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A MATRIX REPRESENTATION OF A PAIR OF 
PROJECTIONS IN A HILBERT SPACE 

BY 

R. GILES AND H. KUMMERC) 

Let H be a complex Hilbert space and let K=H © H. Then K can be identified 
with the set of all column matrices 

• - [ £ ] • *'sH 

equipped with componentwise addition and scalar multiplication and the scalar 
product 

(+l+) = ( 0 i | « + (0al&). 

Using this representation of K= H © H the algebra L(K) of all bounded operators 
on K may be identified with the algebra M2(L(H)) of all 2 x 2 matrices over the 
ring L(H) with the involution 

fan 012*1* = fan «ail 
U2I #22J Ul2 #22] 

In the sequel we mean by the word projection an orthogonal projection, i.e. a 
selfadjoint idempotent. Moreover we use the notation L(H)+ for the positive part 
ofL(#) . 

LEMMA 1. Let a,beL(H)+ and assume that a + b,qx,q2 are projections, such 
that aq1 = bq2=0. Then a and b commute and 

= \a+qi ±(abyn 
C± [±{ab)m b+q2 J 

are projections belonging to L(K). 

Proof. Since a,b<a + b and a+b is a projection, a commutes with a + b. Hence 
a commutes with (a + b — a) = b. Moreover (a+b)a — a and (a+b)b — b. Therefore 

e% = e ± . 

Finally e± are selfadjoint, since their matrices are invariant under the *-operation 
in M2(L(H))9 Q.E.D. 

Let I(H, K) be the set of all isometries of H into K. Then every element p e 1(7/, K) 
induces a ^-isomorphism />' of L(H) into L(K) defined by the equations 
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36 R. GILES AND H. KUMMER [March 

pXaW = P{ap-\4>)), >Pep(H), 

P'(a)t = 0, 0 J_ P ( / / ) . 

Indeed we have 

sup \\p'(a)<l>\\ = sup ||/»'(«>fll = sup IIPCO/)-1^))! 
11*11 s i 1*11 s i ||«-ii(f||sl 

HrepiHl 

= sup !|«/>-Wll = Ml-
11/ ) -^11^1 

That />' is a *-homomorphism is easily verified. The following theorem asserts that 
for every pair of projections e,feL(H) there exists peI(H, K) such that p\e) 
and />'(/) have the form (1) or alternatively such that 

while //(/) has a representation of the form (1). More explicitly: 

THEOREM 2. Let e and f be projections in L(H). Then 
(i) There is a linear isometry p\ H->K=H@Hsuch that, under the correspond

ing injection p : L(H) -> L(K), 

»'(«) = [' eAf+eAfL+a (ab)m 1 
(ab)112 b J 

eAf+eLAf+a -(ab)112'] 
P^ L -(ab)1'2 b Y 

where l>a>b>0,a+bisaprojection orthogonal to e Af+ e x hf+ e AfL+ex Afx, 
and Jr and 1 do not belong to the point spectrum of a or b. 

(ii) There is a linear isometry T. H-+ K such that, under the corresponding injec
tion T': L(H)-+L(K), 

r'(e) 

n-
™-ti 

Af+c (cd)112 

cd)1'2 d+e1Af. 

where l>c>09 l>d>0, c+d is the projection e — eAf—eAf1, and l does not 
belong to the point spectrum of c or d. 

Here e1=I—e,f1—I—f, eA/is the projection corresponding to eHnfH, and 
/ is the identity in L(H). The virtue of these representations stems from the fact 
that in each case the elements of L(H) appearing as entries in the matrices all 
commute. The noncommutativity of e and/is thus embodied entirely in the matrix 
form of the representations. 
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Proof of (i). Let s=e+f, d=e—f. Since 2 />^>0 the spectrum of slies in the 
closed interval [0, 2]. Now we have: 

LEMMA 3. IfXis the spectral measure corresponding to s then 

(a) A({2}) = eA/, 

(b)̂ ({l}) = e
i
A/+eA/

i
, 

(c) A({0}) = e
x
A/

x
. 

