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Abstract

Motivation: A popular approach for predicting RNA secondary structure is the thermodynamic nearest

neighbor model that finds a thermodynamically most stable secondary structure with the minimum free

energy (MFE). For further improvement, an alternative approach that is based on machine learning

techniques has been developed. The machine learning based approach can employ a fine-grained model

that includes much richer feature representations with the ability to fit the training data. Although a

machine learning based fine-grained model achieved extremely high performance in prediction accuracy,

a possibility of the risk of overfitting for such model has been reported.

Results: In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates

the thermodynamic approach and the machine learning based weighted approach. Our fine-grained model

combines the experimentally determined thermodynamic parameters with a large number of scoring

parameters for detailed contexts of features that are trained by the structured support vector machine

(SSVM) with the ℓ1 regularization to avoid overfitting. Our benchmark shows that our algorithm achieves

the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed.

Availability: The implementation of our algorithm is available at https://github.com/

keio-bioinformatics/mxfold.

Contact: satoken@bio.keio.ac.jp

1 Introduction

Non-coding RNAs (ncRNAs) that are not translated into proteins were

formerly considered as junk regions. However, these various functions

have been revealed in recent years ranging from the process of development

and cell differentiation to the cause of disease. Since the functions of

ncRNAs are believed to be closely related to the structures of ncRNAs, it

is possible to infer their biological functions from their structures. RNA

tertiary structures can be determined by experimental assays including

X-ray crystal structure analysis and nuclear magnetic resonance (NMR).

However, there are severe difficulties of these experimental assays such as

high experimental cost and low throughput. In addition, the computational

techniques to predict RNA tertiary structures have still been immature.

Therefore, the computational prediction of RNA secondary structures,

which can be easily modeled by a set of hydrogen bonds between

nucleotides, has frequently been used instead.

From the viewpoint of the scoring scheme, RNA secondary structure

prediction methods are roughly classified into three approaches: a

thermodynamic approach, a probabilistic approach, and a weighted

approach Rivas (2013). The thermodynamic approach has been the most

popular approach that finds a thermodynamically most stable secondary

structure with the minimum free energy (MFE) and has been utilized by a

number of tools including UNAfold Zuker (1989), RNAfold Lorenz et al.

(2011), and RNAstructure Reuter and Mathews (2010). RNA secondary

structures can be decomposed into characteristic substructures such as

hairpin loops and base-pair stacking according to the nearest neighbor

model Zuker and Stiegler (1981). Free energy of each substructure

was determined by experimental methods such as the optical melting

experiment Schroeder and Turner (2009). The free energy of the secondary

structure is calculated by summing up the free energy of each substructure
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in the secondary structure. The dynamic programming technique enables

us to efficiently find the MFE structure from all possible secondary

structures for a given RNA sequence.

The probabilistic approach has employed generative models including

stochastic context-free grammars (SCFGs) for modeling RNA secondary

structures. SCFGs are defined by a set of derivation rules, or grammar,

whose probabilities are trained by the maximum likelihood (ML)

estimation from the training data, and were applied to RNA secondary

structure prediction Sakakibara et al. (1994); Eddy and Durbin (1994);

Knudsen and Hein (1999); Dowell and Eddy (2004). Sato et al. proposed

a non-parametric Bayesian extension of SCFGs with the hierarchical

Dirichlet process that can find an optimal RNA grammar from the training

data Sato et al. (2010). Rivas et al. developed a framework called

TORNADO for flexibly describing RNA grammars, and showed that a

complex RNA grammar that simulates the nearest neighbor model can

achieve as accurate predictions as the weighted models can Rivas et al.

(2012).

The weighted approach has utilized machine learning techniques

instead of the experimental techniques in order to determine weights

for decomposed substructures, i.e., scoring parameters. CONTRAfold

was developed based on the conditional log-linear models (CLLMs) that

find scoring parameters that can most probably discriminate between

correct structures and incorrect structures Do et al. (2006). Simfold

implemented Boltzmann likelihood algorithm with feature relationships

between parameters (BL-FR), which is similar to CLLMs, but incorporated

free energy parameters Andronescu et al. (2010). ContextFold employed

a fine-grained model that includes much richer contexts of features with

the ability to fit the training data, combined with a machine learning

algorithm Zakov et al. (2011). Although ContextFold achieved extremely

high performance in prediction accuracy, Rivas et al. reported a possibility

of the risk of overfitting for ContextFold Rivas (2013). From this

observation, we can see that an important issue for further improving

prediction accuracy is to effectively learn a large number of scoring

parameters for a fine-grained model without overfitting.

