This means that all incomplete rows have more 
than one solution for completion. We choose the 
incomplete row with minimum possible solutions and 
analyze their consequent matrix completion over 
multiple subsequent branches in the alternate direction 
of projection. 

3. There is at least one incomplete row that may not fit 
within the subspace spanned by the current complete 
sub-matrix. In this case, the rank of the solution is to be 
increased. If the increased rank is larger than the rank of 
the previously completed branches, the current branch is 
eliminated; otherwise, the possible solutions are 
examined over multiple subsequent branches. 

 In each iteration, the branch with maximum opportunity 
to be the final solution is selected for the projection. This 
opportunity is quantified by a metric defined by the ratio of 
the completion percentage of the matrix with respect to the 
rank of its complete sub-matrix. These projections are done 
iteratively for branches until they are eliminated or their 
matrices are fully completed. Then the branch with 
minimum achieved rank identifies the solution. The related 
algorithm is presented in Fig. 5. 

Algorithm 2 
Input: incomplete matrix a bM ×  

Output: Complete matrix with minimum possible rank 
Minimum achieved rank= min( , )a b ) 
Find maximal complete sub-matrix ( 1, 2)M I I using Algorithm1 
While (incomplete branches>0) 

Choose the branch with maximum opportunity 
 Perform projection in the proper direction 
 Based on projection results add more branches or    

  eliminate current one if necessary 
 If (matrix is complete in this branch) 

If (achieved rank<minimum achieved rank) 
     Update minimum achieved rank 
End 

 End 
End 

Fig. 5 Algorithm for projection-based completion algorithm 

C. Projection using Erasure Decoding Techniques 

    For efficient row (column) projection, we use erasure 
decoding techniques. The set of all independent rows in the 
complete sub-matrix is the generator matrix G , of a block 

linear code, and an incomplete row is considered as a 
codeword generated from this block linear code which is 
received with some erasures. Having generator matrix G , 

parity matrix H , can be constructed ( 0TGH = ). Then the 

rows in H specify all the constraints on a vector for being a 
codeword generated from this block linear code. 
 Consider an incomplete matrix M  with colored 
complete sub-matrix in Fig. 6.(a).  The generator matrix is 
first constructed by selecting independent rows in the 
complete sub-matrix and is converted to the row reduced 
echelon form (Fig. 6.(b)) to efficiently obtain the parity 
check matrix. The row reduced echelon form of a matrix 
with rank k has this property that contains an identity matrix 

*k kI  (highlighted in the generator matrix of Fig. 6.(c)). If 

the generator matrix is in systematic format [ | ]G I P= , 

then we can construct parity check matrix easily as 

[ | I]TH P=  (Fig. 6.(c)). 

 

 

(a) (b)      (c) 
Fig. 6. (a) an incomplete matrix with highlighted maximal complete sub-
matrix,  (b) row reduced echolon form of complete sub-matrix as a generator 
matrix, (c) parity check matrix constructed from the generator matrix 

The parity check matrix determines all constraints on a 

codeword 1 2 3 4 5[ ]x x x x x  generated by this block linear code: 

1 2 3 4 1 3 50, 0, 0x x x x x x x⊕ ⊕ ⊕ ⊕= = =  

By examining these constraints on the incomplete row, it is 
found that 1 2 1x x= = , and the row is completed. 

 Converting a matrix to its row reduced echelon form has 

a polynomial complexity 2
1 2(| || | )O I I . Constructing parity 

matrix from the generator matrix has a complexity 

1 2(| || |)O I I . In a single horizontal projection, the number 

of incomplete rows is 1| |m I− , and the maximal complete 

sub-matrix with rank k   defines 2| |I k−  constraints on the 

incomplete rows. In order to check each constraint on an 
incomplete row, maximum 2| |I  multiplication is needed. 

The total complexity of horizontal projection is less than 
2

1 2 2 1 2 1 2(( | |)(| |) | | | || | | || |)O m I I k I I I I I− − + +   which is 

bounded above by 3(max( , ) )O a b . 

