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In this paper, we study a consensus problem in multi-agent systems, where the entire system is decentralized in the sense
that each agent can only obtain information (states or outputs) from its neighbor agents. The existing design methods found
in the literature are mostly based on a graph Laplacian of the graph which describes the interconnection structure among
the agents, and such methods cannot deal with complicated control specification. For this purpose, we propose to reduce
the consensus problem at hand to the solving of a strict matrix inequality with respect to a Lyapunov matrix and a controller
gain matrix, and we propose two algorithms for solving the matrix inequality. It turns out that this method includes the
existing Laplacian based method as a special case and can deal with various additional control requirements such as the
convergence rate and actuator constraints.

Keywords: multi-agent systems, consensus, decentralized control, graph Laplacian, matrix inequality, LMI.

1. Introduction

For multi-agent systems, the notion “consensus” means to
reach an agreement regarding a certain quantity of interest
that depends on the state of all agents (Olfati-Saber et al.,
2007). The theoretical framework for posing and solv-
ing consensus problems in networked dynamic systems
was introduced in (Olfati-Saber and Murray, 2003; 2004)
based on the earlier work of Fax and Murray (Fax, 2001;
Fax and Murray, 2004). In recent years, there has been
much interest in problems related to multi-agent systems
with a close relation to consensus problems, including col-
lective behavior of flocks and swarms, sensor fusion, ran-
dom networks, the synchronization of coupled oscillators,
formation control of multi-robots, optimization-based co-
operative control, etc. For more detailed information on
this line, see the survey paper (Olfati-Saber et al., 2007)
and the references therein.

Focusing on the basic consensus problem requiring
that all agents’ states converge to the same vector, the well
known existing method is to describe the agents’ intercon-
nection structure as a directed or undirected graph and to
use the graph Laplacian as a state feedback gain. In that
context, the proof of the states’ convergence is usually
made using LaSalle’s invariant principle (Khalil, 2002).
However, to the best of our knowledge, such a Laplacian

based method is generally limited to the case that each
agent has a low dimension and the control specification is
simple. Pogromsky et al. (2002) studied partial synchro-
nization, which is closely related to the consensus prob-
lem, and proposed designing global symmetric coupling
among agents (subsystems) so that the system’s stabil-
ity could be examined by Lyapunov’s direct method. In
that context, the requirement of global symmetry limits
the range of systems, and the feedback gain is basically
the interconnection strength among subsystems (similar
to the graph Laplacian). Recently, Wang et al. (2008) es-
tablished a decentralized control method for achieving the
consensus of multi-agent systems, but the assumption was
made that all subsystems should be controllable, and the
differences in the agents’ states are equally used in the
feedback, which generally leads to conservativeness. The
controller proposed in (Pogromsky et al., 2002) cannot
deal with convergence rate specification or actuator con-
straints, and the one in (Wang et al., 2008) cannot attack
actuator constraints. To deal with the case that agents’
dynamics are in a general form, and to incorporate these
additional control specifications, we need to seek a new
method.

This paper is motivated by the above observation. We
study a basic consensus problem in multi-agent systems,
where the entire system is decentralized in the sense that
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each agent can only obtain information (states or outputs)
from its neighbor agents. Realizing the fact that the limi-
tation of the existing Laplacian based method is originated
from the use of LaSalle’s invariant principle in the conver-
gence proof, we reduce the consensus problem to solving
a strict matrix inequality with respect to a Lyapunov ma-
trix and a controller gain matrix, which is a necessary and
sufficient condition for the consensus problem. The con-
troller gain matrix has a structure constraint corresponding
to the interconnection among the agents. Since the ma-
trix inequality is bilinear with respect to the variables, we
propose two algorithms for solving the matrix inequality
effectively. It turns out that this method includes the exist-
ing Laplacian based method as a special case and can deal
with various additional control requirements.