Proof of Lemma 3. (a) If 0 e (e Af)H then ^ = 2 ^ so ^ e \({2})H. Conversely, 
assume 0eA({2})# and ||</<|| = 1. Then (0, e</0 + GA,#) = 2, so that ^ = / ^ = ^ » 
whence ^e(eAf)H. 

(c) is proved in the same way. 
(b) If if*E(e1Af+eAf1)H then we can write ^=^1 + ^2 with ^j1e(eL Af)H 

and ^eieAf^H. But then (e+/)*A=<Ai + <A2 = <A so ^eA({l})#. Conversely, if 
0 e A({1})# then ( e + / - / ) V = 0. But (e+f-I)2 = I-(e-f)2 so (e~/)2</,==^ It now 
follows from the spectral theorem that ^ is a linear combination ^==a^ 1 +^ 2 with 
| |^ | | = | |^| | = 1 and {e-fW^u (e-/W2=-f2. But then l=(<Ai, (e~/)0i) 
= 0£i> c0i) - (0 l 5 /^ i ) whence (^l5 ^ 0 = 1 and («Ai,/^i) = 0 so that ^1 e(eAfx)H. 
Similarly <A2 e 0 -1 A / ) # so that ^ e (e x A/+ e A/ ^tf. 

Let e?2, e+, el9 e_, e0 denote A({2}), A((l, 2)), A({1}), A((0,1)), A({0}) respectively. 
We now examine the structure of d. Since d2=2s—s2 the support of dis e+ +ex 

+e~ and since d is Hermitian its polar decomposition (see, for instance, [1, p. 334]) 
takes the form 

d = u(2s-s2)112, 

where u is a partial isometry commuting with (2s-s2)112 with w = w* and u2 = e+ 
+ <?! + £_. From the identity sd+ds-2d=0 we obtain su=u(2I-s). This implies 

f(s)u=uf(2I-s) for any polynomial/and hence, by the separate weak continuity 
of multiplication, for any Borel function / defined on the closed interval [0, 2]. 
In particular e+w=«e _ and exu=uex. 

We have directly d(eAf1) = eAf1 and d(e x A / ) = ~(eLAf) which, since 
dex = w^i, gives w(eA/ i) = e A / i and w(e-1 A/) = — (exA/). 

Let u=w(e+ +£_). Then 1? is a partial isometry, t;=r*, and v2 = e+ -f-e_. 
Let p: J Ï - * J£ be given by 

L ve-t/j J 

Then (p(0), />(̂ )) = (^, [ ( / ~ 0 2 + e_z;2e_](£) = (& <£) so that p is a linear isometry. 
The corresponding map p : L(H) -> L(£) is given by 

ux\ ^ \(I~e-)x(I-e-)- (I-eJxe-vl = ïxxl xX2l 
p I ve-x(J-e-) ve.xe-v J U21 x22j 
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say. We evaluate p'(s): 

Sll = {I-eJ)s{I-eS) = (I-e-)s = (e2 + e++ex)s = 2e2 + ex + e+s 

s12 = s2X — 0 

s22 = f^-^ = e+i;2(2/—s) = e+(2I— s). 

Putting 2a = e+s, 2è = é?+(2/-s) we have e+ >a>(e + /2)>b>0, a + b = ei9 \ and 
1 do not lie in the point spectrum of a or b, and 

„ N \2(eAf) + eAf1 + exAf+2a 0] 

^ ) = = L 0 2bï 

Lastly we evaluate p'(d): 

</n = (/-e_)M(2«-52)1 /2(^-e-) = (e++e1)u(e++e1)(2s-s2)112 

= «ex = ehf1-exhf, 

d22 = t>e_u(2.s—s2)1/2e_i; = vue+e-(2s—s2)ll2v = 0, 

</ia = (I-e-)u(2s-s2)ll2e-v = (I-e.)(2s-s2)ll2uve+ 

= (2s-s2)ll2(I-e.)e+ = 2(aZ>)1/2-

Similarly rfai = 2(ab)112. Thus 

P{d) = [ 2{abf'2 0 J' 

It now follows from the linearity of p that p'(e) and p'(f) are as stated in the 
theorem. 