 The growth rate of the tree depends upon the difference 

between the minimum possible rank *k , and rank of the 
initial maximal complete sub-matrix k . The growth of the 

tree due to a rank increment is bounded above by qβ , where 

β  is the maximum number of erasures in the rows or 



columns, and the maximum number of rank increments in a 

path of the tree is *k k− . Furthermore, the growth due to 
the multiple allowed combinations for completing a row or 

column is bounded above by max( , )a b kq −  for each projection 

because each constraint removes one degree of freedom of 
erasures (say in a completely erased row) and the total 
number of erasure is bounded above by max( , )a b . This is 

still bearable since in most cases, there is an incomplete row 
(column) with a unique solution (no new branch) or a small 
number of possible solutions and other rows (columns) with 
higher number of solutions are not considered in the 
projection. However, if the size of the tree is noticeably 
large, the sub-optimum algorithm introduced in the next 
subsection is useful.  

D. Pruning and Sub-optimum Algorithm 

 For large incomplete matrices, which correspond to 
scenarios with large number of messages, receivers or 
vector (block) sizes, we propose a pruning scheme to 
manage the complexity. Specifically, whenever the number 
of branches goes beyond a preset threshold, the branches 
with smaller metric (see Section III.B) are pruned.  
 Even if in some situations, the optimum branch is 
pruned from the tree; the final low rank solution is still 
useful since it is a code design with small number of 
transmissions and can be a good approximate for the 
optimum transmission rate. 

IV. SIMULATION RESULTS 

 For the index coding problem in Fig.1, the completed 
matrix based on the proposed algorithm is of rank 2 , with 
all erasures identified as '1' . The corresponding index code 
is constructed by selecting two independent columns, e.g.  

1 1 2 5y x x x= + + , 2 2 3 4y x x x= + + . Accordingly, all 

receivers can decode their desired message by using these 
two transmissions and their side information. The optimal 
transmission rate is 1/2. 
  The second example is a 7-multiple unicast index 
coding. It is proven in [8] that any topological interference 
management problem can be formulated as a linear index 
coding problem. An instance of the topological interference 
management problem and its associated index coding are 
depicted in Fig. 7. This problem has been solved in [8] by a 
graph theoretical approach (without constraining the block 
length and the field size) leading to an optimal transmission 
rate of 2/5. 
 

 
(a) (b) 

Fig 7. (a) A 7-multiple unicast topological interference management 
problem, (b) corresponding index coding problem 

 
 

n Size Erasure Initial 
Rank 

Pruning 
Threshold 

Number 
of Tests 

Achieved 
Rank 

Avg. 
Runtime 

1 7 7×   59% 2 ∞   10 3 0.9 sec 

2 

 
 

14 14×  

 
 

59% 

 
 
4 

∞   10 5 21 min 

2000 10 5 13 min 
500 10 7 times 5  

3 times 6 
11 min 
32 min 

Table 1. Matrix completion for a 7-multiple unicast index coding over 
binary field with different levels of pruning. The results are obtained on 
Matlab 2013, CPU Core i5, and 4GB of RAM. 
 
 We solved the problem for the case of 2q =  and block 

length 1,2n =  with the proposed algorithm, and reported 
the results in Table 1. As evident, with n=1 a transmission 
rate of 1/3 and with 2n =  a rate of 2/5 is achieved over the 
binary field. The results indicate that pruning could speed 
up the computations. Interestingly, achieving the optimum 
transmission rate (and obtaining the associated index code) 
is feasible over the binary field with 2n = . And there is no 
need for a larger field size.  
 Since the index code achieving this optimal transmission 
rate is not unique, and the initial complete sub-matrix has a 
lower rank in comparison to the minimum achieved rank, 
the scheme in [10] fails to complete the matrix. 

V. CONCLUSIONS 

 In this paper, we proposed a constructive approach for 
code design and rate analysis of linear index coding 
problems. The index coding problem was formulated as a 
minimum rank matrix completion problem over finite fields 
for which an algebraic solution was presented. The proposed 
approach can approximate or identify the optimum rate of 
general linear index coding problems with specified 
accuracy. 
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