The remainder of this paper is organized as follows:
In Section 2, we give some preliminaries about graph the-
ory together with the existing Laplacian based method
for consensus. Section 3 establishes the matrix inequal-
ity based method by reducing the consensus problem to
a matrix inequality with an algorithm and discusses how
to solve the matrix inequality effectively. Two numerical
examples are given in Section 4 to show the validity of the
proposed method, and an extension is made to the case
of static output feedback in Section 5. Finally, Section 6
concludes the paper.

2. Preliminaries

2.1. Graph Laplacian. Let us review some basic def-
initions for consensus in a network. The interconnection
structure of a family of agents can be represented by using
a directed graph (or digraph) G = (V , E) with the set of
nodes V = {1, 2, . . . , N} and edges E ⊂ V×V . The edge
(i, j) ∈ E or i → j means that the information of the i-th
agent is available for the j-th agent.

The neighbor agents set of the i-th agent is defined as

Ni :=
{

j ∈ V
∣∣∣(j, i) ∈ E

}
, (1)

which is the index set of the agents from which the i-
th agent can obtain necessary information. Then, the
graph Laplacian of the agents’ structure is defined as
L = [lij ]N×N , where

lij =

⎧⎪⎨
⎪⎩

−1 if j ∈ Ni,

|Ni| if j = i,

0 otherwise,

(2)

and |Ni| denotes the number of neighbors of the i-th agent
(or the in-degree of agent i). For example, using the above
definition, the graph Laplacians of the structures in Fig. 1

are, respectively,
⎡
⎢⎢⎣

2 0 −1 −1
−1 1 0 0

0 −1 1 0
0 0 −1 1

⎤
⎥⎥⎦ ,

⎡
⎣

1 −1 0
0 1 −1

−1 0 1

⎤
⎦ . (3)

It is easy to see from the definition (2) that all row-
sums of L are zero, and thus L always has a zero eigen-
value and the corresponding eigenvector 1 = [1 1 · · · 1]T .

For other spectral properties of the graph Laplacian,
see, e.g., (Mohar, 1991; Godsil and Royle, 2001).

2.2. Consensus via the graph Laplacian. For sim-
plicity, consider the case where all agents are integrators
described by

ẋi = ui , xi ∈ R. (4)

The consensus problem is to design the control input ui,
depending on states of its neighbor agents, so that all
agents’ states converge to the same value, i.e.,

lim
t→∞ |xi(t) − xj(t)| = 0 , ∀i, j . (5)

To solve the consensus problem, the existing method is to
construct the control input as

ui =
∑
j∈Ni

(xj − xi), (6)

which is based on the idea of proportionally reducing the
errors between two agents’ states. In fact, with the defini-
tions x = [x1 x2 · · · xN ]T and u = [u1 u2 · · · uN ]T , the
control input (6) can be compactly written as

u = −Lx . (7)

In this sense, we call (6) a (graph) Laplacian based
method.

The closed-loop system composed of (4) and (6) (or
(7)) is

ẋ = −Lx, (8)

and in the literature LaSalle’s invariant principle (Khalil,
2002) is usually used to show that all states converge to
the same value as required in (5) .

Fig. 1. Directed graph examples.
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2.3. Kronecker product. A tool that is very useful
in modeling and manipulating equations governing group
motion is the Kronecker product ⊗ (Lancaster and Tis-
menetsky, 1985), which is defined between two matrices
P = [pij ] and Q as

P ⊗ Q = [pijQ] . (9)

For example, if ẋi = Axi represents the dynamics of a
single agent, the dynamics of N identical agents can be
represented as ẋ = (IN ⊗A)x. Another important case is
when A is an N×N matrix representing the manipulation
of scalar data from N agents, and that the manipulation
needs to be applied to each value of a vector of length n.
In that case, the manipulation can be represented by con-
catenating the N vectors of length n into a single vector
of length Nn, and multiplying it by A ⊗ In.