Proof of (ii). Let p = efe, q = eLfe, r=e1fe±- Then qq* + r2 = r, q*q+p2=p, 
rq+qp=q. We first examine the spectrum of p which, since l>p>0, lies in the 
closed interval [0, 1]. 

LEMMA 4. If pu is the spectral measure corresponding to p — efe then 

(a) KW) = eAf, 

(b)n({0}) = eAfx + e\ 

Proof of Lemma 4. (a) If $ e (e Af)H then efei/j = i/j so ^ e p({l})H. Conversely, 
suppose I/J e MU})# and ||0|j = 1. Then 1 = \\efetfi\\ < \\fei/j\\ < ||e0|| < 1. This means 
ei/f^i/j and so \\f/j\\ = 1 implying/$ = $ so that $ e (eAf)H. 

(b) If ilte(eAf± + e1)H then efeif* = 0. Thus /*({0})# => (eAf1 + e1)H. Con-
versely, suppose efei/j^O. Let «Ai = #//, «A2 = e ^ Then (<Ai,/0i)=O so/0i=O, whence 
*Ai e (e A/ ^/Z. Since $2eeLH this means ^ e (e A / 1 + e L)H. 

Replacing e by e L in Lemma 2 we obtain KO}) = e 1 A / and K{0}) = e 1 A / -1 4- e 
where v denotes the spectral projection corresponding to r. Let ^ = ^ ( ( 0 , *))» 
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ev = v((09 1)). Since pr~0 the projections eAfe^ eAf1, eL Af ev, e1Af1 are 
mutually orthogonal. 

We now examine q. Since q*q=p-p2 the polar decomposition of q takes the 
form q=u(p—p2)112, where u is a partial isometry and q, u, and (p—p2)1'2 have 
the common support eu. Moreover, qq* = (r — r2)112 so that q* and u have the sup-
port ev. Directly from the definition of the polar decomposition we have also 
uu* — ev, u*u = eu, and ueu = u = evu. Lastly, the identity rq+qp=q gives 

ru(p~p2)ll2-u(p-p2)ll2(I-p) = 0 

whence ru—u(I—p)=0. 

Now let i?=w-hw* + (/—e^ —ev)- Then v is unitary, indeed v=v* and v2=I. Let 
r : H~>H@H=Kbe given by 

«« - [.£]• 
Clearly, r is an isometry. The corresponding map r': L(H)~>L(K) is given by 

„ x [exe exe^v\ 

\_ve Lxe ve ^xe Lv\ 

Clearly r\e) = . We compute T ' ( / ) : 

efe = p = eAf+eup, 

veLfeLv = eL Af+u*ru = e 1 Af+u*u(I—p) = e1 Af+e^I—p), 

veLfe ~ vq = vu{p—p2)112 — e^p—p2)112. 

This gives 

'm=r*A/+c (a/)1/21 
T
 L(«0

1/2
 rf+^A/J 

where c=eup, d=eu(I—p). Here c+d=eu and 1 does not belong to the point 
spectrum of c or J. 

COROLLARY 5. Le/ e , /ôe fnw projections in a Hilbert space Ê, such that 

<?A/= ^ x A / = e A / 1 = e 1 A / 1 = 0. 

7%£# /Aère /s a subspace H ^ Ê and an isomorphism p of Ê into K~H@H, such 
that 

I" a (ail-a))112! 

[(ail-a))1'2 I-a J 

I" a -(a(/-tf))1 / 2 l 

L-(fl(/-tf))1/2 I-a J 

H'/^re « G L(H), I/2<a<I and \ and 1 are not eigenvalues of a. 

