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A MATRIX REPRESENTATION OF A PAIR OF
PROJECTIONS IN A HILBERT SPACE

BY
R. GILES AND H. KUMMER()

Let H be a complex Hilbert space and let K=H @ H. Then K can be identified
with the set of all column matrices
th
v=|
e

equipped with componentwise addition and scalar multiplication and the scalar
product

], y,eH

(7 l $) = (% | $1)+ (e l ‘752)

Using this representation of K=H @ H the algebra L(K) of all bounded operators
on K may be identified with the algebra M,(L(H)) of all 2 x 2 matrices over the
ring L(H) with the involution

[011 a12]* _ [a;kl a;(l]
=14 B
da1  Qag Aie 422
In the sequel we mean by the word projection an orthogonal projection, i.e. a

selfadjoint idempotent. Moreover we use the notation L(H)* for the positive part
of L(H).

LemMa 1. Let a, be L(H)* and assume that a+b, qi, q, are projections, such
that aq, =bg,=0. Then a and b commute and

. [a+q1 £ (ab)“z]
T L +@)"? b+,

are projections belonging to L(K).

Proof. Since a, b<a+b and a+5 is a projection, a commutes with a+b. Hence
a commutes with (¢+b—a)=5b. Moreover (a+b)a=a and (a+b)b=b. Therefore

el = e,.

Finally e, are selfadjoint, since their matrices are invariant under the *-operation
in My(L(H)), Q.E.D.

Let I(H, K) be the set of all isometries of Hinto K. Then every element p € I(H, K)
induces a *-isomorphism p’ of L{H) into L(K) defined by the equations
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@y = plap™'(}), ¢ep(H),
p@y =0, ¢ 1 p(H).

Indeed we have

I

sup | p(ap™ ()]

llo-twli<1

sup Jlap~ ()| = |al.

le=lulls1

Sup, o' (@] = ‘J,SE‘E(% o' (@]

That p’ is a *-homomorphism is easily verified. The following theorem asserts that
for every pair of projections e, f€ L(H) there exists p € I(H, K) such that p'(e)
and p'(f) have the form (1) or alternatively such that

, e 0
p'le) = [0 0]
while p'(f) has a representation of the form (1). More explicitly:
THEOREM 2. Let e and f be projections in L(H). Then

(i) There is a linear isometry p: H— K=H® H such that, under the correspond-
ing injection p': L(H) — IL(K),

L 1/2
o) = [e/\f+e/\f +a (ab) ],

(ab)2 b
v lenfretAf+a —(ab)'?
o =" o Y|

where I>=a>b>0, a+b is a projection orthogonal to e Af+et Af+enfr+etAfd,
and ¥ and 1 do not belong to the point spectrum of a or b.
(ii) There is a linear isometry v: H — K such that, under the corresponding injec-
tion v': L(H) — L(K),
0
7'(e) = [e ]9

00

v [enfte (cd)H'?
’(f)“[(car)ll2 d+el/\f]’

where I>¢20, I>d=0, c+d is the projection e—eAf—eAf*, and 1 does not
belong to the point spectrum of ¢ or d.

Here et=1I—e¢, f+=I—f, e Af is the projection corresponding to eH N fH, and
I is the identity in L{H). The virtue of these representations stems from the fact
that in each case the elements of L(H) appearing as entries in the matrices all
commute. The noncommutativity of e and f'is thus embodied entirely in the matrix
form of the representations.
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Proof of (i). Let s=e+f, d=e—f. Since 2/>5=>0 the spectrum of s lies in the
closed interval [0, 2]. Now we have:

LeMMA 3. If A is the spectral measure corresponding to s then
@) A2 =enf,

(®) x{I)=e*Aftenrf*,

© AM{Oh=e*nft.

Proof of Lemma 3. (2) If Y e (e Af)H then sp=24 so ¢ € M{2}))H. Conversely,
assume e N{2DH and [¢|=1. Then (¢, ed)+(h, fih)=2, so that ef=fih=y
whence € (eAf)H.

(c) is proved in the same way.

) If pe(etAf+enf+)H then we can write =1, +y, with ¥, e (e* Af)H
and J, e (e Af)H. But then (e+f )=y +dy=4 so € M{I})H. Conversely, if
€ M{1})H then (e+f—1)*h=0. But (e+f—1):=I—(e—f)?so (e—f)4=4. It now
follows from the spectral theorem that ¢ is a linear combination Y=, + B, with
2 =12 =1 and (e—flr=v1, (e=fipo= . But then 1=(4y, (e—f)1)
=1, e1) — (s, fify) whence (Jy, eh)=1 and (Jy, fib1)=0 so that 4, e (e Af HH.
Similarly ¢, € (e Af)H so that e (e L Af+eAfL)H.

