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Abstract

In this work, we study the quasinormal modes of Schwarzschild and 

Schwarzschild (Anti-) de Sitter black holes by a matrix method. The proposed 

method involves discretizing the master field equation and expressing it in the 

form of a homogeneous system of linear algebraic equations. The resulting 

homogeneous matrix equation furnishes a non-standard eigenvalue problem, 

which can then be solved numerically to obtain the quasinormal frequencies. 

A key feature of the present approach is that the discretization of the wave 

function and its derivatives is made to be independent of any specific metric 

through coordinate transformation. In many cases, it can be carried out 

beforehand, which in turn improves the efficiency and facilitates the numerical 

implementation. We also analyze the precision and efficiency of the present 

method as well as compare the results to those obtained by different approaches.

Keywords: quasinormal modes, black hole, Schwarzschild spacetime, 

de Sitter spacetime

(Some figures may appear in colour only in the online journal)

1. Introduction

A black hole, long considered to be a physical as well as mathematical curiosity, is derived 

in general relativity as a generic prediction. Through gravitational collapse, a stellar-mass 

black hole can be formed at the end of the life cycle of a very massive star, when its gravity 
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overcomes the neutron degeneracy pressure. A crucial feature of a black hole is the existence 

of the event horizon, a boundary in spacetime beyond which events cannot affect an outside 

observer. Despite its invisible interior, however, the properties of a black hole can be inferred 

through its interaction with other matter. By quantum field theory in curved spacetime, it is 

shown that the event horizons emit Hawking radiation, with the same spectrum of black body 

radiation at a temperature determined by its mass, charge and angular momentum [2]. The 

latter completes the formulation of black hole thermodynamics [3], which describes the prop-

erties of a black hole in analogy to those of thermodynamics by relating mass to energy, area 

to entropy, and surface gravity to temperature. Quasinormal modes (QNMs) arise as the tem-

poral oscillations owing to perturbations in black hole spacetime [5]. Owing to the energy loss 

through flux conservation, these modes are not normal. Consequently, when writing the oscil-

lation in an exponential form, ( )ω− texp i , the frequency of the modes is a complex number. 

The real part, ωR, represents the actual temporal oscillation; and the imaginary part, ωI, indi-

cates the decay rate. Therefore, these modes are commonly referred to as quasinormal. The 

stability of the black hole spacetime guarantees that all small perturbation modes are damped. 

Usually, QNMs can be conditionally divided into three stages. The first stage involves a short 

period of the initial outburst of radiation, which is sensitively dependent on the initial condi-

tions. The second stage consists of a long period dominated by the quasinormal oscillations, 

where the amplitude of the oscillation decays exponentially in time. This stage is character-

ized by only a few parameters of the black holes, such as their mass, angular momentum, and 

charge. The last stage takes place when the QNMs are suppressed by power-law or exponen-

tial late-time tails. The properties of QNMs have been investigated in the context of the AdS/

CFT correspondence [6, 7]. As a matter of fact, practically every stellar object oscillates, and 

oscillations produced by very compact stellar objects and their detection are of vital impor-

tance in physics and astrophysics. In 2015, the first observation of gravitational waves from 

a binary black hole merger was reported [4]. The observation provides direct evidence of the 

last remaining unproven prediction of general relativity and reconfirms its prediction of space-

time distortion on the cosmic scale.

Mathematically, the QNMs are governed by the linearized equations of general relativity 

constraining perturbations around a black hole solution. The resulting master field equation is 

a linear second order partial differential equation. Due to the difficulty in finding exact solu-

tions to most problems of interest, various approximate methods have been proposed [8]. If 

the inverse potential, which can be viewed as a potential well, furnishes a well-defined bound 

state problem, the QNMs can be evaluated by solving the associated Schrödinger equation. In 

particular, when a smooth potential well can be approximated by the Pöschl-Teller potential, 

QNM frequencies can be obtained through the known bound states [9]. For general potential 

function, approaches such as continued fraction method [10], Horowitz and Hubeny (HH) 

method [6], asymptotic iteration method [11] can be utilized. A common feature of the above 

methods is that the corresponding master field equation is obtained by representing the wave 

function with power series. Higher precision is therefore achieved by considering higher order 

expansions. A semi-analytic technique to obtain the low-lying QNMs is based on a match-

ing of the asymptotic WKB solutions at spatial infinity and on the event horizon [12]. The 

WKB formula has been extended to the sixth order [13]. Further generalization to a higher 

order, however, is not straightforward. Finite difference method is developed to numerically 

integrate the master field equation [14], and the temporal evolution of the perturbation can be 

obtained.

