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ABSTRACT. The results of part I of this paper are applied to show that if F

is a free algebra over the field K and W is a subset of F which is algebraically

independent modulo the commutator ideal [F, F\ then W again generates a free

algebra. On the way a similar theorem is proved for algebras that are free in the

variety of /(-algebras whose commutator ideal is nilpotent of class n.

It is also shown that if L is a Lie algebra with universal enveloping algebra

F, and U, V are ideals of L, then FUF • FVF n L = [U n V, U n V], This is
used to extend the representation theorem of part I to free Lie algebras.

I. Introduction. In this paper we give some further applications of the matrix

representation theorem proved in part I [7]. We first prove a general result

communicated to us by George Bergman: If R is a ring and / an ideal of R which

is free as aright R-module, and x e R, then x is a zero divisor in R/l if and only

if it is a zero divisor in R/In. Next, let [F, F] be the commutator ideal of the

free algebra F. The algebra R = F/[F, F]n is a free algebra in the variety (in

the sense of universal algebra) of algebras whose commutator ideal is nilpotent

of class at most n. We show that a subset Z of R freely generates a (relatively)

free subalgebra if, and only if, Z is algebraically independent modulo [R, R].

Since n°°=1 [F, F]' = 0, this allows us to show that a subset of F which is

algebraically independent modulo [F, F] generates a free subalgebra of F. In

another direction, if U, V are ideals of a Lie algebra L, and U F, V F are the

corresponding ideals in the universal associative enveloping algebra F, we show

that UFVF O L = [U n V, U O V]. If L is a free Lie algebra, the matrix repre-

sentation [4] for F with kernel U pV F then gives a representation for L with

kernel [U n V, U O V],
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Lemma 1. Let R be a ring, f: Af —► N a homomorpbism of right R-modules,

/': AI * —» N' its restriction to an appropriate pair of submodules, and J a left ideal

of R. Suppose that the induced maps Af/Al'—» N/N' and M/ltJ —» N/NJ are

infective, and that N and J are flat as (right, resp. left) R-modules. Then the

induced map M/M'j —*N/N'j is also infective

Proof. Injectivity of M/hi' —» N/N' and flatness of / give the injectivity of

the top arrow in the commutative diagram:

W/M') ® / -► (N/N') ® /

I I
MJ/M'j ->NJ/N'J.

Here to construct the left-hand descending arrow, we tensor Af' —► Af —»Al/Af'

-» 0 with / and conclude that OH/M*) ® / s (AI ®/)/ImCM'® /), then use the

natural map M ® / —» M/ to induce a map it ®//Im(M'® /) ® St]/St'j. The

right-hand map is similarly obtained, but because /V is flat, the map N ® / —* NJ

is an isomorphism, hence so is N ® ]/Im(N' ® /)     /V//,V7, and we see that the

right-hand descending map is an isomorphism. As the top arrow is 1-1, so is the

diagonal composite map, hence so is the left-hand descending map. As the latter

is onto, it too is an isomorphism; hence the bottom map is injective.

Combining this with the injectivity of Al/Af/ —» N/N], we get the desired

injectivity of M/ft'j —» N/N'j. □

Lemma 2. Let R be a ring (with l), M a generator in the category of left

R-modules, and J a two-sided ideal of R. If x e R acts as a left-zero-divisor

on R/J, then it acts as a zero-divisor on it/itj.

Proof. Since Af is a generator, some direct sum N = it © • • • © Af has a

direct summand isomorphic to R. Hence N/JN has a summand isomorphic to

R/J.  Hence x acts as a zero divisor on N/JN = it/Jit © • • • ©A1//A1. Hence x

acts as a zero divisor on it/Jit. □

Theorem 1. Let R be a ring, x an element of R, and I a two-sided ideal

of R. Then:

(i) // / is flat as a left R-module, and x is not a left zero-divisor on R/I,

then x is not a left zero-divisor on R/In for any n.

