
J. Cryptology (1990) 2:51-59 Journal of Cryptology
© 1 990 International Association for
Cryptologic Research

A Matrix Key-Distribution Scheme 1

Li G o n g and D a v i d J. Wheele r
Computer Laboratory, University of Cambridge,

Cambridge CB2 3QG, England

Abstract. A new key-distribution scheme is presented. It is based on the distinctive
idea that lets each node have a set of keys of which it shares a distinct subset with
every other node. This has the advantage that the numbers of keys that must be
generated is proportional to the number of nodes. Moreover, two nodes can start
a session with virtually no delay. The scheme suits an environment where there is
a certain level of trust among the insiders. The security property to an outsider
remains identical to that of other existing schemes. Two versions of the scheme are
given. Analysis of security and performance shows it is a practical solution to some
key-distribution problems.

Key words. Communication security, Private-key cipher, Session key, Key
distribution.

1. Introduction

The effectiveness of any c ryp tograph ic system is highly dependen t on the techniques
used for selecting, handling, and p ro tec t ing the keys. Key d is t r ibut ion is a ma jo r
p rob lem in an envi ronment where a large n u m b e r of nodes communica te with each
other. In this paper we assume node - to -node encryp t ion ra ther than l ink- to- l ink
encryp t ion which is consider unsui table in an open-sys tem envi ronment [6]. We do
not address this issue of enhancing securi ty by using host mas ter keys, secondary
keys, or key-encrypton keys [-4].

P r o p o s e d so far are three ma jo r key-d i s t r ibu t ion schemes. The first is to use a
pr iva te -key cipher system and a r range that each pa i r of nodes share a different secret
key. Thus N nodes require that N (N - 1)/2 keys be genera ted and d is t r ibu ted by a
secure key manager . Each nodes has to ma in ta in N keys for all possible
communica t ions . This is known as the N 2 p rob lem.

The second is to use a publ ic -key system [2]. Each node selects its own key pa i r
(E, D) and publishes E. When node A wants to communica t e with node B, A
encrypts the message using key E8 and sends the c ipher text to B. The c ipher text can
only be decrypted using the secret key DB. This avoids the N 2 p rob l e m but
publ ic-key encrypt ions and decryp t ions are expensive and slow. A usual va r ia t ion

i Date received: March 31, I988. Date revised: August 17, 1989.

51

52 Li Gong and D. J. Wheeler

is to establish a private session key between each pair of nodes using a public key
when they start communication. A drawback of such schemes is that there is a
considerable delay before nodes can start the session. Each node has to cache one
session key for eah other node it wants to talk to.

The third scheme is to use an authentication server to set up session keys [5].
When a pair of nodes want to communicate, they first authenticate themselves to
the server. The server then generates and distributes a session key. Authentication
protocols can be based either on a private-key cipher or on a public-key cipher. The
delay here is even greater than in the previous scheme.

All these come from the concept of a secret key which people assume is unique
and kept completely secret. The fundamental idea of the scheme we propose here,
in contrast to the concept above, is to let each node have a set o f keys o f which it
shares a distinct subset with every other node. A key server generates the keys and
distributes them as often as required. Upon receiving the keys, nodes can immedi-
ately start communicating to any other node. Our scheme requires a total of O(N)
instead of N (N - 1)/2 keys. Each node needs to hold only O(v/N) keys. Moreover,
as we shall see later, the keys can be as short as 8 bits or even less. The scheme
introduces an extra risk that it is possible for nodes to collude and compromise the
session keys of other nodes. However, it can be arranged that the minimum number
of colluding nodes required is acceptable.

There are two other key-distribution schemes, the predistribution scheme [3] and
the symmetric key generation scheme [1]. They both use expensive algebraic codes.
They are also common in that the threshold of the number of colluding nodes
required to compromise a single key equals the threshold to compromise all the
keys. In our scheme the thresholds are different and it is possible to give higher
security to particular groups of nodes. The matrix scheme is also more cost-effective.
For example, analysis of [3] shows that the number of possible nodes cannot be
greater than the number of key bits sent to each node. In our scheme the former
can be significantly greater than the latter. This means that to maintain a network
of the same size and of at least the same security level, our scheme needs much less
transmission and storage.