In this work, by discretizing the linear partial different equation [1], we transfer the mas-

ter field equation as well as its boundary conditions into a homogeneous matrix equation. In 

our approach, the master field equation is presented in terms of linear equations describing 

K Lin and W-L Qian Class. Quantum Grav. 34 (2017) 095004
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N discretized points where the wave function is expanded up to Nth order for each of these 

points. This leads to a non-standard eigenvalue problem and can be solved numerically for 

the quasinormal frequencies. The present paper is organized as follows. In the next section, 

we briefly review how to reformulate the master field equation  in terms of a matrix equa-

tion of non-standard eigenvalue problem. In sections 3 to 5, we investigate the quasinormal 

modes of Schwarzschild, Schwarzschild de Sitter and Schwarzschild anti- de Sitter black hole 

spacetime respectively. The precision and efficiency of the present approach are studied by 

comparing to the results obtained by other methods. Discussions and speculations are given 

in the last section.

2. Matrix method and the eigenvalue problem for quasinormal modes

Recently, we proposed a non-grid-based interpolation scheme which can be used to solve the 

eigenvalue problem [1]. A key step of the method is to formally discretize the unknown eigen-

function in order to transform a differential equation as well as the boundary conditions into a 

homogeneous matrix equation. Based on the information about N scattered data point, Taylor 

series are carried out for the unknown eigenfunction up to Nth order for each discretized point. 

Then the resulting homogeneous system of linear algebraic equations is solved for the eigen-

value. Here, we briefly describe the discretization procedure. For a univariate function f(x), 

one applies the Taylor expansion of a function to N  −  1 discrete points in a small vicinity of 

another point. Without loss of generality, let us expand the function about x2 to ⋯x x x x, , , , N1 3 4 , 

and therefore obtains N  −  1 linear relations between function values and their derivatives as 

follows

F∆ = MD, (2.1)

where

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))F ⋯ ⋯∆ = − − − −f x f x f x f x f x f x f x f x, , , , , ,j N
T
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( ( ) ( ) ( ) ( ))( ) ( )
⋯ ⋯″= ′D f x f x f x f x, , , , , .k N T

2 2 2 2 (2.4)

Now, the above equation implies that all the derivatives at x  =  x2 can be expressed in terms of 

the function values by using the Cramer’s rule. In particular, we have

( ) ( )/ ( )

( ) ( )/ ( )″

=

=

′f x M M

f x M M

det det ,

det det ,

2 1

2 2
 (2.5)
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where Mi is the matrix formed by replacing the ith column of M by the column vector F∆ . 

Now, by permuting the N points, ⋯x x x, , , N1 2 , we are able to rewrite all the derivatives at the 

above N points as linear combinations of the function values at those points. Substituting the 

derivatives into the eigenequation, one obtains N equations with ( ) ( )⋯f x f x, , N1  as its vari-

ables. It was shown [1] that the boundary conditions can be implemented by properly replac-

ing some of the above equations. Usually, the equations which are closer to the boundary 

of the problem are chosen to be replaced, since those equations are the least precise ones. 

For instance, in the case of asymptotically flat Schwarzschild spacetime below, we choose to 

replace the first and the last line in the matrix equation and implement the boundary condition 

by replacing equation (3.11) with equation (3.13).

Now we apply the above method to investigate the master field equation of for QNM. For 

simplicity, here we only investigate the scalar perturbation in black hole spacetime. According 

to the action of the massless scalar field with minimal coupling in curved four dimensional 

spacetime:

( )L∫ ∫= − = − ∂ Φ∂ Φµ
µS x g x gd d ,4 4

 (2.6)

the equation of motion for the massless scalar field reads

∇∇Φ =
µν

µ νg 0. (2.7)

Consider the following static spherical metric

( )
( )