The following property of the Kronecker product:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (10)

can be proved (Lancaster and Tismenetsky, 1985) when
all matrix operations are well defined. In particular, if X
is an r × s matrix, and Y is an N × N matrix, then

(IN ⊗X)(Y ⊗Is) = (Y ⊗Ir)(IN ⊗X) = Y ⊗X . (11)

3. Matrix inequality based design method

3.1. Problem formulation. Consider the case where
all agents have the same dynamics described as

ẋi = Axi + Bui, (12)

where xi ∈ R
n is the state, ui ∈ R

m is the control input,
and A, B are constant matrices of an appropriate dimen-
sion. Since it is known that consensus among agents is
possible if and only if the interconnection graph includes
a directed spanning tree (Olfati-Saber et al., 2007), we as-
sume that the present system graph also has this property.
Moreover, for the benefit of dealing with all agents in a
collective manner, we write the entire system compactly
as

ẋ = ADx + BDu, x ∈ R
nN , u ∈ R

mN , (13)

where x = [xT
1 xT

2 · · · xT
N ]T ∈ R

nN is the group state
and u = [uT

1 uT
2 · · · uT

N ]T ∈ R
mN is the group control

input, and AD = IN ⊗ A , BD = IN ⊗ B .
The consensus problem is to design the decentral-

ized state feedback u, i.e., to design each ui depending on
states of its neighbor agents and itself, so that all agents’
states converge to the same vector, i.e.,

lim
t→∞ ‖xi(t) − xj(t)‖ = 0 , ∀i, j . (14)

Here, the symbol ‖ · ‖ denotes the Euclidean norm of a
vector.

The following lemma plays an important role in the
forthcoming discussion.

Lemma 1. Let LC = L ⊗ In. Then,

LCAD = ADLC . (15)

Proof. Using (10) or (11), we obtain

LCAD = (L ⊗ In)(IN ⊗ A)
= (LIN ) ⊗ (InA) = (INL) ⊗ (AIn)
= (IN ⊗ A)(L ⊗ In) = ADLC .

(16)

�

3.2. Stabilization condition and the consensus algo-
rithm. In this section, we propose a matrix inequality
based method for the above-mentioned consensus prob-
lem. The basic idea is to reduce the consensus problem to
a stabilization issue.

As formulated in the previous section, the control in-
put has a decentralized structure. In other words, the con-
trol input of the i-th agent only depends on states of its
neighbor agents and itself. To meet this requirement, we
propose the following control input:

u = KDLCx, (17)

where KD = diag{K1, K2, . . . , KN}, Ki ∈ R
n×n. To

see that the controller (17) has the desired decentralized
structure, we take the left graph structure in Fig. 1 as an
example and suppose all agents’ dynamics dimension is
one. Then, (17) leads to

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ = KD

⎡
⎢⎢⎣

2 0 −1 −1
−1 1 0 0

0 −1 1 0
0 0 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

= KD

⎡
⎢⎢⎣

2x1 − x3 − x4

x2 − x1

x3 − x2

x4 − x3

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

k1(2x1 − x3 − x4)
k2(x2 − x1)
k3(x3 − x2)
k4(x4 − x3)

⎤
⎥⎥⎦ , (18)

which is obviously consistent with the interconnection
structure described on the left side of Fig. 1. For exam-
ple, the control input of Agent 1 depends on x1, x3 and
x4.

The closed-loop system composed of (13) and (17) is

ẋ = (AD + BDKDLC)x . (19)

Note that the objective of designing KD is not to drive all
states to zeros, but to drive all states to the same vector.
Having this in mind, we further observe that

xC = LCx = 0 ⇐⇒ x = α1 . (20)
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Thus, the control problem is reduced to considering the
stability/stabilization of xC whose dynamics can be de-
scribed as

ẋC = LC ẋ = LCADx + LCBDKDLCx

= ADLCx + LCBDKDxC

= (AD + LCBDKD)xC .