We first illustrate the new idea with a simple example. Then we describe the
general principle and two versions of the matrix scheme. We analyze the security
and performance and discuss some possible extensions to enhance them.

2. A Basic Scheme

Assume there are N nodes, where N = m 2. Each node is assigned a position i, j, and
is denoted as %. Similarly, there are N keys denoted as ki~.

A key server generates the keys at random and gives node n~ a set of keys which
consists of all the keys that are either on the same row or column as the node,
K o = {k~ylx = i or y = j}. When node A (n~j) wants to communicate to B (nuv), it
simply finds out B's position u, v and uses the keys k~v and kuj which are common
between A and B to compose a session key, e.g., just concatenates the two keys (see
Fig. 1).

A Matrix Key-Distribution Scheme

A's key line

J ~,;

B's key line

, A's key line

/

Common
keys

/

~1) B key line

53

i U

Fig. 1. The key map.

Two properties are interesting. First, two nodes can start a session virtually
without delay. Second, the storage requirement is reduced by a square root factor.
The key server will generate N keys in total instead of N(N - 1)/2 and each nodes
receives and stores 2,v/N- keys instead of N. However, this basic scheme is weak in
that i r a and B are on the same line or column, any node on the same line or column
could compromise the session because it shares the same common keys used
between A and B. When A and B are not on the same line or column, the situtaion
is better as two correctly positioned colluding nodes are needed to compromise the
session key.

3. Principle

Assume there are N nodes, ni, i = t, 2 N. Associated with each node nl is a set
of keys Ki and a published address P~.

Given the number of nodes N, a random number R as a seed, a set of constraints
C, an algorithm 9enerate(N, R, C) generates the sets of random keys K i such that

Vi, j, k, i :/: j ¢ k: Ki c~ K~ :/: f25 and Ki ~ Kj C Ki ~ Kk.

Given two addresses and the key set of node nl, an algorithm compute(P~, Pj, Ki)
derives a session key kit. Using a fixed order of the common keys independent of i
or j, or a symmetric one-way function, we can arrange that

compute(P~, Pj, K,) = compute(Pj, P~, Ks). i.e., kij = kj,.

A key server generates and distributes all the keys. When A wants to communicate
to B, the protocol is:

1. A find out B's address and kAs = compute(PA, PB, KA).
2. A encrypts with kAB and sends to B specifying source A.
3. B calculates kkB = ksA = compute(PB, PA, KB).
4. B decrypts using kAB and continues if the decryption is successful.

54 Li Gong and D. J. Wheeler

Based on this principle, we extend the basic scheme in two direcions. This results in
the multiline version and the mul t imap version.

4. Multiline Version

This version is achieved by allocating more key lines to each node instead of only
two as in the basic scheme.

Assume there are N nodes where N = m 2. A communica t ion map is defined as
an m x m matrix on which each point has an address Po and corresponds to a node
nij, where i, j = 1, 2, . . . , m. A key m a p is also defined as an m x m matrix where
point i, j corresponds to a key kli. The key set sent to node n~j is

g l j -= {kx,[y - j + cl(x - i) = 0 mod(m)},

l = 1,2 t and c p ¢ c q when p ~ q .

The key set is a set of t lines on the key map all passing through point i, j. These
keys can be stored in t tables where each entry is indexed by the value x - i. This
makes the calculation of c o m m o n keys easier as we will see later.

Algori thm generate generates m 2 r andom keys and puts one on each point on the
key map. It calculates K o from the simple definition, sends it to the node at the
address Pij.

Algori thm compute takes a pair of addresses on the communica t ion map as input,
say Pij and P~,v, and solves t(t - 1) linear equat ion groups, each of which has the form

y -- j + c v (x - - i) = 0

y - - v + cq(x -- u) = 0

p, q = 1, 2 , . . . , t and

The solution is in fact very simple:

mod(m),

mod(m),

p # q .

x - i = (cq(i - u) + j -- v)/(c v - cq) mod(m).

