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ABSTRACT

This paper proposes a matrix variate generalization of the power exponential distribution

family, which can be useful in generalizing statistical procedures in multivariate analysis and

in designing robust alternatives to them. An example is added to show an application of the

generalization.

1. INTRODUCTION

In this paper, we make a matrix variate generalization of the power exponential distri-

bution and study its properties. The one-dimensional power exponential distribution was

established in [1] and has been used in many studies about robust inference (see [2], [3]). A

multivariate generalization was proposed in [4].

The power exponential distribution has proved useful to model random phenomena whose

distributions have tails that are thicker or thinner than those of the normal distribution, and

so to supply robust alternatives to many statistical procedures.

The location parameter of these distributions is the mean, so linear and nonlinear models

can be easily constructed. The covariance matrix permits a structure that embodies the

uniform and serial dependence (see [5]).

The power exponential multivariate distribution has been applied in several fields. An

application to repeated measurements can be seen in [5]. It has also been applied to obtain

robust models for nonlinear repeated measurements, in order to model dependencies among

responses, as an alternative to models where the multivariate t distribution is used (see [6]).

In Bayesian network applications, these distributions have been used as an alternative to

the mixture of normal distributions; some references in the field of speech recognition and

image processing are [7], [8], [9], [10] and [11].
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The matrix variate generalization defines an absolutely continuous subfamily of the ma-

trix elliptical distribution; this subfamily includes the normal family.

Power exponential matrices can be used to generalize the sampling processes to the case

where observations are not independent. Each row of a (p × n) power exponential matrix

X can be considered as an observation of an n-dimensional variable. The p rows have the

same distribution but are not independent from each other. If needed, the parameters of the

distribution of X can be chosen so that rows turn out to be not correlated.

In Section 2 elliptical and power exponential matrix distributions are defined. Section 3

studies the distribution of the transpose matrix and the quadratic form XX ′ as well as the

characteristics of the power exponential matrices. Section 4 deals with affine transformations.

Section 5 studies the marginal and conditional distributions and Section 6 shows an example.

2. DEFINITIONS

In this section we begin by defining the absolutely continuous elliptical matrix distribu-

tion. Then, we present the definition of the matrix variate power exponential distribution,

and we show that it is a particular case of the matrix elliptical distribution.

Some words about the notation are in order. We use lower case letters for scalars and

upper case letters for matrices and vectors. We use expressions like p×n, mainly as subscripts,

to refer to a (p × n) matrix, while subscripts like pn refers to vectors whose dimension is p

times n. For any (p×n) matrix X we shall denote Vec(X) = (X ′
1, . . . , X

′
n)′, where X1, . . . , Xn

are the column vectors of X. Properties of function Vec may be found in [12].

For the general matrix variate elliptical distributions, several definitions have been given

in the literature (see [12], [13]). We concentrate on the absolutely continuous ones and

establish the following definition upon a parameter based on density functions:

Definition 1. (Absolutely continuous matrix variate elliptical distribution). An

absolutely continuous random (p×n) matrix X, has a (p×n)-matrix variate elliptical distri-

bution with parameters M, a (p×n) matrix; Σ, a (p×p) definite positive matrix; Φ a (n×n)

definite positive matrix; and g a non negative Lebesgue measurable function on [0,∞) such
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that ∫ ∞

0

t
pn
2
−1g(t)dt < ∞,

if

Vec(X ′) ∼ Epn (Vec(M ′), Σ⊗ Φ, g) , (1)

where Epn is the vector variate pn-dimensional elliptical distribution established in [14]. This

is equivalent to saying that the density function of X is

f(X; M, Σ, Φ, g) =
Γ

(
pn
2

)

π
pn
2

∫∞
0

t
pn
2
−1g(t)dt

|Σ|− 1
2
n |Φ|− 1

2
p g

[(
tr

(
(X −M)′ Σ−1 (X −M) Φ−1

))]
.

(2)

We will use the following notation X ∼ MEp×n(M, Σ, Φ, g).