( )θ θ ϕ= − + + +s F r t
r

F r
rd d

d
d sin d ,2 2

2
2 2 2 2

 (2.8)

and rewriting the scalar field by using the separation of variables ( )
( )
θΦ =

φ ω ϕ− +Y e
r

r

t mi i , we 

obtain the following well-known Schrödinger-type equation

[ ( )]
φ

ω φ+ − =

∗r
V r

d

d
0

2

2
2

 (2.9)

where ( )( ) ( )
( ) ( )

= +
+′

V r F r
F r

r

L L

r

1
2

 is the effective potential, and 
( )∫=∗r
r

F r

d
 is tortoise coordi-

nate. As discussed below, the boundary conditions in asymptotically flat, de Sitter and anti-de 

Sitter spacetimes are different. For the interpolation in equation (2.5) to be valid, appropriate 

coordinate transformation shall be introduced, which will be discussed in detail in the follow-

ing sections.

3. Quasinormal modes in Schwarzschild black hole spacetime

In Schwarzschild spacetime, one has

( ) = −F r
M

r
1

2
, (3.1)

and rh  =  2M corresponds to the event horizon of the black hole. The potential vanishes on 

the horizon F(rh)  =  0 and at infinity →∞r , therefore, the wave function has the asymptotic 

solution ( ) ( )φ ∼ ∫ω±r e i r
F r
d

, where  ±  correspond to the wave travelling in positive and negative 

direction respectively. Since the wave function must be an ingoing wave on the horizon and an 

outgoing wave at infinity, the boundary conditions of equation (2.9) read

K Lin and W-L Qian Class. Quantum Grav. 34 (2017) 095004
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φ

φ

+∞ ∼

∼

ω

ω−

∗

∗r

e ,

e ,

r

h
r

i

i

( )

( )
 (3.2)

where

⎛

⎝
⎜

⎞

⎠
⎟= + −∗r r r

r

r
ln 1h

h

 (3.3)

is the tortoise coordinate. We study the QNM only in the region [ )∈ ∞r r ,h . By taking into 

account the above boundary conditions, we first make use of the coordinate transformation

= −x
r

r
1 ,

h
 (3.4)

and rewrite the scalar wave function as

( ) ( )φ = −

ω
ω ω

−
− −x x R xe 1 .

r

x
r r

i

1
i i

h
h h (3.5)

In this case, the boundary conditions become R(0)  =  R0 and R(1)  =  R1, where R0 and R1 are 

indeterminate constants.

The boundary conditions can be further simplified by introducing

( ) ( ) ( )χ = −x x x R x1 , (3.6)

so that

( ) ( )χ χ= =1 0 0. (3.7)

As will be seen below, the boundary condition in equation (3.7) guarantees that the resulting 

matrix equation is homogeneous. The corresponding field equation now becomes

( ) ( ) ( ) ( ) ( ) ( )″τ χ λ χ χ+ + =′x x x x s x x 00 0 0 (3.8)

where

( ) ( ) ( )

( ) ( ) [ ( ) ( ) ( ) ( )]

( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ( )]

τ

λ

= −

= − − + −

= + − − + − +

x x x A x

x x x x x A x x A x

s x A x x x x x A x x A x A x

1 ,

1 1 2 1 2 ,

2 1 1 1 2 6

0
2 2

2

0 1 2

0 2 0 1 2

 

(3.9)

with

( ) ( )

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

ω

ω ω

= − −

= − + − − −

= − − + − + +

A x x x

A x M x x x x

A x x M M x L L

1 ,

4i 2 4 1 1 3 1 ,

1 1 8i 16 2 1 .

2
2

1
2

0
2 2

 

(3.10)

Now, we discretize the interval [ ]∈x 0, 1  by introducing N evenly distributed points with 

x1  =  0 and xN  =  1. By equation (2.5), one may rewrite the above partial different equation in 

a matrix form:

M̄F = 0, (3.11)

where ( )F ⋯ ⋯= f f f f, , , , ,i N
T

1 2  with ( )χ=f xi i , and the matrix M̄ is a function of the quasi-

normal frequency, ω. The boundary conditions = =f f 0N1  can be implemented by defining

   

¯
M

M ⋯

⎧
⎨
⎩

δ
=

=

= −

k N

k N

, 1 or ,

, 2, 3, , 1,
k i

k i

k i
,

,

,
 (3.12)
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and replacing equation (3.11) with