The solutions (x, y) are positions on the communica t ion map of keys that nodes n~j
and nuv have in common. There is no need to calculate y because p, q determines the
key line table and the x - i is the index of the key. Compute then composes a session
key from these keys, possibly using a one-way function. Using a table look up for
the needed reciprocals will speed up the calculation.

When m is chosen to be a prime, each equat ion group has exactly one solution.
Other choices of m also work. For example, to let implementat ion be easier and
faster, it m a y be desirable to make m a power of 2. In this case, when (cp - cq) is
odd, there is exactly one solution; so if we choose half ct's to be even and half odd,
there are at least t2/2 c o m m o n keys between each pair of nodes. When it is even and
the numera tor in the solution equat ion is odd, there is no solution and when both
are even there might be none, one, or more than one solution. These extra keys can
be used to enhance security, a l though it is unlikely to be worth the complication.

Property 1. The key server has to generate N keys and send to each node t w / N keys.

A Matrix Key-Distribution Scheme 55

The time needed to set up a session key is the time complexi ty of algorithm compute
which is O(t2).

Property 2. Assuming m is prime and cp ~ cq when p ~ q, two different nodes have
in common either t(t - 1) or x / ~ + (t - 1)(t - 2) distinct keys.

Proof. Every two nonparallel lines always meet at exactly one point because m is
a prime. Observe that two nodes cannot have more than one common line, and it
is only at the two points where the nodes sit that more than two key lines can
intersect, thus if they do not have a common line they have exactly t(t - 1) inter-
secting points, otherwise, they have

m + (t - 1) (t - 2) = x / ~ + (t - 1) (t - 2)

such points. []

Property 3. Assume m is prime and the c:s are distinct, then for a particular pair
o f nodes, there exist a number o f groups o f t - 1 other nodes who, when colluding
together, will be able to compromise the session key between the pair of nodes. There
are a number o f groups o f t colluding nodes that can compromise A's session keys with
any node.

Proof. There exists a group of t - 1 nodes, each of which has a distinct key line
in common with node A and covers another distinct key on the tth line used in the
session. This group is able to compromise A's particular key for that session. A
group of colluding nodes, one on each of the t lines through A, can compromise all
A's communications. []

We have not derived a satisfactory lower bound of the minimum number of
colluding nodes needed to compromise a session key. The only result is that if {c,}
is a superincreasing sequence and m is sufficiently large, then, to compromise the
key between two nodes, at least [t/3] colluding nodes are needed. However, we
strongly doubt that this lower bound could be reached in most case or that the
constraints on the c~'s are necessary. Therefore we skip the tedious proof here. Note
more colluding nodes may be needed when empty points are allowed on the
communication map.

5. Multimap Version

This version is achieved by generating more key maps but still allocating two key
lines on each map to every node.

Assume there are N nodes where N = m 2. A communicat ion map is defined as an
m × m matrix in which each point i, j has an address P~i and corresponds to a node
n~j where i, j = 1, 2 m. The lth key map is also defined as an m x m matrix in
which each point (i, j)* corresponds to a key kI~. The key set given to n~j is

Kij = {k~yJx = i + al j or y = i + btj, mod(m)}, l = 1, 2 t,

56 Li Gong and D. J. Wheeler

where the a's and b's are all distinct. The key set Kij consists of key rows or columns
on the key maps called key lines.

Algorithm 9enerate generates tm 2 random keys and puts one on each point on
every key map. Then it selects Kit by the definition and sends it to the node at the
address Pit.

Algorithm compute takes a pair of addresses on the communication map as input,
say Pit and P,v, and finds out the common keys k~q where

p = i + a l j and q = u + blv or p = u + alv and q = i + bzj,

l = 1 , 2 t.

It then uses the common keys to compose a session key, possibly using a one-way
function.

Note that if a~ = 0, 2 2t - 2 and b~ -- a, + I, then the above computation
reduces to selecting keys from consecutive key lines by an index starting with value
u and being stepped by v modulo m.