(21)

If all elements of xC are independent, we can use
any existing design method (Lyapunov equation, matrix
inequality) for the above system and obtain a stabilization
condition with respect to the unknown gain matrix KD.
However, since the matrix L is not full rank, LC is not
full rank either, and thus the elements of the vector xC are
not independent. For example, consider the right graph
structure in Fig. 1 with all agents’ dynamics dimension
being one. Then, n = 1, N = 3, and

xC = LCx =

⎡
⎣

1 −1 0
0 1 −1

−1 0 1

⎤
⎦x =

⎡
⎣

x1 − x2

x2 − x3

x3 − x1

⎤
⎦ .

(22)
Obviously, x1 − x2 → 0 and x2 − x3 → 0 lead to x3 −
x1 → 0, which means we only need to take care of two
elements of the vector xC .

Based on the above observation, we extract the lin-
early independent rows of L and denote it by L̃. Then, let
L̃C = L̃ ⊗ In, and let x̃C = L̃Cx. It is easy to see that
x̃C is in fact a subvector of xC and the elements of x̃C are
independent. Therefore, from now on we will focus our
attention on the stabilization of x̃C .

The dynamics equation of x̃C is

˙̃xC = (ÃD + L̃CBDK̃D)x̃C , (23)

where ÃD = IN−1 ⊗ A, and K̃D is computed from KD

satisfying K̃DL̃C = KDLC . The procedure is as follows:
Since L̃ is extracted from L, suppose that the extracted
row number is j1, j2, . . . , jN−1. Defining ei as the i-th
column of an identity matrix, we obtain

L̃ = ECL, EC
�
=

⎡
⎢⎢⎢⎢⎣

eT
j1

eT
j2

...

eT
jN−1

⎤
⎥⎥⎥⎥⎦

. (24)

Then, using (10), we obtain

L̃C = L̃ ⊗ In = (ECL) ⊗ (In × In)
= (EC ⊗ In) (L ⊗ In) = (EC ⊗ In)LC .

(25)

Thus, the relation between KD and K̃D is obtained from
K̃DL̃C = KDLC such that

K̃D (EC ⊗ In)LC = KDLC . (26)

Although the matrix LC is singular and thus cannot
be dropped in the above equation, we can use a kind of
pseudo-inverse matrix or another direct method to obtain
K̃D including the unknown gain matrices in KD.

For example, consider again the right graph structure
in Fig. 1 with all agents’ dynamics dimension being one.
We can easily obtain L̃C from LC and EC as

L̃C =

[
1 −1 0
0 1 −1

]
, EC =

[
1 0 0
0 1 0

]
. (27)

Since the original gain matrix is KD = diag{k1, k2, k3},
from (26) we obtain

K̃D

[
1 0 0
0 1 0

]⎡
⎣

1 −1 0
0 1 −1

−1 0 1

⎤
⎦

= K̃D

[
1 −1 0
0 1 −1

]

= KDLC =

⎡
⎣

k1 −k1 0
0 k2 −k2

−k3 0 k3

⎤
⎦ ,

(28)

and thus

K̃D =

⎡
⎢⎣

k1 −k1 0
0 k2 −k2

−k3 0 k3

⎤
⎥⎦

⎡
⎢⎣

1 1
0 1
0 0

⎤
⎥⎦

=

⎡
⎢⎣

k1 0
0 k2

−k3 −k3

⎤
⎥⎦ .

(29)

Notice that K̃D has a different size from KD, but it inher-
its all the variables in KD in a linear form.

To summarize the above discussion, we have reduced
the consensus problem to the stabilization of the system
(23) by the feedback gain matrix K̃D. The original feed-
back gain matrices Ki are included in K̃D and thus can be
extracted easily.

Theorem 1. The controller (17) solves the consensus
problem in the system (12) or (13) if and only if there is a
positive definite matrix P satisfying

(ÃD+L̃CBDK̃D)T P +P (ÃD+L̃CBDK̃D) < 0 , (30)

where K̃D has the decentralized structure including the
feedback gains Ki as variables.

Remark 1. From the above discussion it is easy to see
that the existing Laplacian based method is a special case
of Theorem 1, where the feedback gains are set to a fixed
vector with the agents’ dimension being one.