MF = 0. (3.13)

Equation (3.13) furnishes a non-standard eigenvalue problem, obtained by discretizing the 

master equation for massless scalar field equation (2.8) in Schwarzschild black hole space-

time. As a homogeneous matrix equation, for eigenvalues ω ω= 0, the determinant

( ( ))M ω =det 0.0 (3.14)

Equation (3.14) is the desired algebraic equation for the quasinormal frequencies, which can 

be solved numerically by using, for example, Mathematica. In table 1, we show the calculated 

values of the quasinormal frequencies, which are compared to those obtained by sixth order 

WKB method. It is inferred from the results that the present method is consistent with the 

WKB method.

In order to show that the present method gives convergent therefore reliable results, we 

show in figure 1 the calculated frequencies, as well as relative errors as functions of the num-

ber of interpolation points N. It is found that the results indeed converge well at big N. We 

note that the algebraic equation (3.14), by construction, usually has a finite number of roots. 

Therefore, one has to identify the correct eigenvalues from other by-products of the numerical 

solution. In order to seek out the relevant eigenvalue corresponding to the quasinormal mode, 

one may first study a simpler case by taking a specific limit of the metric parameter where 

the corresponding quasinormal frequency is already known. After pinning down the relevant 

quasinormal frequency, one can then vary continuously the parameters to restore the general 

case in question. In practice, the relevant eigenvalue of equation (3.14) is likely to be the one 

with the smallest imaginary part.

4. Quasinormal modes in Schwarzschild de Sitter black hole spacetime

In Schwarzschild de Sitter spacetime, one has

( ) ( )( )⎜ ⎟
⎛
⎝

⎞
⎠

= − − Λ = Λ − − + +F r
M

r
r

r

r
r r r r r1

2
1 .

h
c c h

2
 (4.1)

Table 1. The quasinormal frequencies in asymptotically flat black hole spacetime 
obtained by the present method. The interpolation makes use of 15 points. It is compared 
to those obtained by sixth order WKB method. Both calculations consider rh  =  1.

(n, L) ω ( sixth order WKB) ω ( present method)

{0, 0} 0.220 928  −  0.201 638i 0.220 476  −  0.208 708i

{0, 1} 0.585 819  −  0.195 523i 0.585 868  −  0.195 298i

{1, 1} 0.528 942  −  0.613 037i 0.530 236  −  0.612 45i

{0, 2} 0.967 284  −  0.193 532i 0.967 288  −  0.193 515i

{1, 2} 0.927 693  −  0.591 254i 0.927 764  −  0.591 32i

{2, 2} 0.860 771  −  1.0174i 0.859 041  −  1.016 37i

{0, 3} 1.350 73  −  0.193 001i 1.350 73  −  0.192 999i

{1, 3} 1.321 34  −  0.584 575i 1.321 33  −  0.584 595i

{2, 3} 1.267 18  −  0.992 021i 1.267 36  −  0.991 46i

{3, 3} 1.196 86  −  1.422 77i 1.196 85  −  1.431 17i
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Here 
( )

( )
=

+

+ +
M

r r r r

r r r r2

h c h c

h h c c
2 2

 and ( )Λ = + + −r r r rh h c c
2 2 1 are the black hole mass and the cosmologi-

cal constant, where r  =  rh and r  =  rc represent the event horizon and cosmological horizon 

respectively. The boundary conditions, owing to the existence of the two horizons, become

( )

( )

φ

φ

∼
∼

ω

ω−

∗

∗

r

r

e ,

e .

c
r

h
r

i

i
 (4.2)

We study QNM in the radial interval ⩽ ⩽r r rh c, and the the tortoise coordinate reads

Figure 1. The calculated quasinormal frequencies ω and relative errors δω 
as a function of N. The calculations are carried out with rh  =  1. The exact 
solutions are estimated by the results obtained with N  =  40 interpolation points,  
which read ω = = = −n L1, 3 1.321 342 995 697 624 0.584 569 570 090 3002( ) i, 
ω = = = −n L2, 3 1.267 251 620 404 1664 0.992 016 434 193 0597( ) i.
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( ) ( ) ( )η η η= − + − + + +∗r r r r r r r rln ln ln ,h h c c i h c (4.3)

where

( ) ( )

( )

( ) ( )