The above is easier to understand if m is a prime; but in fact other values of m
work. For example, to make implementation easier and faster, it may be desirable
to make m a power of 2; however, the following analysis may not hold in this case.

Property 4. The key server has to 9enerate t N keys and send to each node t x / ~ keys.
The time needed to set up a session key is the time complexi ty o f algorithm compute
and is O(t).

Property 5. Assume m is prime. I f two nodes have a common key line on a key map,
they do not have any common key lines on any other key maps.

Proofi All the calculations are done mod(m). Assume A and B have two common
key lines, one on the pth key map and one on the qth. A's and B's key lines on the
pth key map are indicated respectively by the row and column indices

XA = i + apj, yn = i + bpj and x~ = u + apv, YB = U + bpv.

Indices of key lines on the qth key map are

t ! t t

x k = i + a q j , y A = i + b q J and x B = u + a q v , Y B = u + b q v .

There are four cases to consider, i.e., whether the common key lines are rows
or columns on the pth and the qth. The first case is that they are columns on
the pth and the qth. Thus XA = XB and x~ = x~. Solving these equations we get
(ap - aq)(j -- v) = 0. Because the a's are distinct, j = v which further results in i = u.
This says that A and B are the same node, a contradiction. The other three cases
are similar to this one. []

Property 6. Two nodes have in common either 2t or 2t + x / ~ - 2 distinct keys.

Proof. If A and B have a common key line on a key map, they have x / ~ common
keys on this map. According to the previous property, they do not have common

A Matrix Key-Distribution Scheme 57

key lines on any other key maps, so they have two common keys on each other map.
Thus the total is x / ~ + 2(t - 1) = 2t + x//-N - 2. If they never have a common key
line, they have in total 2t common keys. []

To simplify the following results and the proofs, we assume that when A and B
have a common key line, they only use two of the x/@- common keys selected by
the solutions given above.

Property 7. W h e n a pair of nodes communicate, any other node can have at most two
of the common keys shared between the pair.

Proof. Let C be a different node. From Property 5, C can have at most one
common line with A and one with B on all maps. So C can have at most two keys
which are used between A and B. []

Property 8. To compromise the key between two nodes, at least t other colluding
nodes are needed.

Proof. Considering that two nodes have at least 2t common keys, this properly is
a straightforward corollary of the previous one. []

In general this lower bound is also an Upper bound because there is always a
group of t nodes who when colluding together can compromise the session key.
However, as stated before, more colluding nodes may be required if empty points
could be specially allocated on the communication map to enhance security.

6. Enhancing Performance

We can simplify the computation in the multiline version by choosing ct's as
consecutive numbers so that the computation cycle can simply step through
the tables and no more than t - 1 reciprocals are needed. These reciprocals can
be held in a ta.ble to speed up the calculation. Much of the above still holds when
m = 2 n.

Since communicating nodes construct a session key from the common keys, it is
sufficient if every key on the key map is very short, because there are enough bits in
common from which to construct the session key. Thus the number of bits that the
key server has to generate and distribute could be very small. Suppose b is the
common key length and the session key is required to be 64 bits long, then, in the
multiline version, let t = 9 and b = 1, every pair of nodes has at least 72 key bits in
common while in the multimap version, let t = 16 and b -- 2, the number of common
key bits is at least 64. Of course making the total number of key bits larger by
increasing t or b results in a higher level of security.

We summarize a comparison of the multiline and the multimap version (N, b, and
t have the same meaning as before):

58 Li Gong and D. J. Wheeler

Multiline version Multimap version

Server-generated key bits bN btN
Node-stored key bits b t x / ~ 2btx /~
Common key bits bt(t -- 1) 2bt
Time to find common keys O(t 2) O(t)
Minimum colluding nodes [t/3]* t

* If {c,} forms a superincreasing sequence.

7. Security Considerations

When b is very small, we have tO take into account the colluders' ability to perform
exhaustive search. For example, in the multimap version, suppose m coUuders can
search up to s bits. To compromise a session key it is required that

2bm + s > 2bt, i.e., m >_ t - s/2b.