P'(e) = 

PW = 
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Proof. Let e+, e~ and u be defined as in the proof of Lemma 3. Let H—e+H and 

><« - 1 . ; ] • 
From this equation it follows that: 

„ x fe+xe+ e+xe-U1 

lue-.xe+ ue„xe+u] 

and in particular 

«* - [ ? * - J 
since uese-.u — e+usue +=e+(21— s)e+=2e+ — 2a and e + coincides with the 
identity in H=e+Ê. Q.E.D. 

We are indebted to the referee for indicating the following applications of 
Theorem 2. 

THEOREM 6. Let e, f ê, f, be projections in L(H), let À and *k be the spectral 
measures determined by the self adjoint elements s = e+f and §=ê+f respectively, 
and let: 

a = s\((l, 2)) and a = $A((1, 2)). 

In order that there exists a unitary element ueL(H), such that simultaneously: 

ê = wew* 

and 

f = w/w*, 

it is necessary and sufficient that a and a are unitarily equivalent and in addition 

dim (e Af) = dim (ê A/) 

dim (e x Af) = dim (ê L A / ) 

d i m O A / 1 ) = àimiêAf1) 

dim (e x Af x) = dim (ê x A / 1) . 

Proof, (i) The condition is necessary. Indeed let u e L(H) such that 

ê = ueu* 

/ = ufu*. 

From eAf<e,fit follows that 

u(e A/)w* < é and u(e A/)w* < / 

and thus: 

u(eAf)u* < êkf. 
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Similarly: 

u*(êNf)u < eAf 

and hence 

u(eAf)u* = êAf, 

which implies dim (ê A/) = dim (e Af). Similarly for e L Af, etc. 

Moreover: 

s = ê+f= ueu* + ufu* = w(e-}-/)w* = usu*. 

Therefore: 

e+ = ue+u* and a = %sê+ — %usu*ue+u* = WAW*. 

(ii) The condition is sufficient. Assume it to be satisfied. Then there exists a 
unitary u0 e L(H), such that 

a — uQau*. 

We define a partial isometry u+ by: 

u+ = i/0e+. 

Then 

wïw+ = e+u$u0e+ = e+ 

and 

u+u% = u0e+u* = u0e(a)u* = e(<3) = e + . 

Here we mean by e(#) the projection onto the closure of the range of a which 
coincides with e+9 since e+ <a<2e+. 

Thus w+ is a partial isometry from e+H onto e+i/. Now, as in the proof of 
Theorem 2, let v be the partial isometry obtained by multiplying the partial iso-
metry occurring in the polar decomposition of d=e—/by (e+ -f e_) (from the left 
or from the right), and let v be the analogous element of L(H) associated with the 
pair ej\ 

Define 

W - = VU + V. 

Then, using the fact that v = v* and v = v*, we obtain: 

«îw- = vutvvu+v = vu%ê+u+v 

= vu%(u+ut)u+v = t;e+tf = e_ 

and 

«_wï = vu+vvu*v = #w+e+wj# 

= vu+utu+u^v = ££+# = e_. 
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Finally let us make use of the second part of the condition in Theorem 6 : let 
ul9 u2, u3, w4, be partial isometries such that 

u*Ux = eAf, uxu* = êAf, 

u2u2 = e1 Af, u2ut = ê1 Af, 

uSua = eAf\ u3u* = eAf1, 

u*u± = e1Af1, u±ul = ê1 Af1, 

and define 

W = U++U-+U1 + U2 + U3 + Ué. 

w is obviously unitary. Now applying Theorem 2, we obtain: 

ê = ê Af+ê AfL + â+(âb)llH + v(âb)m + vbv 

= Wi(e Af)uf + u3(e Af ^w* + u+{ab)mu% v 

-\-vu+(ab)ll2ut +vu+butv. 

Since vu+=u-v, the last expression can be rewritten as: 

ê = u±(e Af)uf + u3(e Af L)u$ + u+(ab)ll2vut 

+ u-v(ab)ll2u% +u-vbvut 

= w[(e Af) + (e Af L) + (ab)ll2v + v(ab)112 + vbv]w* 

= wew*. 

In a similar way we obtain: 

/ = wjw*. 

Q.E.D. 