We will define the matrix variate power exponential distribution as a generalization of

the multivariate (vector) power exponential distribution. The vector distribution (see [4])

is defined as follows: an absolutely continuous random vector X = (x1, . . . , xp)
′ is said to

have a p-variate power exponential distribution with parameters µ ∈ <p; Σ, a (p×p) definite

positive symmetric matrix; and β ∈ (0,∞), if its density function is

f(x; µ, Σ, β) =
pΓ

(
p
2

)

π
p
2 Γ

(
1 + p

2β

)
21+ p

2β

|Σ|− 1
2 exp

{
−1

2

(
(x− µ)′ Σ−1 (x− µ)

)β
}

. (3)

We use the following notation X ∼ PEp(µ, Σ, β).

Parameters µ and Σ in (3) are location (mean) and scale parameters; whereas parameter

β is related to kurtosis, which depends only on it. When β = 1 the corresponding distribution

is normal; thus, the parameter β shows the disparity from the normal distribution.

The next definition generalizes this distribution to random matrices.

Definition 2. (Matrix variate power exponential distribution). A random (p × n)

matrix X has a (p× n)-variate power exponential distribution with parameters M, a (p× n)

matrix; Σ, a (p × p) definite positive matrix; Φ a (n × n) definite positive matrix; and

β ∈ (0,∞), if

Vec(X ′) ∼ PEpn (Vec(M ′), Σ⊗ Φ, β) . (4)

We will use the following notation X ∼ MPEp×n(M, Σ, Φ, β).
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The density function of X turns out to be

f(X; M, Σ, Φ, β) = k |Σ|− 1
2
n |Φ|− 1

2
p exp

{
−1

2

(
tr

(
(X −M)′ Σ−1 (X −M) Φ−1

))β
}

, (5)

where k =
pnΓ( pn

2 )

π
pn
2 Γ(1+ pn

2β )2
1+

pn
2β

.

The matrix variate power exponential distribution generalizes the multivariate one since

for n = 1 (5) is equal to (3).

The matrix variate power exponential distribution is a particular case of matrix elliptical

distributions, obtained by taking g(t) = exp
{−1

2
tβ

}
in definition 1; in fact, it belongs to the

family of matrix variate symmetric Kotz type distributions (see [13]).

If we set β = 1 in (5), we obtain the matrix variate normal distribution; thus the

parameter β shows the disparity from the normal distribution as before. For β = 1
2

we have

a matrix generalization of the double exponential distribution.

3. DISTRIBUTION OF THE QUADRATIC FORM AND PROBABILISTIC CHARAC-

TERISTICS

In this section we study the most important characteristics of the matrix variate power

exponential distribution: the distribution of the transpose matrix and the quadratic form

XX ′; its probabilistic characteristics and stochastic representation. We also deal with the

simulation of the distribution. Several of these results are a direct generalization of those

from the multivariate (vector) power exponential distribution, shown in [4].

The next theorem, concerning the distribution of the transpose matrix, follows immedi-

ately from definition 2.

Theorem 1. (Distribution of the transpose matrix). If X ∼ MPEp×n(M, Σ, Φ, β) then

X ′ ∼ MPEn×p(M
′, Φ, Σ, β).

The next theorem shows the distribution of the quadratic form XX ′, which may be

considered as an extension of the Wishart distribution (see, for example, [16]).

Proposition 1. (Distribution of the quadratic form). If X ∼ MPEp×n(0, Ip ⊗ In, β),
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then density function of the quadratic form W = XX ′ is

pnΓ
(

pn
2

)

Γp

(
n
2

)
Γ

(
1 + pn

2β

)
21+ pn

2β

|W | 12 (n−p−1) exp

{
−1

2
[tr(W )]β

}
. (6)

Proof. It follows from Lemma 5.1.1 of [13] by substituting the function f by the corresponding

one of the matrix variate power exponential distribution.

If we make β = 1 in (6), we obtain the standard Wishart distribution, whose scale

parameter is In.

The next theorem shows the probabilistic characteristics of the matrix X. It is understood

that Var[X] means Var[Vec(X ′)], the covariance matrix of the vector Vec(X ′); it is also

understood that the asymmetry and kurtosis coefficients γ1 and γ2 of a random matrix X

are defined as

γ1[X] = E
[(

(Vec (X ′)− Vec(M ′))′ Var[X]−1 (Vec (Y ′)− Vec(M ′))
)3

]
,

γ2[X] = E
[(

(Vec (X ′)− Vec(M ′))′ Var[X]−1 (Vec (X ′)− Vec(M ′))
)2

]
,

where Y is a random matrix independent of X and having the same distribution than X.

