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Abstract. A new key-distribution scheme is presented. It is based on the distinctive 
idea that lets each node have a set of keys of which it shares a distinct subset with 
every other node. This has the advantage that the numbers of keys that must be 
generated is proportional to the number of nodes. Moreover, two nodes can start 
a session with virtually no delay. The scheme suits an environment where there is 
a certain level of trust among the insiders. The security property to an outsider 
remains identical to that of other existing schemes. Two versions of the scheme are 
given. Analysis of security and performance shows it is a practical solution to some 
key-distribution problems. 
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1. Introduction 

The effectiveness of any c ryp tograph ic  system is highly dependen t  on the techniques 
used for selecting, handling,  and  p ro tec t ing  the keys. Key  d is t r ibut ion  is a ma jo r  
p rob lem in an envi ronment  where a large n u m b e r  of nodes  communica te  with each 
other. In  this paper  we assume node - to -node  encryp t ion  ra ther  than l ink- to- l ink  
encryp t ion  which is consider  unsui table  in an  open-sys tem envi ronment  [6]. We  do 
not  address  this issue of enhancing securi ty  by  using host  mas ter  keys, secondary  
keys, or  key-encrypton  keys [-4]. 

P r o p o s e d  so far are three ma jo r  key-d i s t r ibu t ion  schemes. The first is to use a 
pr iva te -key  cipher  system and a r range  that  each pa i r  of  nodes  share a different secret 
key. Thus N nodes require  that  N ( N  - 1)/2 keys be genera ted  and d is t r ibu ted  by a 
secure key manager .  Each nodes  has  to ma in ta in  N keys for all possible  
communica t ions .  This is known  as the N 2 p rob lem.  

The second is to use a publ ic -key  system [2].  Each node  selects its own key pa i r  
(E, D) and publishes E. When  node  A wants  to communica t e  with node  B, A 
encrypts  the message using key E8 and  sends the c ipher text  to B. The c ipher text  can 
only be decrypted  using the secret key DB. This avoids  the N 2 p rob l e m but  
publ ic-key encrypt ions  and decryp t ions  are  expensive and  slow. A usual va r ia t ion  
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is to establish a private session key between each pair of nodes using a public key 
when they start communication. A drawback of such schemes is that there is a 
considerable delay before nodes can start the session. Each node has to cache one 
session key for eah other node it wants to talk to. 

The third scheme is to use an authentication server to set up session keys [5]. 
When a pair of nodes want to communicate, they first authenticate themselves to 
the server. The server then generates and distributes a session key. Authentication 
protocols can be based either on a private-key cipher or on a public-key cipher. The 
delay here is even greater than in the previous scheme. 

All these come from the concept of a secret key which people assume is unique 
and kept completely secret. The fundamental idea of the scheme we propose here, 
in contrast to the concept above, is to let each node have a set o f  keys o f  which it 
shares a distinct subset with every other node. A key server generates the keys and 
distributes them as often as required. Upon receiving the keys, nodes can immedi- 
ately start communicating to any other node. Our  scheme requires a total of O(N) 
instead of N ( N  - 1)/2 keys. Each node needs to hold only O(v/N) keys. Moreover, 
as we shall see later, the keys can be as short as 8 bits or even less. The scheme 
introduces an extra risk that it is possible for nodes to collude and compromise the 
session keys of other nodes. However, it can be arranged that the minimum number 
of colluding nodes required is acceptable. 

There are two other key-distribution schemes, the predistribution scheme [3] and 
the symmetric key generation scheme [1]. They both use expensive algebraic codes. 
They are also common in that the threshold of the number of colluding nodes 
required to compromise a single key equals the threshold to compromise all the 
keys. In our scheme the thresholds are different and it is possible to give higher 
security to particular groups of nodes. The matrix scheme is also more cost-effective. 
For  example, analysis of [3] shows that the number of possible nodes cannot be 
greater than the number of key bits sent to each node. In our scheme the former 
can be significantly greater than the latter. This means that to maintain a network 
of the same size and of at least the same security level, our scheme needs much less 
transmission and storage. 