η

η

η

=
Λ

− +

=
Λ

+ −

=
+

Λ
+ +

− −

−

− −

r
r r r r

r
r r r r

r r
r r r r

2 ,

2 ,

2 2 .

h
h

h c h c

c
c

h h c c

i
h c

h c h c

1 1

2 2 1

1 1

 (4.4)

In order to transfer the radial interval into [0, 1], we introduce the coordinate transformation

=
−

−
y

r r

r r
,

h

c h
 (4.5)

which gives y  =  0 at r  =  rh and y  =  1 at r  =  rc. In accordance with the boundary conditions, 

we rewrite the scalar field as

( ) ( )φ = −
ωη ωη−y y G y1 .i ic h (4.6)

This implies that G(0)  =  G0 and G(1)  =  G1, where G0 and G1 are indeterminate constants. 

Again, in order to transfer the boundary conditions into the desired form, we further introduce

( ) ( ) ( )ζ = −y y y G y1 , (4.7)

and transfer the field equation to

( ) ( ) ( ) ( ) ( ) ( )″τ ζ λ ζ ζ+ + =′y y y y s y y 00 0 0 (4.8)

with

( ) ( ) ( )
( ) ( )

( )

( )
( ) ( ) ( )( ( ) ( ))

( )

( )
( )

( )

( ) ( )( ( ) )

( )

( ) ( ) ( ( ))

( )
( )

[( ) ( ) ( ) ( ) ]

( ) ( )
( )
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( ( ) )

( )

τ

λ
τ τ ωη η ω ω

τ τ ωη ωη

τ

ω

τ

ω η ωη η ωη ωη

τ

= Λ − −
− − +

− −

=
− + + − + −

−

=
−

− − − + −

+
− − −

+ − +

+ − + − − + − − −

=
+ −

+
+

+ −

′

′

τ

−

′

⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
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y r r y y
y r y r

y r yr

y
y y y y y y y

y y

s y
y

y y

y y y y y y

y

y y r r V y

y
y y

y y y y y y y

V y y
r r r y

L L

r r r y

1
2 1

1
,

1 2i i 2 1

1
,

1

i 1 1 2i i

1
6 1 2

1 2 5i 3i 5i 2i 1 ,

1
.

c h
h c

h c

c h

c h

c h

h c c c h

y

r r

h c h h c h

0
2

0
0 0

0
0

2 2

0

0

2 2 2 2

0
2

2 2

0 2

c h

0

 

(4.9)

The boundary conditions now read ( ) ( )ζ ζ= =0 1 0. Now we are in the position to utilize the 

same numerical procedure to discretize the wave function in the interval ⩽ ⩽y0 1, and solve 

for the quasinormal frequencies. The obtained the quasinormal frequencies are presented in 

table 2 compared to those obtained by the WKB method. It is found that the results from the 

present method are consistent with those from the WKB method.
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5. Quasinormal modes in in Schwarzschild anti-de Sitter black hole spacetime

Finally, we study the Schwarzschild Anti-de Sitter spacetime. We have

( ) ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
= − + Λ = Λ − + + +

Λ
F r

M

r
r

r

r
r r r r1

2
1

1
.

h
h h

2 2 2
 (5.1)

Here ( )= + ΛM r1
r h
1 2

h

 is the mass of the black hole. Equation (5.1) implies that the effec-

tive potential V(r) defined below equation  (2.9) diverges at infinity [6], and therefore the 

wave function vanishes at infinity. Following [6], one utilizes the coordinate transformation 

v  =  t  +  r∗. The resulting black hole metric reads

( ) ( )θ θ ϕ= − + + +s F r v v r rd d 2d d d sin d .2 2 2 2 2 2 (5.2)

The scalar field equation becomes

( )
( ) ( ) ( )

( ) ( )
⎡

⎣⎢
⎤

⎦⎥
φ

ω
φ

φ+ − − =F r
r

r

F r

r

r

r
U r r

d

d

d

d
2i

d

d
0,

2

2
 (5.3)

where ( )
( ) ( )

= +
+

U r
r

F r

r

L L

r

1 d

d

1
2

. We introduce the coordinate transformation

/=z r r,h (5.4)

to transfer the radial coordinate into the interval [ ]∈z 0, 1 , with z  =  1 at r  =  rh and z  =  0 at 

→∞r . On the event horizon, the boundary condition reads φ φ| ==z 1 0, where φ0 is a constant. 