The theorem follows directly from (4) and proposition 3.2 from [4].

Theorem 2. (Probabilistic characteristics). If X ∼ MPEp×n(M, Σ, Φ, β) then,

E[X] = M,

Var[X] =
2

1
β Γ

(
pn+2
2β

)

pnΓ
(

pn
2β

) (Σ⊗ Φ) ,

γ1[X] = 0,

γ2[X] =
p2n2Γ

(
pn
2β

)
Γ

(
pn+4
2β

)

Γ2
(

pn+2
2β

) .

The covariance between any two elements xij and xkl of X is
2

1
β Γ

(
pn+2
2β

)

pnΓ
(

pn
2β

) σikφjl. If Σ is a

diagonal matrix then the covariance between any two elements i and j belonging to different

rows is 0. In this case we may say that the rows of X are not correlated with each other.

The stochastic representation of matrix X is shown in the next theorem.
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Theorem 3. (Stochastic representation). If X ∼ MPEp×n(M, Σ, Φ, β) then X has the

same distribution as

M + rA′U (p×n)B′, (7)

where A is any (p×p) matrix such that A′A = Σ, B is any (n×n) matrix such that BB′ = Φ,

r is an absolutely continuous non negative random variable, whose density function is

h(r) =
pn

Γ
(
1 + pn

2β

)
2

pn
2β

rpn−1 exp

{
−1

2
r2β

}
I(0,∞)(r), (8)

and U (p×n) is a random (p×n) matrix, independent of r, such that Vec(U (p×n)) is uniformly

distributed on the unit sphere in <pn.

Proof. From proposition 3.1 of [4], the vector Vec(X ′) has the same distribution as Vec(M ′)+

r(A′⊗B)U (pn), where r, A and B are as in (7) and U (pn) = Vec(U (p×n)). The theorem then

follows from properties of operator Vec.

The moments of r, obtained by applying corollary 3.1(i) from [4], are

E [rs] =
2

s
2β Γ

(
pn+s
2β

)

Γ
(

pn
2β

) ;

also, the distribution of t = r2β is Gamma
(

1
2
, pn

2β

)
and the distribution of z = tr((X −M)′ Σ−1

(X −M)) is the same as that of r2.

X can be simulated by means of its stochastic representation (7) as follows: (a) determine

two matrices A and B such that A′A = Σ and BB′ = Φ; (b) simulate a vector U (pn) uniformly

distributed on the unit sphere of <pn and set a matrix U (p×n) such that Vec(U (p×n)) = U (pn);

(c) generate an observation of a random variable r with density (8); (d) make X = M +

rA′U (p×n)B′. We have written a program in FORTRAN 90 implementing this process. This

is available upon request.
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4. AFFINE TRANSFORMATIONS

In this section we study bijective and dimension-reducing affine transformations of a

power exponential matrix distribution. These will be useful to derive the marginal distribu-

tions in the next section.

Theorem 4. (Bijective transformations). If X ∼ MPEp×n(M, Σ, Φ, β) and Y = AXB+

C where A and B are non singular (p× p) and (n× n) matrices and C is a (p× n) matrix,

then Y ∼ MPEp×n(AMB + C, AΣA′, B′ΦB, β).

Proof. Vec(Y ′) is obtained from Vec(X ′) as Vec(Y ′) = Vec(C ′) + (A⊗B′); on the other

hand, Vec(X ′) ∼ PEpn(Vec(M ′), (Σ⊗ Φ) , β) and (A⊗B′) is a non singular matrix; then by

proposition 4.1 from [4], we have that Vec(Y ′) ∼ PEpn(Vec(C ′)+(A⊗B′) Vec(M ′), (AΣA′)⊗
(B′ΣB) , β) and the theorem follows from definition 2.