Remark 2. Although the convergence rate issue is men-
tioned in the literature using the name of algebraic con-
nectivity, there is no practical design method for it. In
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contrast, Theorem 1 can design the convergence rate of
the agents’ states, e.g., by specifying an appropriate posi-
tive scalar ζ in the condition (30) as

(ÃD + L̃CBDK̃D + ζI)T P

+ P (ÃD + L̃CBDK̃D + ζI) < 0 .
(31)

Remark 3. Theorem 1 can also deal with actuator con-
straints directly, e.g., by specifying an appropriate positive
scalar klim and constructing an additional linear matrix in-
equality [

klimI K̃D

K̃T
D klimI

]
> 0, (32)

since the matrix inequality (32) requires necessarily that
K̃T

DK̃D < k2
limI and thus KT

i Ki < k2
limI .

Remark 4. Although it is assumed in the problem
formulation that all agents have the same dynamic dif-
ferential equation, it can be seen that the result is the
same even if Bi’s are different. In that case, BD =
diag{B1, B2, . . . , BN}, where Bi is the control input ma-
trix of the i-th agent. Concerning the system matrix part,
it can be relaxed to the assumption that LCAD = ADLC

holds with AD = diag{A1, A2, . . . , AN}, where Ai is the
system matrix of the i-th agent. To conclude in the end of
this subsection, we summarize the consensus algorithm as
follows.

Consensus Algorithm via Decentralized State
Feedback

Step 1. Extract the linear independent rows of L and de-
note it by L̃. Let L̃C = L̃ ⊗ In, ÃD = IN−1 ⊗ A.

Step 2. Solve K̃DL̃C = KDLC or K̃D (EC ⊗ In)
LC = KDLC to obtain K̃D including the unknown
feedback gains as parameters.

Step 3. Solve the matrix inequality (30) with respect to
K̃D and P > 0.

Step 4. Extract the controller gain Ki’s from K̃D.

3.3. Discussion on solving (30). Theorem 1 gives a
necessary and sufficient condition under which the con-
sensus problem is solved. However, the matrix inequality
(30) is a bilinear matrix inequality (BMI) with respect to
the variables K̃D and P > 0. If there is no constraint on
K̃D, we can transform (30) into an equivalent LMI (Boyd
et al., 1994). This is not the case right now, and K̃D has a
fixed structure, as discussed in the previous section. Thus,
as pointed out in the literature, it is generally difficult to
solve (30) globally.

We first propose a two stage method for solving (30).
Although ÃD is not stable, we can always find a positive

scalar λ such that ÃD −λI is stable. For example, we can
choose λ larger than the largest real part of the eigenvalues
of ÃD, i.e., λ > max{Reλ(ÃD)}. Then, there exists a
positive definite matrix Pλ satisfying

(ÃD − λI)T Pλ + Pλ(ÃD − λI) < 0 . (33)

The next stage is to solve (30) with P fixed as Pλ, i.e.,

(ÃD + L̃CBDK̃D)T Pλ + Pλ(ÃD + L̃CBDK̃D) < 0,
(34)

which is an LMI with respect to K̃D, thus easily solvable
with any existing LMI software such as the LMI Control
Toolbox in Matlab (Gahinet et al., 1994).

If the above method does not provide a solution, this
means that we have to consider how to fix the variable
P so that the resultant LMI is feasible. For this purpose,
we propose to use the homotopy based method established
in (Zhai et al., 2001). More precisely, we introduce a real
number μ varying from 0 to 1 and define a matrix function

F (P, K̃D, μ) = F1(P ) + μF2(P, K̃D), (35)

where

F1(P ) = (ÃD − λI)T P + P (ÃD − λI),

F2(P, K̃D) = PL̃CBDK̃D + K̃T
DBT

DL̃T
CP + 2λP

(36)
and λ is computed as above. Then

F (P, K̃D, μ) =

{
F1(P ) if μ = 0,

the LHS of (30) if μ = 1,
(37)

and the problem of finding a solution to (30) is embedded
in the parametrized family of problems

F (P, K̃D, μ) < 0 , μ ∈ [0, 1] . (38)

Next, we start solving (38) with μ = 0, which is very
easy when using the LMI software. Then, we increase μ
gradually (for example, let μ = k/M(k = 1, 2, . . . , M)
with a large M ) and solve (38) gradually with P and K̃D

being fixed alternately, until μ reaches 1.
For a more detailed description of the homotopy

based algorithm for solving BMIs, refer to (Zhai et al.,
2001).