Let ey, e, €1, €_, €y denote M{2}), M(1, 2)), A{1}), A(O, 1)), A({0}) respectively.

We now examine the structure of d. Since d?=2s5—s2 the support of dis e, +¢;
+e.. and since d is Hermitian its polar decomposition (see, for instance, {1, p. 334])
takes the form

d = u(2s—s?)12,

where u is a partial isometry commuting with (2s—s%)"2 with u=u* and u?=e.
+e,+e_. From the identity sd+ds—2d=0 we obtain su=u(2I—s). This implies
f(Su=uf(2I—s5) for any polynomial f and hence, by the separate weak continuity
of multiplication, for any Borel function f defined on the closed interval [0, 2].
In particular e, u=ue. and e;u=ue;.

We have directly dleAfi)=eAf* and d(e*Af)=—(e*Af) which, since
de,=ue,, givesu(e Af H)=eAftand ule* Af)=—(e* Af).

Let v=u(e, +e.). Then v is a partial isometry, v=0*, and v?=e_  +e_.

Let p: H— K be given by
o = [0

ve_ i

Then (p(), p(9)) =, [(I—e_)?*+e_v?e_]$)=(J, ¢) so that p is a linear isometry.
The corresponding map p': L(H) — L(K) is given by

(I—e )x(I—e_) (I—e_)xe_v] _ [xu xm]’

ve_x(I—e.) ve_xe_v Xo1+ Xgg

P = |
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38 R. GILES AND H. KUMMER {March
say. We evaluate p'(s):

§1: ={U—e)s(I—e ) =(I—e.)s = (e;+e.+e)s = 2e,+e,+e.s

S = 8g =0

Sgg = ve.sv = e, v*(2—s) = e, (2[-5).

Putting 2a=e.s, 2b=e,(2I~5s) we have e, >a>(e./2)>b>0, a+b=e,, 1 and
1 do not lie in the point spectrum of a or 5, and

) = [2(e/\f)+e/\fl+ei/\f+2a 0].

P = 0 2

Lastly we evaluate p'(d):

= (I—e_ Ju2s—s)M2(I—e.) = (e, +eule, +e)(2s—s2)12

uey, = eNfrt—e*Af,

S
o
f

dyy = ve_u(2s—sH)2%e_v = vue.e_(2s—sHV% = 0,

(I—e Ju@2s—sH)Y2%e_v = (I—e_)2s—s%) uve,
= (2s—s)V(I~e.)e, = 2(ab)*2.

Similarly dy; =2(ab)*/2. Thus

S
[
]

@) = [e/\fl-—el/\f 2(ab)“2]
PRI = 2(ab)H'2 0
It now follows from the linearity of p’ that p'(e) and p'(f) are as stated in the
theorem.

Proof of (ii). Let p=efe, g=e‘fe, r=e*fet. Then qq*+r?=r, q*q+p*=p,
rg+qp=q. We first examine the spectrum of p which, since 7>p=>0, lies in the
closed interval [0, 1].

LeMMA 4. If p is the spectral measure corresponding to p=efe then
(@ {1 =enf,
() p({0D=enf*+e".

Proof of Lemma 4. (a) If € (e Af)H then efe=4 so ¢ € u({1})H. Conversely,
suppose € w({1DH and ||| =1. Then 1=efes| < | fesh| < |ey| <1. This means
ep=1 and so | fib] =1 implying fib=1 so that & € (e Af) .

) If ye(enf++et)H then efed=0. Thus u({ONH 2 (eAf*++e)H. Con-
versely, suppose efey=0, Let i, =eip, =€ *f. Then (¢, fib,) =0 so fif, =0, whence
P, € (e Af DH. Since i, € e L H this means g € (e Af*+e ) H.

Replacing e by e+ in Lemma 2 we obtain »({l})=e* Afand v({0})=e* Af L +e
where v denotes the spectral projection corresponding to r. Let e,=u((0, 1)),
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e,=»((0, 1)). Since pr=0 the projections enf,e,, eAf*, et Af, e, e*Af+ are
mutually orthogonal.