Theorem 5. (Dimension-reducing affine transformations). If X ∼ MPEp×n(M, Σ, Φ,

β) and Y = AXB + C where A is (q × p) matrix, q < p, rk(A) = q, B is (n ×m) matrix,

m < n, rk(B) = m and C is a (q×m) matrix, then Y ∼ MEq×m(AMB+C, AΣA′, B′ΦB, gY )

with

gY (t) =

∫ ∞

0

w
pn−qm

2
−1 exp

{
−1

2
(t + w)β

}
dw. (9)

Proof. Since Vec(X ′) ∼ PEpn(Vec(M ′), (Σ⊗ Φ) , β) and

Vec(Y ′) = Vec(C ′) + (A⊗B′) Vec(X ′), (10)

then by proposition 4.2 from [4], we have that Vec(Y ′) ∼ Eqm(Vec(C ′) + (A⊗B′) Vec(M ′),

(AΣA′)⊗ (B′ΣB) , g) where g is as in (9). Then, the theorem follows from definition 1.

The next theorem shows the probabilistic characteristics of matrix Y .
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Theorem 6. (Probabilistic characteristics). Under the conditions of theorem 5,

E [Y ] = AMB + C,

Var [Y ] =
2

1
β Γ

(
pn+2
2β

)

pnΓ
(

pn
2β

) ((AΣA′)⊗ (B′ΦB)) ,

γ1[Y ] = 0,

γ2[Y ] =
pnqm (qm + 2)

pn + 2

Γ
(

pn
2β

)
Γ

(
pn+4
2β

)

Γ2
(

pn+2
2β

) .

Proof. It follows from (10) and proposition 4.4 from [4].

5. MARGINAL AND CONDITIONAL DISTRIBUTIONS

In this section we study the marginal distributions and characteristics of rows, columns

and single elements, as well as the conditional distributions. These results are a direct

generalization of those from the multivariate (vector) power exponential distribution, shown

in [4].

A note about the notation: to denote the dimension of a submatrix we use the same

letters as for the original matrix with appropriate subscripts. In theorems 11 and 12 we use

the letter q to denote a quadratic form.

Theorem 7. (Row marginal distribution). If X ∼ MPEp×n(M, Σ, Φ, β) and

X=


 X1

X2


 , M =


 M1

M2


 , Σ =


 Σ11 Σ12

Σ21 Σ22


 ,

where X1 and M1 are (p1×n) matrices and Σ11 is a (p1×p1) matrix, then X1 ∼ MEp1×n(M1,

Σ11, Φ, g1) where

g1(t) =

∫ ∞

0

w
(p−p1)n

2
−1 exp

{
−1

2
(t + w)β

}
dw. (11)

Proof. If we consider the block matrix A =
(

Ip1 0p1×(p−p1)

)
, then X1 = AX and the

statement is immediately obtained by applying theorem 5.
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Theorem 8. (Column marginal distribution). If X ∼ MPEp×n(M, Σ, Φ, β) and

X=
(

X1 X2

)
, M =

(
M1 M2

)
, Φ =


 Φ11 Φ12

Φ21 Φ22


 ,

where X1 and M1 are (p×n1) matrices and Φ11 is a (n1×n1) matrix, then X1 ∼ MEp×n1(M1,

Σ, Φ11, g1) where

g1(t) =

∫ ∞

0

w
p(n−n1)

2
−1 exp

{
−1

2
(t + w)β

}
dw. (12)

Proof. Since X ′ ∼ MPEn×p (M ′, Φ, Σ, β) , the result is immediate from theorem 7.

Theorem 9. (Single element marginal distribution). If X ∼ MPEp×n(M, Σ, Φ, β)

then xij ∼ MPE1,1 (mij, σii, φjj, gij) where

gij(t) =

∫ ∞

0

w
pn−1

2
−1 exp

{
−1

2
(t + w)β

}
dw. (13)

Proof. It follows by applying theorem 7 and theorem 8 in turn.

Theorem 10. (Marginal probabilistic characteristics). Let X ∼ MPEp×n(M, Σ, Φ, β).

(i) If X1 is as in theorem 7 then,

E[X1] = M1,

Var[X1] =
2

1
β Γ

(
pn+2
2β

)

pnΓ
(

pn
2β

) Θ,

γ1[X] = 0,

γ2[X] =
pnΓ

(
pn
2β

)
Γ

(
pn+4
2β

)

(pn + 2) Γ2
(

pn+2
2β

) d,

where M1 is as in theorem 7, Θ = Σ11 ⊗ Φ and d = p1n (p1n + 2) .