We first illustrate the new idea with a simple example. Then we describe the 
general principle and two versions of the matrix scheme. We analyze the security 
and performance and discuss some possible extensions to enhance them. 

2. A Basic Scheme 

Assume there are N nodes, where N = m 2. Each node is assigned a position i, j, and 
is denoted as %. Similarly, there are N keys denoted as ki~. 

A key server generates the keys at random and gives node n~ a set of keys which 
consists of all the keys that are either on the same row or column as the node, 
K o = {k~ylx = i or y = j}. When node A (n~j) wants to communicate to B (nuv), it 
simply finds out B's position u, v and uses the keys k~v and kuj which are common 
between A and B to compose a session key, e.g., just concatenates the two keys (see 
Fig. 1). 
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Fig. 1. The key map. 

Two properties are interesting. First, two nodes can start a session virtually 
without delay. Second, the storage requirement is reduced by a square root factor. 
The key server will generate N keys in total instead of N(N - 1)/2 and each nodes 
receives and stores 2,v/N- keys instead of N. However, this basic scheme is weak in 
that i r a  and B are on the same line or column, any node on the same line or column 
could compromise the session because it shares the same common keys used 
between A and B. When A and B are not on the same line or column, the situtaion 
is better as two correctly positioned colluding nodes are needed to compromise the 
session key. 

3. Principle 

Assume there are N nodes, ni, i = t, 2 . . . . .  N. Associated with each node nl is a set 
of keys Ki and a published address P~. 

Given the number  of nodes N, a random number R as a seed, a set of constraints 
C, an algorithm 9enerate(N, R, C) generates the sets of random keys K i such that 

Vi, j, k, i :/: j ¢ k: Ki c~ K~ :/: f25 and Ki ~ Kj C Ki ~ Kk. 

Given two addresses and the key set of node nl, an algorithm compute(P~, Pj, Ki) 
derives a session key kit. Using a fixed order of the common keys independent of i 
or j, or a symmetric one-way function, we can arrange that 

compute(P~, Pj, K,) = compute(Pj, P~, Ks). i.e., kij = kj,. 

A key server generates and distributes all the keys. When A wants to communicate 
to B, the protocol is: 

1. A find out B's address and kAs = compute(PA, PB, KA). 
2. A encrypts with kAB and sends to B specifying source A. 
3. B calculates kkB = ksA = compute(PB, PA, KB). 
4. B decrypts using kAB and continues if the decryption is successful. 
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Based on this principle, we extend the basic scheme in two direcions. This results in 
the multiline version and the mul t imap version. 

4. Multiline Version 

This version is achieved by allocating more  key lines to each node instead of only 
two as in the basic scheme. 

Assume there are N nodes where N = m 2. A communica t ion  map  is defined as 
an m x m matrix on which each point  has an address Po and corresponds to a node 
nij, where i, j = 1, 2, . . . ,  m. A key m a p  is also defined as an m x m matrix where 
point i, j corresponds to a key kli. The key set sent to node n~j is 

g l j  -= {kx,[y - j + cl(x - i) = 0 mod(m)}, 

l =  1,2 . . . . .  t and  c p ¢ c q  when p ~ q .  

The key set is a set of t lines on the key map  all passing through point  i, j. These 
keys can be stored in t tables where each entry is indexed by the value x - i. This 
makes the calculation of c o m m o n  keys easier as we will see later. 

Algori thm generate generates m 2 r andom keys and puts one on each point  on  the 
key map. It calculates K o from the simple definition, sends it to the node at the 
address Pij. 

