
SEXUAL DIFFERENTIATION

Amatter of timing
A genetic pathway that times development works together with the

sex-determination pathway to control the timing of sexually dimorphic

neural development in C. elegans.
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T
he fate of a cell during development

depends on several factors, such as its

location in the body, developmental

stage, and sex. However, most cells in the body

do not ‘know’ what sex they are and

function the same way, even though male and

female cells have different sex chromosomes.

How, then, do sexually dimorphic cells – the cells

that are responsible for differences between

males and females, such as differences in the

adult brain – learn their sex during

development?

The sex of an animal can modify the develop-

ment of cells, such as neurons, in several ways.

For example, males and females can produce

the same type of cells, but then cause targeted

cell death in a subset of cells in one of the sexes

(Figure 1A; Kimura et al., 2008; Sanders and

Arbeitman, 2008). Alternatively, an animal’s sex

can modify the number of cell divisions, produc-

ing extra cells in one sex (Figure 1B;

Emmons, 2018; Taylor and Truman, 1992;

Sanders and Arbeitman, 2008). Or, cells that

are identical at first can be modified in different

ways in males and females (Figure 1C). This

mechanism is common in the worm Caenorhab-

ditis elegans (reviewed in Portman, 2017), but

less common in insects like the fruit fly (see, for

example, Kohl et al., 2013).

In C. elegans, most of these differences arise

during the fourth stage of larval development,

just before they become sexually active, but how

do cells know when to become different? Now,

in eLife, Oliver Hobert of Columbia University

and colleagues – including Laura Pereira as first

author – report that the heterochronic pathway

(which regulates the larval development of

worms) is also involved in controlling the timing

of sexual differentiation in the nervous system of

C. elegans (Pereira et al., 2019).

Pereira et al. – who are based at Columbia,

Rochester, and Basel – reveal that three genes

(let-7, lin-28 and lin-41) control when sexual mat-

uration takes place in the neurons of C. elegans.

Mutation of let-7 precociously initiates sex-spe-

cific changes in neurons, while overexpression

overrides these changes. Furthermore, in young

worms, lin-41 represses the production of a

newly identified version of a gene called lin-29a,

which is sexually specific. As the worms mature,

however, the protein of lin-28 is lost, which

allows let-7 to deactivate lin-41. In turn, lin-29a

is then expressed in a subset of neurons. These

neurons then turn on male-specific genes and

adopt a male-specific shape and function (in the

manner shown in Figure 1C). Both let-7 and lin-

28 have been shown to control the timing of

sexual differentiation in mice and humans, pro-

viding an intriguing hint of deeply conserved

mechanisms (see, for example, Corre et al.,

2016; Zhu et al., 2010; Chen et al., 2017).

The researchers discovered that the activa-

tion of lin-29a controls the sex-specific features

of a neuron, called the AIM interneuron, which is

important for the behavior of males. Male worms
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that lack this gene move in a way that is typical

for hermaphrodites (modified females that can

self-fertilize), providing a convincing demonstra-

tion that lin-29a provides the sex-specific input

in the regulation of male genes. Pereira et al.

further found that the pathway that determines

the sex of a cell, including the gene tra-1, also

regulates the production of lin-29a.

In other cells in C. elegans, homologs of a

gene called doublesex, rather than lin29a, shape

the sex-specific traits. The gene doublesex is

well-known for being involved in the sex-specific

development of the nervous system in insects,

although another gene called fruitless (which is

not present in worms), is even more important in

this process. Given the similarities, it is tempting

to draw parallels between lin-29a and fruitless,

though no direct homology has been identified.

It is unknown whether a heterochronic path-

way similar to the one in C. elegans affects sex-

specific cell fate decisions in fruit flies.

The genes fruitless and doublesex only start to

exhibit sex-specific expression in the nervous

system at the end of the last larval stage and the

early pupal stages (but as soon as the neurons

have formed), which can then result in sexual

dimorphism (as in Figure 1). This is different

from what Pereira et al. report in C. elegans,

where the pathway acts on many types of neu-

rons at roughly the same stage, often well after

they have been specified. Whether any neurons

in Drosophila exhibit a similar delay in sex-spe-

cific fate specification after patterning is

unknown.

The links to let-7 and lin-28 in the sexual dif-

ferentiation of vertebrates raise the question of

how precisely these genes are affecting their

neural development during puberty; whether

the number or types of neurons are modified by

this pathway, as they are in C. elegans; and

whether similar connections to homologs of lin-

29a or doublesex-like genes exist. The study of

Pereira et al. has set the stage for future work in

flies and vertebrates to test potentially shared

components and interactions.
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