(ii) // / is a generator of the category of left R-modules, and x is a left

zero-divisor on R/I, then x is a left zero-divisor on R/l" for all ru

(iii) // R is a free associative algebra over a field (and I arbitrary), then

for all n > 0, x is a zero-divisor in R/I if and only if it is a zero-divisor in R/In.

Proof, (i) and (ii) are proved by induction on n. For (i), apply Lemma 1,

with M = iV = R, { = left multiplication by x, It' = iV* =      l, and / = /. For (ii),
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apply Lemma 2 with M ml, ] =l"~l. We get (iii) from (i) and (ii) and the symmet-

ric statements on the right, and the result that in a free associative algebra R,

any right or left ideal / is free as a (right or left) R-module (Cohn [4]). □

III. Free subal gebras. Recall from [7] that if F = X(X) is a free X-algebra,

r —»r', r —» r* X-homomorphisms of F into X-algebras R*. R" with kernels U, V

respectively and T = T(F; R'#()R") a free (R*. R")-bimodule on generators b\x)

(x e X), then the map x —x») extends to a homomorphism ft: F —»(£ ^i)

with kernel UV. The induced map 5: F —*T is a derivation. If we consider T

as a right R,opp ® R" bimodule, then we define, for each x, partial derivatives

d/dx: F -» R,opp ® R" by the formula oty) = 2X eX 8(x)(df/dx). It is easily veri-

fied that if to e F is a monomial to = x ,x, • • • x   (x. e X), then

(l) |z = z (*i • • •   i>' ® (*lT, • • • */•
"x x.=x

I

Let now A = R' = R" = F/[F, F], with [F, F] the commutator ideal of F.

Since [F, F]2 is the kernel of u, p. induces an injection jl: F = F/[F, F]2 —»

(^ ^) and d/dx induces a partial derivative d/dx: F —» A ® A.  Each <9/<9x, when

restricted to [F, F] is an A -bimodule homomorphism. An element w € [F, F] is

zero if and only if for all x, dw/ dx = 0. Let i/ be the natural homomorphism

v: A ®K A —> A ®A A = A.  For m^ m2 eF, then

5 <9to.
i \       * »— VTOjTOj — TOjTOj) = ——— —

<?* 5x

Since v acts by removing tensor signs, the composed map (d/dx)u is zero at

TOjTO^— TOjTOj. Since (d/dx)u is an A-bimodule homomorphism on [F, F] it follows

that (d/dx)u is zero on [F, F], and thus can be considered as a derivation

d/dx': A = F/[F, F] —»A. It is immediate from (1) that if we write x' for the

coset x + [F, F], then, rf/</x' is indeed the usual partial derivative with respect

to x' in the polynomial ring A = X[X*].

Lemma 3. Let A = R' = Rj = F/[F, F] and R" - Rd = F/[F, F]*. Let

w u/   ie elements of F = X(x,, • • •, x ) = X(X) suci that if,', • • •, tu ' are
i n 'in in

algebraically independent in R j = X[X ]. Then the Jacobian matrix = (dwjdx^

is regular over R j ® Rj.

Proof. We first treat the case d = 1.

Let i/^: (A Ä^A)^ —»A^ be the map induced by v on n x n matrices. Then,

by the foregoing discussion, Tjt/,. = {dw! /dxj), the Jacobian matrix of the elements

w. of A. The independence of ma, • ••, u>n insures that TjV,,, is regular in A^.

Thus TjV+ has a nonzero determinant. Since v is a ring homomorphism,
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(det TjV = det (r^). So Fl also has a nonzero determinant, and, hence, is

regular.