Algori thm compute takes a pair  of  addresses on the communica t ion  map  as input, 
say Pij and P~,v, and solves t(t - 1) linear equat ion groups, each of which has the form 

y -- j + c v ( x - -  i) = 0 

y - -  v + cq(x -- u) = 0 

p, q = 1, 2 , . . . ,  t and 

The solution is in fact very simple: 

mod(m), 

mod(m), 

p # q .  

x - i = (cq(i - u) + j -- v)/(c v - cq) mod(m). 

The solutions (x, y) are positions on the communica t ion  map of keys that  nodes n~j 
and nuv have in common.  There is no need to calculate y because p, q determines the 
key line table and the x - i is the index of the key. Compute  then composes  a session 
key from these keys, possibly using a one-way function. Using a table look up for 
the needed reciprocals will speed up the calculation. 

When m is chosen to be a prime, each equat ion group has exactly one solution. 
Other  choices of m also work. For  example, to let implementat ion be easier and 
faster, it m a y  be desirable to make m a power  of  2. In this case, when (cp - cq) is 
odd, there is exactly one solution; so if we choose half ct's to be even and half odd, 
there are at least t2/2 c o m m o n  keys between each pair of  nodes. When  it is even and 
the numera tor  in the solution equat ion is odd, there is no  solution and when both  
are even there might be none, one, or  more  than one solution. These extra keys can 
be used to enhance security, a l though it is unlikely to be worth the complication.  

Property 1. The key  server has to generate N keys  and send to each node t w / N  keys. 
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The time needed to set up a session key  is the time complexi ty  of  algorithm compute 
which is O(t2). 

Property 2. Assuming m is prime and cp ~ cq when p ~ q, two different nodes have 
in common either t(t - 1) or x / ~  + (t - 1)(t - 2) distinct keys. 

Proof. Every two nonparallel lines always meet at exactly one point because m is 
a prime. Observe that two nodes cannot have more than one common line, and it 
is only at the two points where the nodes sit that  more than two key lines can 
intersect, thus if they do not have a common line they have exactly t(t - 1) inter- 
secting points, otherwise, they have 

m + ( t - 1 ) ( t - 2 ) = x / ~ + ( t - 1 ) ( t - 2 )  

such points. []  

Property 3. Assume m is prime and the c:s are distinct, then for  a particular pair 
o f  nodes, there exist  a number o f  groups o f  t - 1 other nodes who, when colluding 
together, will be able to compromise the session key  between the pair of  nodes. There 
are a number o f  groups o f t  colluding nodes that can compromise A's session keys with 
any node. 

Proof. There exists a group of t - 1 nodes, each of which has a distinct key line 
in common with node A and covers another distinct key on the tth line used in the 
session. This group is able to compromise A's particular key for that session. A 
group of colluding nodes, one on each of the t lines through A, can compromise all 
A's communications. [] 

We have not derived a satisfactory lower bound of the minimum number of 
colluding nodes needed to compromise a session key. The only result is that if {c,} 
is a superincreasing sequence and m is sufficiently large, then, to compromise the 
key between two nodes, at least [t/3] colluding nodes are needed. However, we 
strongly doubt  that this lower bound could be reached in most case or that the 
constraints on the c~'s are necessary. Therefore we skip the tedious proof here. Note 
more colluding nodes may be needed when empty points are allowed on the 
communication map. 

5. Multimap Version 

This version is achieved by generating more key maps but still allocating two key 
lines on each map to every node. 

Assume there are N nodes where N = m 2. A communicat ion map  is defined as an 
m × m matrix in which each point i, j has an address P~i and corresponds to a node 
n~j where i, j = 1, 2 . . . . .  m. The lth key map is also defined as an m x m matrix in 
which each point (i, j)* corresponds to a key kI~. The key set given to n~j is 

Kij = {k~yJx = i + al j  or y = i + btj, mod(m)}, l = 1, 2 . . . . .  t, 
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where the a's and b's are all distinct. The key set Kij  consists of key rows or columns 
on the key maps called key lines. 