(ii) If X1 is as in theorem 8 then the formulae in (i) hold with M1 as in theorem 8, Θ =

Σ⊗ Φ11 and d = pn1 (pn1 + 2) .

(iii) If xij is as in theorem 9 then the formulae in (i) hold with M1 = mij, Θ = σiiφjj and

d = 3.
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Proof. Since X1 = AX with A =
(

Ip1 0p1×(p−p1)

)
part (i) is immediately obtained from

theorem 6. Since X ′ ∼ MPEn×p (M ′, Φ, Σ, β) , part (ii) follows immediately from part (i).

Part (iii) is obtained by applying part (i) and part (ii).

The ith row of the matrix has the covariance matrix
2

1
β Γ

(
pn+2
2β

)

pnΓ
(

pn
2β

) σiiΦ and the jth column

has the covariance matrix
2

1
β Γ

(
pn+2
2β

)

pnΓ
(

pn
2β

) φjjΣ.

According to theorem 7, every row of X has the same distribution. We have also seen that

if Σ is a diagonal matrix, then the rows are not correlated. They turn out to be independent

if (and only if) β = 1, that is, if the distribution of X is normal.

We see that the power exponential distribution is not closed under marginalization, since

the marginal distribution of each row is elliptical but not power exponential; nevertheless, in

some cases, this elliptical distribution may be replaced, as an approximation, by the power

exponential distribution with the same moments.

The following theorems, about conditional distributions, show that the regression func-

tion is linear, as it happens in the normal case.

Theorem 11. (Conditional distributions). Let X ∼ MPEp×n(M, Σ, Φ, β) and X, M

and Σ be partitioned as in theorem 7. The distribution of X2 conditional by X1 = X̃1, is(
X2

∣∣∣X1 = X̃1

)
∼ ME(p−p1)×n (M2.1, Σ22.1, Φ, g2.1) where M2.1 = M2 + Σ21Σ

−1
11

(
X̃1 −M1

)
,

Σ22.1 = Σ22 − Σ21Σ
−1
11 Σ12,

g2.1(t) = exp

{
−1

2
(t + q)β

}
, (14)

and q =
(
Vec

(
X̃1 −M1

))′
(Σ11 ⊗ Φ)−1 Vec

(
X̃1 −M1

)
.

Proof. Since Vec(X ′) ∼ PEpn(Vec(M ′), (Σ⊗ Φ) , β), the statement is obtained by applying

proposition 5.1(ii) from [4].

Theorem 12. (Conditional probabilistic characteristics). Under the same hypotheses
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and notations as in theorem 11 we have

E
[
X2

∣∣∣X1 = X̃1

]
= M2.1,

Var
[
X2

∣∣∣X1 = X̃1

]
=

1

(p− p1) n

ψ (0)

ψ (−1)
Σ22.1,

γ1

[
X2

∣∣∣X1 = X̃1

]
= 0,

γ2

[
X2

∣∣∣X1 = X̃1

]
= (p− p1)

2 n2ψ (1) ψ (−1)

(ψ (0))2 ,

where we use the notation ψ(r) =
∫∞
0

t
(p−p1)n

2
+r exp

{
(t + q)β

}
dt.

Proof. By theorem 11, Vec(X ′
2

∣∣∣X1 = X̃1 ) has an elliptical distribution. The results follow

then directly from the probabilistic characteristics of elliptical distributions (see, for example,

theorem 9 in [15]).

6. EXAMPLE

We make use of the set of data about air pollution in 80 U.S. cities, collected in 1960

by [17] and shown in [18], to test the normality of their distribution. We only consider a

subsample of 12 cities (this subsample was used by [18] for other purposes) and the variables

TMR (total mortality rate), SMEAN (arithmetic mean of biweekly sulfate readings (µg/m
3×

10)), and PMEAN (arithmetic mean of biweekly suspended particulate reading (µg/m
3 ×

10)). The observed values are in table 1.
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TMR SMEAN PMEAN

Buffalo 1012 114 131

San Francisco 925 62 70

Jackson 928 52 77

Nashville 919 160 130

Fresno 845 34 119

Allentown 1059 146 135

El Paso 618 87 150

Toledo 1031 86 104

Columbus 877 161 119

Birmingham 943 145 146

Las Vegas 727 79 145

South Bend 888 77 90

Table 1. Air Pollution Data

We do not assume that observations are independent among cities, but only that they

are non correlated, and check them for normality. More precisely, we assume that the joint

distribution of the whole set of observations in the 12 cities is MPE3×12(µv′, Σ, I12, β), where