We now examine ¢. Since g*q=p—p? the polar decomposition of g takes the
form g=u(p—p?*2, where u is a partial isometry and ¢, », and (p—p?}/? have
the common support e,. Moreover, g¢* =(r—r?? so that ¢* and u have the sup-
port e,. Directly from the definition of the polar decomposition we have also
uu*=e,, u*u=e,, and ue,=u=e,u. Lastly, the identity rq+gp=gq gives

ru(p—p*)"2—u(p—p***(I-p) = 0

whence ru—u(l—p)=0.
Now let v=u+u*+(I—e,—e,). Then v is unitary, indeed v=0v* and v?=1. Let
7: H—> H@®H=K be given by
e
=[]

ve )
Clearly, = is an isometry. The corresponding map +': L(H) — L(K) is given by

exe exet*v
vetxe veilxe'lv

v'(x) = [

Clearly 7'(e) = [e O]. We compute 7'(f):

00
efe =p=-enft+e,p,
velfetv = el Af+u*ru =‘elAf+u*u(I—p) = et Af+e(I-p),
vefe = vg = tu(p—p)* = eu(p—pI".

This gives
o [eNfHe (cd)!?
= [(cd)ll2 d+e* A f]’

where c=e,p, d=e,(I—p). Here c+d=e, and 1 does not belong to the point
spectrum of ¢ or d.

COROLLARY 5. Let e, f be two projections in a Hilbert space H, such that
eNf=e*Af=eAfLt=e‘Af=0.

Then there is a subspace H < H and an isomorphism p’ of H into K=H® H, such
that
, a (a(I—a))*?
O | oy 1a |

T a —@U-aye
Mﬁ—[—MFmW2 I-a }

where ac L(H), I)2<a<I and % and 1 are not eigenvalues of a.
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Proof. Let e, e_ and u be defined as in the proof of Lemma 3. Let H=e, H and

_ [+ ¥

= [0 L]

From this equation it follows that:

e.xe, e,xe_u
ue_xe, wue_xe.u

P = |

and in particular
2a 0 ]

Ps) = [o 2U—-a)

since ue_se_u=e usue,=e,(2I—s)e, =2e,—2a and e, coincides with the

identity in H=e , H. Q.E.D.
We are indebted to the referee for indicating the following applications of
Theorem 2.

THEOREM 6. Let e, f, é, f, be projections in L(H), let X and X be the spectral
measures determined by the selfadjoint elements s=e+f and §=é+f respectively,
and let:

a=sN(1,2) and 4= SN, 2)).

In order that there exists a unitary element u € L(H), such that simultaneously:

and
J = ufu*,
it is necessary and sufficient that a and & are unitarily equivalent and in addition
dim (e Af) = dim (¢ A f)
dim (et Af) = dim (6L Af)
dim (eAf1) = dim (EAfY)
dim(etAf4) =dim @+ Af4).
Proof. (i) The condition is necessary. Indeed let u € L(H) such that

From e A f<e, fit follows that
ulenfu* < é and ulenflu* <f

and thus:
ule Afu* < éNS.
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Similarly:
w@Enfu < enf
and hence
ule AN )u* = EAJ,
which implies dim (¢ A f)=dim (e A f). Similarly for e Af, etc.
Moreover:
§ = é+f = ueu* +ufu* = u(e+Hut = usu*,
Therefore:
é, =ue,u* and 4 = 3§é, = lusu*ue u* = uau*.

(i) The condition is sufficient. Assume it to be satisfied. Then there exists a
unitary u, € L(H), such that

4 = ugauy.
We define a partial isometry u, by:
U, = e.,.
Then
wiu, = e ufue, = e,
and

u Ut = uge,ud = uge(@ud = e(d) = é..

Here we mean by e(a) the projection onto the closure of the range of ¢ which
coincides with e, since e, <a<2e,.

Thus u, is a partial isometry from e, H onto é, H. Now, as in the proof of
Theorem 2, let v be the partial isometry obtained by multiplying the partial iso-
metry occurring in the polar decomposition of d=e—f by (e, +e.) (from the left
or from the right), and let & be the analogous element of L(H) associated with the
pair é, f.
Define

u. = du,v.
Then, using the fact that v=v* and §=5*, we obtain:
utu_ = vutotu,v = outé u,v

vu (U u o = ve v = e_

and

u_u* = du,vvu

]
<
=

¥
=
+%

3
i
=
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Finally let us make use of the second part of the condition in Theorem 6: let
Uy, Ug, Us, Uy, be partial isometries such that

utu, = eAf, wuF = énf,
usu, = e+ Af, ugud = e A f,
uius = e Af 4, usuy = énft,

uiu, = et Af L, uul = é+nf4,
and define
W= U,+uUu_+u+us+ug+u,.
w is obviously unitary. Now applying Theorem 2, we obtain:
é = éNfréNfL+a+(ab) %0+ 6(ab)V 2 + bbb
= u(e Af i +ugle Af Jus +u . (ab)2ufo
+ bu  (ab)V2u + du, bus.
Since fu, =u_v, the last expression can be rewritten as:

é

i

uy(e AT +ugle Af Dug +u (ab)2ou*
+u_v(ab)"?u¥ +u_vbou*

wle A+ (e Af 1)+ (ab) 20+ v(ab) 2 + vbv]w*

= wew*,
In a similar way we obtain:
= wfw*.
Q.E.D.

COROLLARY 7. Let b € L(H) be an operator of the form b=e+ if, where e and f are
projections. Let X be the spectral measure of e+f and e, =M1, 2). Define:

a= %(e-i—f)e,, .

Then the multiplicity function of the spectral measure determined by a (cf. Halmos
[2]) together with the cardinal numbers dim (e Af), dim (et Af), dim (eAf?),
dim (et Af*) constitute a complete set of unitary invariants for b.

For the formulation and proof of Theorem § we shall make use of the following
terminology and notation:

(i) Let ¢ = L(H) be a subset. By the W*-algebra {c} generated by ¢ we mean
the smallest selfadjoint, weakly closed subalgebra of L(H) containing o. By the
von Neumann algebra N(o) generated by ¢ we mean the W*-algebra generated by o
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and the identity I. In [1] it is shown that N(c)=(c U o*)” where ' denotes the
formation of the commutant. The relation between {c} and N(c) is simple and can
be described by the equations:

N) ={acLl(H)|a=pl+b ueC, bec}}

and

{0} = {ae N(o) | e(a) < e(o)}
where for any subset o < L(H), the support e(c) of ¢ is defined by:
e(c) = inf {e | e = projection, eb = be = b for all b in o},

(ii) M, denotes the matrix algebra of order n over the complex field C. If
a € L(H) then M, ({a}) denotes the matrix algebra over the W*-algebra {a} generated
by the element a.

THEOREM 8. Let H be a Hilbert space, e, f€ L(H) two projections. Then the von
Neumann algebra N(e, f) generated by e and f is a direct sum of two subalgebras:

N (e’f ) =W, oW
where W, consists of all linear combinations of the orthogonal projections e Af,
et nf,enfL, et Af+and W is isomorphic to My({a}). Here a=(e+f)X1, 2) where
A is the spectral measure of e+f, and {a} stands for the abelian W*-algebra generated
by a.
The proof depends on two Lemmas:
LEMMA 9. An alternative set of generators for N(e,f) is given by:
enf; e*Af; enft; erAft; & f,
where
é=e—eNf—enf"

f=f—enf—etAf,
the products of two generators being zero with the exception of &f.

Proof of Lemma 9. The lemma is a consequence of the fact that the projections
in a von Neumann algebra are closed under intersection and orthocomplementa-

tion.
From Lemma 9 it follows immediately that N(e, f) decomposes according to:

Nef) =W, W
where W, consists of all linear combinations of
eANf, elAf, eAnfl, elAft, and W ={éf}.

Let g=I—eAf—e*Af—enft—eiAf* and let H=gH. We have g < N(e, f)
and é=eg and f=/z.
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LEMMA 10. An alternative set of generators for W is given by:
a=(etfle, = (et+f)es,

w = ue,,

M

where e . = M1, 2) and X stands for the spectral measure defined by e+f and u is the
unitary operator in H occurring in the polar decomposition of d=é—f(d=u | d .

Proof of Lemma 10. 1t is clear from (1), that a, we W. Conversely using the
isomorphism p’ of Corollary 5 we obtain:

0 r@=5 ol

@ »o) =, o

)

and hence it follows from Coroilary 5 that
¢ = a+wa(l—a)) 2+ (a(I— ) 2*w* +w(I - a)w*,
1= a—[wa(I— )2+ (a(I— a))2w*]+ w(I— a)w*.

This proves the lemma.
Since aw=w?=0 and w*w=e,, the most general element x € W has the form

X = b3+ Whyo+ Doy w* -+ whow*,
where by € {a} for i, k=1, 2.
Using equations (2) we obtain the desired isomorphisms,
[bll b21]
| aarad
b12 b22
of W onto M,({a}). Q.E.D.
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