Algorithm 9enerate generates tm 2 random keys and puts one on each point on 
every key map. Then it selects Kit by the definition and sends it to the node at the 
address Pit. 

Algorithm compute takes a pair of addresses on the communication map as input, 
say Pit and P,v, and finds out the common keys k~q where 

p = i + a l j  and q = u + blv or p = u + alv and q = i + bzj, 

l = 1 , 2  . . . . .  t. 

It then uses the common keys to compose a session key, possibly using a one-way 
function. 

Note that if a~ = 0, 2 . . . . .  2t - 2 and b~ -- a, + I, then the above computation 
reduces to selecting keys from consecutive key lines by an index starting with value 
u and being stepped by v modulo m. 

The above is easier to understand if m is a prime; but in fact other values of m 
work. For example, to make implementation easier and faster, it may be desirable 
to make m a power of 2; however, the following analysis may not hold in this case. 

Property 4. The key server has to 9enerate t N  keys  and send to each node t x / ~  keys. 
The time needed to set up a session key  is the time complexi ty  o f  algorithm compute 
and is O(t). 

Property 5. Assume m is prime. I f  two nodes have a common key line on a key map, 
they do not have any common key  lines on any other key maps. 

Proofi All the calculations are done mod(m). Assume A and B have two common 
key lines, one on the pth key map and one on the qth. A's and B's key lines on the 
pth key map are indicated respectively by the row and column indices 

XA = i + apj, yn = i + bpj and x~ = u + apv, YB = U + bpv. 

Indices of key lines on the qth key map are 

t ! t t 

x k = i + a q j ,  y A = i + b q J  and x B = u + a q v ,  Y B = u + b q v .  

There are four cases to consider, i.e., whether the common key lines are rows 
or columns on the pth and the qth. The first case is that they are columns on 
the pth and the qth. Thus XA = XB and x~ = x~. Solving these equations we get 
(ap - aq)(j  -- v) = 0. Because the a's are distinct, j = v which further results in i = u. 
This says that A and B are the same node, a contradiction. The other three cases 
are similar to this one. []  

Property 6. Two nodes have in common either 2t or 2t + x / ~  - 2 distinct keys. 

Proof. If A and B have a common key line on a key map, they have x / ~  common 
keys on this map. According to the previous property, they do not have common 
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key lines on any other key maps, so they have two common keys on each other map. 
Thus the total is x / ~  + 2(t - 1) = 2t + x//-N - 2. If they never have a common key 
line, they have in total 2t common keys. []  

To simplify the following results and the proofs, we assume that when A and B 
have a common key line, they only use two of the x/@- common keys selected by 
the solutions given above. 

Property 7. W h e n  a pair of nodes communicate, any other node can have at most two 
of the common keys shared between the pair. 

Proof. Let C be a different node. From Property 5, C can have at most one 
common line with A and one with B on all maps. So C can have at most two keys 
which are used between A and B. [] 

Property 8. To compromise the key between two nodes, at least t other colluding 
nodes are needed. 

Proof. Considering that two nodes have at least 2t common keys, this properly is 
a straightforward corollary of the previous one. []  

In general this lower bound is also an Upper bound because there is always a 
group of t nodes who when colluding together can compromise the session key. 
However, as stated before, more colluding nodes may be required if empty points 
could be specially allocated on the communication map to enhance security. 

6. Enhancing Performance 

We can simplify the computation in the multiline version by choosing ct's as 
consecutive numbers so that the computation cycle can simply step through 
the tables and no more than t -  1 reciprocals are needed. These reciprocals can 
be held in a ta.ble to speed up the calculation. Much of the above still holds when 
m = 2  n. 