Let now tt* be the natural map n^: R j ®K F —» R. ®K Rrf, and let 77* be the

map induced on n x n matrices. Then the kernel of 77* is R j ® [F, F]d, so that

Ker 77* is (Rj ® [F, Fr\ = ((Rj ®K [F, F])*)*. Now, since F is a free algebra,

[F, F] is free as a left module and it follows that R j ® [F, F] is free as a left

R j ® F-module (with basis 1 ® (F-basis for [F, F])). Thus, when we go to 77. x n

matrices, (R l ® [F, F]).„ is free as a left (Rj ®F)J|t module. Now if d0/dQx are

the partial derivatives with values in        ® F = R j ® F, then Trf = (5Qtf ,/^0xV*,

Tj = (d0w./d0x)nl.. We may now apply Theorem 1 with R = (Rj ® F)^ and

/ = (R j ® [F, F])^ to deduce from the first part of the proof that since Tl is left

regular, so is T^. The same argument works just as well qua right modules, so

is also right regular. □

Let now üd be the variety of all K-algebras whose commutator ideal is

nilpotent of class d. (This is the class of all algebras which satisfy the poly-

nomial identity n*=1 [x;, y= 0.) Then Rj = F/[F, F]* is a free algebra in

this variety, and we say that a subset W of R^ freely generates Rj if every

relation of V is a polynomial identity of R^. We may ask which subalgebras of

Rj ate again C^-free.

Theorem 2.   Let Rrf = F/[F, F]d. A subset of Rd Q jfreely generates a

Qj-free subalgebra if and only if it is algebraically independent modulo [R^, R^].

Proof. We first consider the case where F is finitely generated, F =

KOcj, • • •, *n) and W consists of precisely n elements, w j + [F, F]d, • • •, w +

[F, F]d, which are algebraically independent modulo [Rrf, R^]. From the dis-

cussion at the beginning of this section, Rrf is embedded in the algebra

(Rd-X   0 \

T a free (R v Rrf_ ^-bimodule with basis S(xj), • • •, 5Un), via the map

x. + lF.FrJ^^'^'1      0 \
I    Six.) x,. + [F,F]j-

If «7. + [F, F]* corresponds to

(w. + [F, F]d~l 0 >

*l + [F, F]t
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then, considering T as a right R j ® Rd_ j module, (t v • • •, tj = (6Xx i)» • • •» $*„))rj_ t.

Since, by Lemma 3,        j is regular, Uv       *ni is again a basis

for a free R1®RJ_1 module. Now, wl + [F, F], ••■,«'„ + [F, F] are algebra-

ically independent, so the map x. + [F, F] —• w{ + [F, F] extends to an injection

R j —> R j and we may assume by induction that x. + [F, F]d~l -# w. + [F, F]rf_1

also extends to an injection R^_i —* Rj-i- The freedom of the t/s now insures

that the map x. + [F, F]d —» w. + [F, F]d (which extends to an endomorphism of

Rd by the freedom of Rj) extends to an injection.

Now for the general case. It is clear that for a subset Z of Rd to freely

generate a C^-free subalgebra it is sufficient that every finite subset of Z freely

generates a free subalgebra. Consider jzj, ■ • • , Z }. Then, for some integer

s, {zj, • • •, zn\ is in the subalgebra S of Rd generated by Xj + [F, F]d, • • •,

xs + [F, F]rf. Since z l + [Rd, Rrf].- • •» zn + [Rrf, Rrf] are algebraically indepen-

dent, we can find z'., ..., z' in S such that \z., • • •, z , z_ .., •••,*! is
72    1 ^ X «H     A o

still algebraically independent modulo [S, Sj. From the special case above we

deduce that (zj, • • •, zn, z'n^\i • • •» zj }, and hence \z j, • • •, zn}, freely generates

a free subalgebra.

For the converse, suppose Zj, •     z  e R^ are not algebraically independent

modulo [Rj, R^]. Then there is a nonzero element p(*j, • ■ •»*_) / [F, F] such

that p(zj,       zj e [Rrf, R^]. Thus p(zp • • •, zj* = 0.   If Zj,       zfl freely

generate a Crf-free subalgebra, then pUj, • • •, *n)rf is an identity of R, a contra-

diction since all the identities of Rd ate in the commutator ideal of F. □

Note the close resemblance between Theorem 2 and the following result of

G. Baumslag [2, Theorem 2]:

Lei G be a group which is free in the variety $d of groups that are solvable

of derived length at most d. A subset of G 'bjfreely generates an 'bjfree group

if and only if it is linearly independent module [G, G], the commutator subgroup of G.

