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Abstract. We demonstrate that two key theorems of Amaldi, Liberti, Maffiolo and
Maculan (2009), which they presented with rather complicated proofs, can be more
easily and cleanly established using a simple and classical property of binary matroids.
Besides a simpler proof, we see that both of these key results are manifestations of the
same essential property.

Our goal is to demonstrate that two graph-theoretic theorems from [1] are direct man-
ifestations of a simple and classical property of binary matroids. This follows the line of
matroids sometimes serving as a means to simplify and unify combinatorial theorems in-
volving graphs and coordinatized vector spaces.

We assume some very basic familiarity with matroid terminology and theory (see [2]),
and we rely on elementary notions from graph theory. For a matroid M , we denote its dual
matroid by M∗ (i.e., the matroid on the same ground set as M but having its set of bases
to be the set of complements of bases of M). For S ⊂ E, we let Sc denote the complement
of S in E. For S,U ⊂ E, we denote the symmetric difference (S \ U) ∪ (U \ S) by S∆U .

Let G be a finite connected graph with edge set E. Let T ⊂ E be a spanning tree of G.
For an edge f 6∈ T , let C(T, f) be the unique cycle of G contained in T ∪{f}. Similarly, for
an edge e ∈ T , let D(T, e) be the unique cocycle of G contained in T c∪{e}. From the point
of view of matroid theory, T is a base of the graphic matroid of G and T c is a base of the
cographic matroid of G, so C(T, f) and D(T, e) are fundamental circuits (in the matroid
sense).

For an edge f 6∈ T and an edge e ∈ C(T, f) \ {f}, T ∪ {f} \ {e} is also a spanning tree of
G, and hence a base of the graphic matroid of G. Of course then, (T ∪{f}\{e})c is also the
complement of a spanning tree of G, so (T ∪ {f} \ {e})c is a base of the cographic matroid
of G.

With our notation, Theorem 1 of [1] is as follows

Theorem 1. Let e ∈ T c, f ∈ T c, e 6= f , g ∈ C(T, e) ∩ C(T, f). Then

C(T ∪ {e} \ {g}, f) = C(T, e) ∆ C(T, f).

The proof of Theorem 1 presented in [1] is not egregiously lengthy, but it is a bit ad
hoc. However, the authors also present a Theorem 9, which they demonstrate with a long
(three page) proof that is relegated to an appendix. In the way that it is stated, it is not
immediately clear that the result is dual to Theorem 1. Here, we state it in a way that
makes it easier to directly compare.

Theorem 9. Let e ∈ T , f ∈ T , e 6= f , g /∈ D(T, e) ∩D(T, f). Then

D(T ∪ {e} \ {g}, f) = D(T, e) ∆ D(T, f).
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We can easily see, now, that these theorem are just manifestations of the same phenom-
enon, which we state now in matroid language.

Let B ⊂ E be a base of a matroid M on ground set E. For e ∈ Bc, CM (B, e) denotes the
unique circuit of M contained in B ∪{e}. The matroid M is binary if it can be represented
by a matrix over the two element field GF (2).

Theorem P. Suppose that B is a base of a binary matroid M . Let e ∈ Bc, f ∈ Bc, e 6= f ,
g ∈ CM (B, e) ∩ CM (B, f). Then

CM (B ∪ {e} \ {g}, f) = CM (B, e) ∆ CM (B, f).

Theorem 1 is just Theorem P, when M is the graphic matroid of G. Theorem 9 is
just Theorem P, when M is the cographic matroid of G. Note that graphic and cographic
matroids are binary.

It can also be useful to think of the equivalent dual re-statement of Theorem 9:

Theorem P
∗

. Suppose that B is a base of a binary matroid M . Let e ∈ B, f ∈ B, e 6= f ,
g ∈ CM∗(Bc, e) ∩ CM∗(Bc, f). Then

CM∗(Bc ∪ {g} \ {e}, f) = CM∗(Bc, e) ∆ CM∗(Bc, f).

Theorems P is classical and can be found, for example, as a special case of Theorem
9.1.2, part (vii) in [2, p. 304]. In the interest of making this note self contained and to
demonstrate how truly elementary Theorem P is, we present a very short and direct proof
of it. Before proceeding to the proof of Theorem P, we need to recall basic facts concerning
representations of a matroid. If B is a base of a matroid M that is representable over a field
F, then M has a representation over F as a standard representative matrix

A =
[

B Bc

B I N
]

,

where here we think of B and Bc as ordered sets. Furthermore, for e ∈ B, the support of
the row of A indexed by e is precisely CM∗(Bc, e).

Proof. (Theorem P). We proceed by establishing the equivalent Theorem P
∗

. The matrix
A has a pair of rows indexed by e, f ∈ B, and g ∈ Bc is in the support of each of these two
rows:

[

e f g

e 0 . . . 0 1 0 0 . . . 0 × . . . × 1 × . . . ×
f 0 . . . 0 0 1 0 . . . 0 × . . . × 1 × . . . ×

]

.

Pivoting on the entry in the top row and column g leads to a standard representative matrix
for M with respect to the base B ∪ {e} \ {g}, the complement of which is Bc ∪ {g} \ {e}.
So, after the pivot, the support of the second row is precisely CM∗(Bc ∪ {g} \ {e}, f).
Moreover, the result in the second row is the GF (2) sum of the two rows, which is precisely
CM∗(Bc, e) ∆ CM∗(Bc, f). �
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