By further introducing

( ) ( ) ( )̻ φ= −z z z1 , (5.5)

one obtains the desired boundary condition ( ) ( )̻ ̻= =0 1 0 for the field equation

( ) ( ) ( ) ( ) ( ) ( )̻ ̻ ̻″τ λ+ + =′z z z z s z z 0,0 0 0 (5.6)

Table 2. The quasinormal frequencies in asymptotically de Sitter black hole 
spacetime obtained by the present method. The interpolation makes use of 22 points. It 
is compared to those obtained by sixth order WKB method. Both calculations consider 
rh  =  1 and rc  =  5.

(n, L) ω ( sixth order WKB) ω ( present method)

{0, 0} 0.196 612  −  0.209 246i 0.197 867  −  0.214 336i

{0, 1} 0.528 48  −  0.186 061i 0.528 526  −  0.185 917i

{1, 1} 0.494 221  −  0.566 946i 0.494 128  −  0.566 613i

{0, 2} 0.884 043  −  0.180 588i 0.884 046  −  0.180 578i

{1, 2} 0.857 042  −  0.547 231i 0.857 032  −  0.547 189i

{2, 2} 0.807 11  −  0.929 985i 0.807 617  −  0.922 932i

{0, 3} 1.239 65  −  0.179 048i 1.239 65  −  0.179 046i

{1, 3} 1.218 82  −  0.540 233i 1.218 83  −  0.540 23i

{2, 3} 1.178 86  −  0.910 682i 1.178 42  −  0.910 812i

{3, 3} 1.123 29  −  1.296 22i 1.134 22  −  1.2328i

K Lin and W-L Qian Class. Quantum Grav. 34 (2017) 095004



10

with

( )

( )

( )
( ) ( )

( )

( ) ( ) ( )
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⎜
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⎠
⎟

⎡
⎣
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⎦
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=
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− Λ − +

=
+ Λ − + + + −

=

Λ − − − − − + −

−

z r
z

z z

y
r z z r z z

z

s z

r z z z z U z r z z

z z

1,

2i 2 2 2
,

2 2 1 2i 2

1
.

h

h h

h
r

z
h

0
2

2

0

2 2

2

0

2 2 2 0 2 3

4

 

(5.7)

Again, the eigenequation can be obtained following the same procedures as before. The cal-

culated quasinormal frequencies are shown in table 3 and compared with the results obtained 

by the HH method. It is inferred from the results that the present method is in accordance with 

the HH method.

6. Discussions and outlooks

In this work, we proposed a new interpolation scheme to discretize the master field equa-

tion  for the scalar quasinormal modes. It is shown that the method can be applied to dif-

ferent black hole spacetimes. By appropriately introducing coordinate transformations, the 

resulting homogeneous matrix equation possesses very similar characteristics. And there-

fore, the quasinormal frequencies can be obtained by the same numerical solver for algebraic 

equations.

On the one hand, we obtain the desired the boundary conditions through appropriate choice 

of coordinate, so that quasinormal modes for different black hole spacetimes are obtained 

through the same numerical scheme. The precision of the present method, on the other hand, 

can be easily improved by increasing the total number of discretization points N, which is a 

convenient feature. By taking the advantage of the efficiency of the existing matrix as well as 

algebraic equation solvers, such as Matlab and Mathematica, the present method is practical 

and efficient. In particular, we have deliberately transferred the radial variable into the interval 

[0, 1]. This is because the evaluation of equation (2.5) can be quite time-consuming for a high-

rank matrix. However, once the radial interval is given, such calculations become independent 

Table 3. The quasinormal frequencies in asymptotically Anti de Sitter black hole 
spacetime obtained by the present method. The interpolation makes use of 22 points. 
It is compared to those obtained by HH method. Both calculations consider L  =  0 
and n  =  0.