In one direction, Theorem 2 can be extended to (absolutely) free algebras.

Theorem 3. Ler W be a subset of the free algebra F - K(X) which is algebra-

ically independent modulo [F, F], Then W freely generates a free subalgebra of F.

Proof. By extending W if necessary, we may assume that W is indexed by

the elements of X. Consider the endomorphism a of F defined by x —>wx, and

suppose 0/iie Ker a. Choose d such that u 4 [F, F]d. (This can be done

since fl~=2 [F, F]k = 0.) Then a induces a map c^: F/[F, F]d — F/[F, F]d

which, by the previous theorem, is injective.   However, (u + [F, F]d)ad = ua +

[F, F]d = 0, so that u e [F, F]d, a contradiction. Thus Ker a= 0 and we are done. □

IV. Lie algebras. In this section, we prove a representation theorem for Lie

algebras.



314 JACQUES LEWIN

Throughout what follows, L will be a Lie algebra over a field K, and A its

universal enveloping algebra. We denote Lie multiplication by [ , ], so that it

agrees with the commutator operation in A. We must begin with some results on

the relation between L and A.

If B is a K-basis for L, and we totally order B, then an ascending monomial

will mean an expression *jX2 ' * * *„ (representing an element of A), with n > 0,

x. € B, and Xj < Xj < • • • <xn< By the Poincare-Birkhoff-Witt theorem, the

ascending monomials form a K-basis for A. There is an explicit reduction proce-

dure for expressing any monomial in B as a K-linear combination of ascending

monomials (cf. Jacobson [5, Chapter V], also Bergman [3, §4]). If y = y ,y 2 • • • ym

is a monomial and y. > y;+1 for some i, we write:

y - y\ • •• y?i*\ • ••

(2) = (yj ... y .+,y. ... yj + (y, ... [y<, y.+f] • • • yj,

and then express [yt., yt+1] e L as a K-linear combination of elements of B. Thus,

y is a linear combination of monomials of smaller length, m — 1, and a monomial

which is closer to being ascending. So this process, applied to the terms of any

expression, will eventually terminate in a linear combination of ascending

monomials, the "canonical form" for the element in.question.

Now suppose U is a Lie ideal in L. Let us first choose a K-basis B{U) for

U, then extend this to a basis 3 of L. Suppose a monomial y in B has at least

one factor y;. belonging to B{U). Then we claim that a reduction (2) takes y to

a linear combination of monomials which again have a factor in B(U). Indeed, if

; 4 i> i + 1 in (2), this is trivial, while if ; = i or i + 1, then [y{, y,+1] again

lies in U because U is an ideal, so |y., yj+1] is a linear combination of elements

of B(U); the assertion is then clear.

Let UA CA denote AUA, the ideal of A generated by U. The elements of

U^ are by definition those that can be written as linear combinations of (arbitrary)

monomials having a factor in B(U). It follows from the above observations that

the canonical form for an element of UA will still be as a linear combination of

such monomials. In particular, since L is the subspace of A spanned by mono-

mials of length 1, we have VA n L = U. This can also be seen directly from the

Poincare-Birkhoff-Witt theorem applied to L/U, which has universal enveloping

algebra A/U^. But the analogous result we shall now obtain for two ideals is

not so trivial.

Let U and V be two Lie ideals of L. Let us construct the basis B for L

as follows. First choose a basis B([U r~l V, U n V]) for the ideal [U C\V, U HV]

C L; extend this to a basis B(U D V) of the ideal U D V; extend B(U n V) on the

one hand to a basis B(U) of U, and on the other hand to a basis B(V) of V, and note
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that B(U) U B(V) will form a basis of the ideal U + V (cf. diagram).

L
I

/*\

\ /
ü n v

[1/ n v,' ü n v]
I
0

we extend B(U) uB(V) to a basis B = B(L) of L.