COROLLARY 7. Let b e L(H) be an operator of the form b = e+ if, where e and fare 
projections. Let À be the spectral measure of e+f and e+ = A(l, 2). Define: 

a = ^(e+f)e+. 

Then the multiplicity function of the spectral measure determined by a (cf. Halmos 
[2]) together with the cardinal numbers dim(eA/), dim(e1Af), dim (eAf1), 
dim (e1 Af1) constitute a complete set of unitary invariants for b. 

For the formulation and proof of Theorem 8 we shall make use of the following 
terminology and notation: 

(i) Let G ç L(H) be a subset. By the W*-algebra {G} generated by G we mean 
the smallest selfadjoint, weakly closed subalgebra of L(H) containing G. By the 
von Neumann algebra N(G) generated by G we mean the W*-algebra generated by G 
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and the identity /. In [1] it is shown that N(a) = (a u a*)" where ' denotes the 
formation of the commutant. The relation between {<r} and N(<J) is simple and can 
be described by the equations: 

N(a) = {ae L(H) \ a = ^I+b, fieC,b e {a}} 

and 
{a} = {aeN(a)\e(a) < e(a)} 

where for any subset a £ L(H), the support e(a) of a is defined by: 

e(o) = inf {e \ e = projection, eb = be = è for all è in o-}. 

(ii) Mn denotes the matrix algebra of order n over the complex field C. If 
a G L(H) then Mn({a}) denotes the matrix algebra over the W*-algebra {a} generated 
by the element a. 

THEOREM 8. Let H be a Hilbert space, e,feL(H) two projections. Then the von 
Neumann algebra N(e,f) generated by e and fis a direct sum of two subalgebras: 

N(e9f) =W0@W 

where W0 consists of all linear combinations of the orthogonal projections e Af 
e -1 A/, eAf1,e1Af± and W is isomorphic to M2({a}). Here a = (e+f)\(l, 2) where 
X is the spectral measure ofe+f and {a} stands for the abelian W*-algebra generated 
by a. 

The proof depends on two Lemmas : 

LEMMA 9. An alternative set of generators for N(e,f) is given by: 

eAf; eLAf; eAf1; e1Af1; e; f, 

where 
ê = e—eAf—eAf1, 

f = f-eAf-e1Af 

the products of two generators being zero with the exception ofêf. 

Proof of Lemma 9. The lemma is a consequence of the fact that the projections 
in a von Neumann algebra are closed under intersection and orthocomplementa-
tion. 

From Lemma 9 it follows immediately that N(e,f) decomposes according to: 

N(e,f) =W0@W 

where WQ consists of all linear combinations of 

eAf e^Af eAf\ e^Af\ and W = {ê, / } . 

Let g = I-eAf-e1Af-eAf1-e1Af1 and let H=gH. We have geN(e,f) 
md ê=eg and f=fg. 
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LEMMA 10. An alternative set of generators for W is given by: 

a = (e+f)e+ = (e+f)e+, 
(1) 

w = we+, 

where e+ = A(l, 2) a#d À stands for the spectral measure defined by e-\-f and u is the 
unitary operator in H occurring in the polar decomposition of d—ê—f{d^u \ d\ ). 

Proof of Lemma 10. It is clear from (1), that a, w e W. Conversely using the 
isomorphism />' of Corollary 5 we obtain: 

(2) 

ta» rt»)-[j4 °] 
and hence it follows from Corollary 5 that 

ê = a + \\ia(I-a))ll2 + (a(I-a))ll2w* + w(I-a)w*, 

/ = a - [w(a(I- a))112 + (<*(/- a))1/2w*] + w ( / - a) w*. 

This proves the lemma. 
Since aw=w2=0 and w*w = e+, the most general element x e W has the form 

x = en + wb12 4- b2iW* + wb22W*9 

where 6i/c G {#} for /, k = 1, 2. 

Using equations (2) we obtain the desired isomorphisms. 

621] 

622J 

of FFontoM2({a}). Q.E.D. 

pu 
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