Λ r, h( ) ω ( HH method [6]) ω ( present method)

{1, 100} 184.9534  −  266.3856i 184.956  −  266.385i

{1, 50} 92.4937  −  133.1933i 92.4949  −  133.193i

{1, 10} 18.6070  −  26.6418i 18.6073  −  26.6417i

{1, 5} 9.4711  −  13.3255i 9.471 29  −  13.3255i

{1, 1} 2.7982  −  2.6712i 2.797 78  −  2.670 47i

{1, 0.8} 2.5878  −  2.1304i 2.586 24  −  2.128 76i

{1, 0.6} 2.4316  −  1.5797i 2.425 92  −  1.572 12i

{1, 0.4} 2.3629  −  1.0064i 2.381 52  −  0.938 149i
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of the specific form of metric. As a result, equation (2.5) can be carried out beforehand which 

in turn increases the efficiency of the present method.

In this work, we studied quasinormal frequencies. We note that the corresponding wave 

function can also be obtained easily by substituting the obtained frequency ωA into ( )M ω  and 

numerically evaluating the column matrix ξA which satisfies ( )M ω ξ = 0A A . For instance, this 

can be achieved by using Eigensystem command of Mathematica to acquire the eigenvector 

ξA corresponding to the null eigenvalue.

It is noting that the present method is particularly advantageous when applied to asymp-

totically AdS spacetime. This is because in this case, the derivation of equation (5.6) does not 

require the knowledge of an analytic form of the tortoise coordinates, which also applies to 

other metrics in AdS spacetime. In the asymptotically flat as well as dS spacetime, on the other 

hand, an analytic form of the tortoise coordinate usually provides considerable convenience to 

acquire the desired boundary conditions, in order that the problem can be transformed into a 

homogeneous matrix equation for the quasinormal modes. In fact, the above mathematical dif-

ficulties are also encountered for other approaches such as continued fraction and asymptotic 

iteration methods. Furthermore, we observe that the proposed method is quite general and can 

be employed to investigate more sophisticated and physically interesting cases. It possesses 

flexibility and therefore the potential to explore some black hole metrics where the applica-

tions of other traditional methods become less straightforward. As an example, the quasinor-

mal modes of a rotational black hole is characterized by, besides the quasinormal frequency 

ω, a second eigenvalue λ whose physical content is associated with the angular quantum 

number L. Its numerical solution, therefore, involves finding the two eigenvalues, ω and λ, 

simultaneously. The continued fraction method is fit for the task, but its success relies on the 

derivation of a recurrence relation of the coefficients, which might not be obvious for some 

sophisticated metrics. A preliminary attempt [15] shows that the approach proposed in this 

work, on the other hand, can be applied straightforwardly in a more intuitive fashion. Another 

example is the quasinormal modes of massive Dirac field [16], where the present method is 

also expected to introduce significant convenience when handling the coupled equations of 

spinor components.

In practice, it is found that the most time-consuming part the calculation is to invert the 

matrix using equation (2.5). The efficiency is closely related to the existing algorithm for alge-

briac equation solvers, such as Mathematica and Matlab. However, this procedure is identical 

for most calculations once the grid points are fixed, therefore the efficiency of the method can 

be significantly improved for such similar problems. The HH method usually is carried out 

up to 40th order to achieve the precision presented in this work, while the precision of WKB 

method cannot be adjusted freely. The matrix method achieve the same precision by making 

use of 22 grid points. Furthermore, we observe that the proposed method is quite general and 

can be employed to investigate more sophisticated and physically interesting cases. It pos-

sesses flexibility and therefore the potential to explore some black hole metrics where the 

applications of other traditional methods become less straightforward. As an example, the 

quasinormal modes of a rotational black hole is characterized by, besides the quasinormal 

frequency ω, a second eigenvalue λ whose physical content is associated with the angular 

quantum number L. Its numerical solution, therefore, involves finding the two eigenvalues, ω, 

and λ, simultaneously. A preliminary attempt [15] shows that the approach proposed in this 

work can be applied straightforwardly in an intuitive fashion. Another example is the quasi-

normal modes of massive Dirac field [16] or massive vector field [17]. Here, the mathematical 

difficulties mostly stem from the coupled equations of spinor components. The solution of 

the problem was achieved, and a vital step was to appropriately introduce new variables and 
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rewrite the master equations as decoupled equations (see [16–18]). For our present method, 

however, the coupled master equations can be handled directly which consequently lead to 

nothing but a bigger system of linear algebraic equations, the latter does not imply any further 

mathematical difficulty. These are worthy topics for further investigations.
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