We choose any total ordering of B subject to the condition that all elements

of B(U) not lying in B(U n V) should be < all elements of B{U n V), which

should in turn be < all other elements of S(V).

Now put UA=AUA and VA = AVA. We wish to study the ideal UAVA =

AUAVA.  For this purpose, let S denote the set of all monomials on B which

either (i) involve an element of B(U) to the left of (i.e., preceding, possibly with

some other terms in between) an element of B{V), or (ii) involve an element of

B([U C\V, U n V]). Clearly every member of S, and hence every linear combina-

tion of members of 5 represents an element of U'AVA, and conversely, UAVA is

spanned by the elements represented by monomials in S.

We now claim that any reduction of the form (2) will take a monomial y e 5

to a linear combination of monomials in 5. It is clear from earlier observations-

that if y satisfies condition (ii), so will all the terms in the expression to which

it reduces. Suppose, on the other hand, that y has a term y. e B(U) to the left

of a term yfc e B(V) (i.e., ;' < *). If neither / nor k belongs to [i, i + 1} (in the

notation of (2)), the result is trivial, and if only one of them does, it is straight-

forward, like our earlier result. So suppose, finally, that ;' = i, k = i + 1. In order

for the reduction (2) to be applicable, the element y. e B{U) must be greater,

under our ordering, than yk € B(V). By the conditions on our ordering, this can

only happen if y. and yk both lie in B{U O V). In this case, when we apply (2)

the term of length m resulting contains the sequence yAy., and hence still has

a member of B(U) (actually a member of B(U n V)) to the left of a member of

B(V) (ditto), while [yjt yfe] e [U n V, U n V], so the monomials of length m-1 all

involve terms in B([U n V, I/O V]).

It follows that UAVA consists of those elements whose canonical represen-

tation involves only monomials from S. Intersecting with L, spanned by the

monomials of length 1, we get:

Theorem 4. Let U, V be ideals of the Lie algebra L. Let A be the universal
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associative enveloping algebra of L and let UA = AUA, VA = AVA be the ideals

generated by U and V respectively in A.  Then UAVA o L = [U n V, U D V], □

Note that the improper ideal L of L induces the augmentation ideal / =

la£A.

Corollary. // U is an ideal of L, and ] the augmentation ideal of A, then,

[U, U]=UAJ nL = UAr\L=juAnL. □

If L is the free Lie algebra on the set X, then A = K(X) = F is free associ-

ative. So using Theorem 1 of [7] we obtain:

Theorem 5. Lei L be a free Lie algebra on the set X, L', L" Lie algebras,

I—* l" maps of L into L' and L" with kernels U, V respectively, R',

R" the universal enveloping algebras of L\ L" and T a free (R', R*)-module

generated by {8(x);x e X\ Then the kernel of the map

IL"   0\ /x" 0\

[t    L>)  V*"4**-^) xj
L

is [U nv, U n v].

Proof. By Theorem 1 of [7],

whose kernel is U pV p. The result follows immediately. □

In particular with L" = 0, we find from the corollary that the map

/0     0\ /0 0
x —. ,)   defines an embedding L/\U, U\ —*\ ,

\8(x)   x j \T L

If U is an ideal of L, and R' is the universal enveloping algebra of L/U,

then the adjoint representation of L induces an R'-module structure on U/[U, U],

If / is the augmentation ideal of the free algebra F = K(X), then the injection

U —* / induces an R'-module homomorphism U/W, U] —»J/UFJ.  The corollary

shows that this map is injective. (This was shown by Labute [6] if U is generated

by a single element.)

If L is finitely generated and R' is left Noetherian, then J/UpJ is left

Noetherian and hence so is U/[U, U]. This can be used to give an alternate proof

of a recent theorem of Amayo and Stewart [l]:

Let L be a finitely generated Lie algebra having an Abelian ideal U such

that the universal enveloping algebra of L/U is left Noetherian.  Then L satisfies

the maximal condition for ideals.
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