Remark 5. Although, for simplicity, we used λI in
(33) and (36), which makes ÃD − λI stable, it can be
replaced by any matrix W provided that ÃD − W is sta-
ble. In that case, F1(P ) = (ÃD −W )T P +P (ÃD −W ),
F2(P, K̃D) = PL̃CBDK̃D + K̃T

DBT
DL̃T

CP + WT P +
PW .

4. Numerical example

In this section, we provide two examples showing the ef-
fectiveness of our method.
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4.1. Example 1. Consider the right graph structure in
Fig. 1 with all agents’ dynamics being a double integrator,
described as

[
ẋi1

ẋi2

]
=

[
0 1
0 0

] [
xi1

xi2

]
+

[
0
1

]
ui . (39)

Setting

L̃ =
[

1 −1 0
0 1 −1

]
,

L̃C = L̃ ⊗ I2 and λ = 10, the first (two stage) algorithm
gives us the solution

P =

⎡
⎢⎢⎣

52.90 2.54 0 0
2.54 53.16 0 0

0 0 52.90 2.54
0 0 2.54 53.16

⎤
⎥⎥⎦ ,

K̃D =

⎡
⎣

−1.10 −1.08 0 0
0 0 −0.32 −0.28

0.38 1.36 0.38 1.36

⎤
⎦ .

(40)
Then, from (29) and the above solution it is obtained that

K1 =
[ −1.10 −1.08

]
,

K2 =
[ −0.32 −0.28

]
,

K3 =
[ −0.38 −1.36

]
.

(41)

With the above gains, the elements of xi−xj ∈ R
2 (i, j =

1, 2, 3, i 
= j) are described in Fig. 2, which shows that
a consensus among all agents has been achieved. �

Fig. 2. Consensus achieved in Example 1.

4.2. Example 2. Consider a more complex system
(a one-link arm) and the interconnection structure in
Fig. 3.

The mechanics equation of each one link arm is

Jÿi + Bẏi = ktui, (42)

and thus

ẋi =
[

0 1
0 −B/J

]
xi +

[
0

kt/J

]
ui, (43)

where xi = [yi ẏi]T , J is the inertia moment of the arm,
B is the viscous friction coefficient of the arm axis of ro-
tation, kt is the motor torque coefficient. These parame-
ters are set to J = 0.03[kgm2], B = 0.1[kgm2/s], and
kt = 0.5[Nm/V] for numerical computation.

Fig. 3. One-link arm and the associated interconnection
structure.

There are four agents now and the graph Laplacian is

L =

⎡
⎢⎢⎣

1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

⎤
⎥⎥⎦ , (44)

and thus L̃ is obtained as

L̃ =

⎡
⎣

1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤
⎦ . (45)

Setting L̃C = L̃ ⊗ I2 and λ = 1, the first (two stage)
algorithm gives us the solution

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.72 0.22 0 0 0 0
0.22 1.18 0 0 0 0
0 0 1.72 0.22 0 0
0 0 0.22 1.18 0 0
0 0 0 0 1.72 0.22
0 0 0 0 0.22 1.18

⎤
⎥⎥⎥⎥⎥⎥⎦

,

K̃D =

⎡
⎢⎢⎣

−0.09 0.15 0 0 0 0
0 0 −0.09 0.15 0 0
0 0 0 0 −0.09 0.15
0 0 0 0 0 0

⎤
⎥⎥⎦ .