Since communicating nodes construct a session key from the common keys, it is 
sufficient if every key on the key map is very short, because there are enough bits in 
common from which to construct the session key. Thus the number of bits that the 
key server has to generate and distribute could be very small. Suppose b is the 
common key length and the session key is required to be 64 bits long, then, in the 
multiline version, let t = 9 and b = 1, every pair of nodes has at least 72 key bits in 
common while in the multimap version, let t = 16 and b -- 2, the number of common 
key bits is at least 64. Of course making the total number of key bits larger by 
increasing t or b results in a higher level of security. 

We summarize a comparison of the multiline and the multimap version (N, b, and 
t have the same meaning as before): 
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Multiline version Multimap version 

Server-generated key bits bN btN 
Node-stored key bits b t x / ~  2btx /~  
Common key bits bt(t -- 1) 2bt 
Time to find common keys O(t 2) O(t) 
Minimum colluding nodes [t/3]* t 

* If {c,} forms a superincreasing sequence. 

7. Security Considerations 

When b is very small, we have tO take into account the colluders' ability to perform 
exhaustive search. For  example, in the multimap version, suppose m coUuders can 
search up to s bits. To compromise a session key it is required that 

2bm + s > 2bt, i.e., m >_ t - s/2b. 

Thus the threshold is lowered from t to t --  s/2b. When the amount of key storage 
or transmission is fixed, i.e., b x t is fixed, a smaller b increases the threshold. This 
also increases t and thus the time complexity to compute session keys. Another way 
to look at this is that, since security requires 2bt  > 2bin + s and the amount  of key 
storage or transmission is proportional to bt, a smaller b reduces the storage and 
transmission. 

Keys generated and used are not necessarily equal in length. In fact, longer keys 
could be allocated to certain points to enhance the security of certain important  
nodes. As a more specific example, in the multimap version, if all nodes who have 
a common key line on the communication map require higher mutual  security, they 
can include up to b(v /N - 2) extra bits in their session key. These extra bits are 
already available in their common key set but not used in our previous versions. In 
this case, according to the security proof, an extra number of ~ - 2 colluding 
nodes not on the common key line might be needed, and at least ~ t extra such 
nodes are needed to attack their mutual communications. This is a big gain with 
little extra effort. 

Note if a one-way function is used to compose a session key, it can ensure that 
attacking the session key itself does not help in attacking the common keys. When 
the one-way function is symmetric with respect to the dictionary order, it is not 
necessary to run the common keys through it in a fixed order, which speeds up the 
algorithm. 

The security results are derived on the assumption that there is one node at each 
point on the communication map. They may become stronger if empty points are 
allowed. In fact, empty points could be specially allocated to enhance security, for 
example, to protect some vital nodes, or to segregate notes which have unclean 
records. 

Or alternatively, it can be arranged that a node only receives the common keys 
it would use to talk to those nodes to which it is allowed to communicate. The little 
extra work by the key server, transparent to the concerned nodes, is to find out the 
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allowed keys for a node and replace the other  keys by r andom bits, before sending 
them off. This little effort gives an extra security feature. 

We can easily generalize to mul t imap multiline versions, which allow different 
compromises between security and node  key set length. There is little loss in 
choosing N -- mlrn2, a product  of  two different prime numbers, but  the extra 
complicat ions do not seem worthwhile. 

A concept  of logical positions of nodes could be introduced. N o w  the posit ion of 
a node is not  simply its physical address, but  is assigned and can be changed by the 
key server. This has the advantage that  to compromise  a session key between a pair  
of  nodes, a different group of colluding nodes is needed when logical relations 
change. This makes insider attacks more  difficult. 

The frequency of key change is based on the security level wanted. Normally,  the 
whole or part  of  the key map is changed less frequently; the values of the a's, the 
b's, and the communicat ion map are changed the least frequently. As fewer bits are 
to be generated and changed than in convent ional  schemes they can be changed 
more  frequently. 

Finally, in the mutt imap version it can be arranged that some key maps  are issued 
by other  servers so that no single server can eavesdrop. The total amoun t  of key 
traffic remains unchanged. 
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