µ is an unknown tridimensional vector and v is the 12-dimensional vector v = (1, . . . , 1)′

(this involves that the means are the same for each city). The unknown parameters Σ and

β are as in the definition 2. As for the parameter Φ, we have taken Φ = I12 as the simplest

way to reflect the lack of correlation; other diagonal matrices may also be taken. Thus, we

deal with the parameters µ, Σ and β. We are interested mainly in β, which reflects the non

normality of the distribution.

We start by calculating the maximum likelihood estimate of β.

It is not possible to estimate the three parameters at once by maximum likelihood,

because the size of the sample is only 1 (see [13], section 7.1 for a similar case). So we decide

to proceed in two steps. In the first stage a previous pilot sample is taken, that is, another

12



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Figure 1: Logarithm of the likelihood function of β.

set of 12 random cities from the original data is used; we considered β fixed and estimated

µ and Σ as functions of β by using theorem 7.1.4 from [13]. We obtained

µ̂ =




897.67

100.25

118.0


 ,

Σ̂ = 3

(
I12 − 1

12
vv′

)(
β

36

) 1
β

.

In the second stage, we substitute µ̂, Σ̂ and the original sample data (table 1) for µ, Σ and

X in the density function (5) and we obtain the likelihood function of β; it is proportional

to

f(x|β) =

(
18
β

) 18
β

Γ
(
1 + 18

β

) exp

{
−18

β
(2.8339)β

}
; (15)

its logarithm has the shape shown in figure 1.

The value of β that maximizes the likelihood function turned out to be β = 0.049. Hence,

the distribution seems to be far from normality (which corresponds to β = 1) and its kurtosis

is much higher.

Now, we test the point null hypothesis H0 : β = 1 against H1 : β 6= 1 from a Bayesian

point of view. We take again the likelihood function of β as in (15) and use a generic prior
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Figure 2: Prior (dotted line) and posterior distributions (solid line) of β.

giving a probability π0 to the point β = 1 and spreading the remaining 1− π0 according to

the gamma density g(β) = β exp {−β} I(0,∞)(β) (whose mode is 1), shown by the dotted line

in figure 2.

The Bayes factor

B =
f (x|β = 1)∫∞

0
g(β)f (x|β) dβ

,

turned out to be B = 7.566 × 10−3, a very small value: the data provide evidence against

the null hypothesis. The posterior probability of the point β = 1 is

α0 =
1

1 + 1−π0

π0

1
B

.

If we set the usual value π0 = 1/2 (see [19], p. 151), we obtain α0 = 7.509× 10−3. On the

other hand, we can use

π0 =

∫ 1+ε

1−ε

β exp {−β} dβ,

according to [20]; by taking ε = 0.05 we have π0 = 0.037; the posterior probability is now

α0 = 2.906× 10−4. These results indicate the non normality of the distribution.

In the case π0 = 1/2 we had the prior probabilities P ((0, 1)) = 0.132, P ({1}) = 0.5,

P ((1,∞)) = 0.368, whereas the posterior ones are P ((0, 1) |X) = 0.99249, P ({1}|X) =

7.509×10−3 and P ((1,∞) |X) ∼= 4×10−6. Actually, the remaining 1−7.509×10−3 = 0.99249
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is spread according to the density shown by the solid line in figure 2: nearly all the mass

is in the interval (0, 1). Since P ((0, 1) |X) is so large, the distribution seems to be more

leptocurtic than the normal distribution.

7. CONCLUSIONS

The generalization of the power exponential distribution to a matrix distribution has

been shown analytically tractable. We think it is useful to model random phenomena whose

distributions have different tails than those of the normal distribution, such as the distribu-

tion of multivariate samples which are not independent from each other (due, for instance, to

time or spatial dependency). It thus permits to pose robust alternatives to many processes

as well as to test the normality of distributions, as shown in the example of Section 6. We

hope that, just like to the multivariate power exponential distribution, the matrix variate

version is used, since it is easy to be simulated and programmed.
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