(46)

The solution K̃D is reasonable since the fourth agent
is the leader and thus it does not get any information from
other agents. The other three agents are in the same posi-
tion (only get information from the fourth agent), and thus
their gains are the same.
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With the above controller gains, the elements of xi −
xj ∈ R

2 (i, j = 1, 2, 3, 4, i 
= j) are described in Fig. 4,
which shows that a consensus among all agents has been
achieved. �

Fig. 4. Consensus achieved in Example 2

5. Extension to static output feedback

In this section, we extend the discussion to the case of
static output feedback. Consider the case in which all
agents have the same dynamics described as

ẋi = Axi + Bui, yi = Cxi, (47)

where xi and ui are the same as before, and yi ∈ R
q is

the measurement output. Similarly, the entire system is
written as

ẋ = ADx + BDu, y = CDx, (48)

where x and u are the same as before, y =
[yT

1 yT
2 · · · yT

N ]T∈ R
qN , and CD = IN ⊗ C .

Now, the consensus problem is to design the decen-
tralized static output feedback

u = KDLC̄y , (49)

instead of (17), so that all agents’ states converge to the
same vector. Here, note that LC̄ = L ⊗ Iq is different
from the previous LC .

The closed-loop system composed of (48) and (49) is

ẋ = (AD + BDKDLC̄CD)x . (50)

To proceed, we need the following lemma.

Lemma 2.
LC̄CD = CDLC . (51)

Proof. Using (10), we obtain

LC̄CD = (L ⊗ Iq)(IN ⊗ C)
= (LIN ) ⊗ (IqC) = (INL) ⊗ (CIn)
= (IN ⊗ C)(L ⊗ In) = CDLC .

(52)

�
According to Lemma 2, the closed-loop system (50)

is written as

ẋ = (AD + BDKDCDLC)x . (53)

Note that the above is almost the same as (19) and thus the
remaining discussion is similar to that in Section 3.

We obtain the dynamics equations of xC and x̃C as

ẋC = (AD + LCBDKDCD)xC ,

˙̃xC = (ÃD + L̃CBDK̃DC̃D)x̃C ,
(54)

where C̃D = IN−1 ⊗C, and K̃D is determined from KD

satisfying K̃DC̃DL̃C = KDCDLC . The matrix variable
K̃D has a different size from KD, but it inherits all the
variables in KD in a linear form.

The above discussion is summarized in the following
theorem.

Theorem 2. The controller (49) solves the consensus
problem in the system (47) or (48) if and only if there is a
positive definite matrix P satisfying

(ÃD + L̃CBDK̃DC̃D)T P

+ P (ÃD + L̃CBDK̃DC̃D) < 0 .
(55)

For integrity, we state the algorithm in accordance
with Theorem 2 as follows.

Consensus Algorithm via Decentralized Output
Feedback

Step 1. Extract the linear independent rows of L and de-
note it by L̃. Let L̃C = L̃ ⊗ In, ÃD = IN−1 ⊗ A.

Step 2. Solve K̃DC̃DL̃C = KDCDLC to obtain K̃D

including the unknown feedback gains as parameters.

Step 3. Solve the matrix inequality (55) with respect to
K̃D and P > 0.

Step 4. Extract the controller gain Ki’s from K̃D.

Remark 6. In much the same manner, the assump-
tion that the output matrices of all agents are the same
can be relaxed to the one that LC̄CD = CDLC with
CD = diag{C1, C2, . . . , CN}, where Ci is the output ma-
trix of the i-th agent.
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6. Concluding remarks

For the basic consensus problem in multi-agent systems,
we have proposed to reduce the control problem to solv-
ing a matrix inequality with respect to a Lyapunov ma-
trix and a controller gain matrix. To solve the matrix in-
equality which is bilinear with respect to the variables, we
proposed two algorithms which can be switched in accor-
dance with the computing situation. The proposed method
can deal with agents with general linear system dynamics
of any dimension and incorporate additional control re-
quirements such as the convergence rate and actuator con-
straints.
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