Thus the threshold is lowered from t to t -- s/2b. When the amount of key storage
or transmission is fixed, i.e., b x t is fixed, a smaller b increases the threshold. This
also increases t and thus the time complexity to compute session keys. Another way
to look at this is that, since security requires 2bt > 2bin + s and the amount of key
storage or transmission is proportional to bt, a smaller b reduces the storage and
transmission.

Keys generated and used are not necessarily equal in length. In fact, longer keys
could be allocated to certain points to enhance the security of certain important
nodes. As a more specific example, in the multimap version, if all nodes who have
a common key line on the communication map require higher mutual security, they
can include up to b(v /N - 2) extra bits in their session key. These extra bits are
already available in their common key set but not used in our previous versions. In
this case, according to the security proof, an extra number of ~ - 2 colluding
nodes not on the common key line might be needed, and at least ~ t extra such
nodes are needed to attack their mutual communications. This is a big gain with
little extra effort.

Note if a one-way function is used to compose a session key, it can ensure that
attacking the session key itself does not help in attacking the common keys. When
the one-way function is symmetric with respect to the dictionary order, it is not
necessary to run the common keys through it in a fixed order, which speeds up the
algorithm.

The security results are derived on the assumption that there is one node at each
point on the communication map. They may become stronger if empty points are
allowed. In fact, empty points could be specially allocated to enhance security, for
example, to protect some vital nodes, or to segregate notes which have unclean
records.

Or alternatively, it can be arranged that a node only receives the common keys
it would use to talk to those nodes to which it is allowed to communicate. The little
extra work by the key server, transparent to the concerned nodes, is to find out the

A Matrix Key-Distribution Scheme 59

allowed keys for a node and replace the other keys by r andom bits, before sending
them off. This little effort gives an extra security feature.

We can easily generalize to mul t imap multiline versions, which allow different
compromises between security and node key set length. There is little loss in
choosing N -- mlrn2, a product of two different prime numbers, but the extra
complicat ions do not seem worthwhile.

A concept of logical positions of nodes could be introduced. N o w the posit ion of
a node is not simply its physical address, but is assigned and can be changed by the
key server. This has the advantage that to compromise a session key between a pair
of nodes, a different group of colluding nodes is needed when logical relations
change. This makes insider attacks more difficult.

The frequency of key change is based on the security level wanted. Normally, the
whole or part of the key map is changed less frequently; the values of the a's, the
b's, and the communicat ion map are changed the least frequently. As fewer bits are
to be generated and changed than in convent ional schemes they can be changed
more frequently.

Finally, in the mutt imap version it can be arranged that some key maps are issued
by other servers so that no single server can eavesdrop. The total amoun t of key
traffic remains unchanged.

References

[1] R. Blom, An Optimal Class of Symmetric Key Generation Systems, Advances in Cryptology:
Proceedings of Eurocrypt 84, Lecture Notes in Computer Science, vol. 209, Springer-Vertag, Berlin,
1984, pp. 335-338.

[2] W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transactions on Information
Theory, vol. 22, no. 6, December 1976, pp. 644-654.

[3] T. Matsumto and H. Imai, On the Key Predistribution System: A Practical Solutions to the Key
Distribution Problem, Advances in Cryptology: Proceedings of Crypto 87, Lecture Notes in Com-
puter Science, vol. 293, Springer-Verlag, Berlin, 1987, pp. 185-193.

[4] S. M. Matyas and C. H. Meyer, Generation, Distribution, and Installation of Cryptography Keys,
IBM Systems Journal, vol. 17, no. 2, 1978, pp. 126-137.

[5] R. M. Needham and M. D. Schroeder, Using Encryption for Authentication in Large Networks of
Computers, Communications of the ACM, vol. 21, no. 12, December 1978, pp. 993-999.

[6] V. L. Voydock and S. T. Kent, Security Mechanisms in High-Level Network Protocols, ACM
Computin 9 Surveys, vol. 15, no. 2, 1983, pp. 135-171.