In this paper, we propose a novel algorithm for RNA secondary

structure prediction that integrates the thermodynamic approach and

the machine learning based weighted approach. Our fine-grained model

combines the experimentally-determined thermodynamic parameters with

a large number of scoring parameters for detailed contexts of features. In

order to train the scoring parameters of the fine-grained model, we employ

the structured support vector machine (SSVM) Tsochantaridis et al. (2005)

with the ℓ1 regularization to avoid overfitting. Our benchmark shows

that our algorithm achieves the best prediction accuracy compared with

existing methods, and heavy overfitting as shown in ContextFold cannot

be observed.

The major advantages of our work are summarized as follows: (i)

The max-margin based training algorithm learns our fine-grained model

that can perform accurate secondary structure prediction, and (ii) our

scoring model that integrates the thermodynamic and machine learning

based model enables accurate and robust structure prediction even for

unobserved substructures in the training dataset.

2 Methods

2.1 Preliminaries

Let Σ = {A,C,G,U} and Σ∗ denote the set of all finite RNA sequences

consisting of bases in Σ. For a sequence x = x1x2 · · ·xn ∈ Σ∗, let

|x| denote the number of symbols appearing in x, which is called the

length of x. Let S(x) be a set of all possible secondary structures of x. A

secondary structure y ∈ S(x) is represented as a |x| × |x| binary-valued

triangular matrix y = (yij)i<j , where yij = 1 if and only if bases

xi and xj form a base-pair composed by hydrogen bonds including the

Watson-Crick base-pairs (A-U and G-C), the Wobble base-pairs (G-U).

2.2 Scoring model

A scoring model f(x, y) is a function that assigns real-valued scores to an

RNA secondary structure y ∈ S(x) for an RNA sequence x ∈ Σ∗. Our

aim is to find a secondary structure y ∈ S(x) that maximizes the scoring

function f(x, y) for a given RNA sequence x ∈ Σ∗.

RNA secondary structures can be decomposed into characteristic

substructures, or features, such as hairpin loops and base-pair stacking.

We denote by Φ(x, y) the feature representation vector of (x, y), which

consists of the number of occurrence of every feature in (x, y). Each

feature inΦ is associated with a corresponding score or weight. We assume

a linear scoring model of RNA secondary structures as:

f(x, y) = λ
⊤Φ(x, y), (1)

where λ is a weight vector in which λi is the weight of the i-th feature in

Φ.

Note that the thermodynamic approach can be represented by this

linear scoring model if we define Φ as the nearest neighbor model and

the corresponding weights as the negative of experimentally determined

free energy parameters.

We propose a novel scoring model that integrates the thermodynamic

approach and the machine learning based weighted approach. We define

our scoring model as:

f(x, y) = fT (x, y) + fW (x, y) (2)

fT (x, y) = λ
⊤
T ΦT (x, y)

fW (x, y) = λ
⊤
WΦW (x, y),

where fT (x, y) (resp. fW (x, y)) is the contribution of the thermodynamic

model (resp. the machine learning model) to our scoring model. For the

thermodynamic model, we employ the nearest neighbor model as ΦT and

the negative of the Turner free energy parameters Turner and Mathews

(2010) asλT . For the machine learning model, we construct a fine-grained

model as ΦW (see Sec. 2.3) and corresponding weights λW that are

trainable from training data by using SSVM (see Sec. 2.5).

2.3 Feature representations

Both feature representationsΦT andΦW are based on the nearest neighbor

model Zuker and Stiegler (1981), including base helices, dangling

ends, terminal mismatches, hairpin loops, bulge loops, internal loops,

multibranch loops and external loops (Fig. 1).

In order to calculate the free energy of RNA secondary structures

more precisely, some specialized loop parameters have been adopted

in frequently used free energy parameter sets for the standard nearest

neighbor model. For example, the Turner 1999 and 2004 models contain

several sequential features such as hairpin loops with 3, 4 or 6 nucleotides

and internal loops with (1, 1) nucleotides (1 nucleotide at 5’ loop and 1

nucleotide at 3’ loop), (1, 2) nucleotides and (2, 2) nucleotides Turner and

Mathews (2010).

As the fine-grained feature representation ΦW , we employ much

longer sequential features for hairpin loops with m nucleotides, bulge

loops with m nucleotides and internal loops with (m,n) nucleotides

(m ≤ L and m + n ≤ L) in addition to the standard nearest neighbor

model. We use L = 7 by default as described in Results. See Sec. 3.5 for

more details.
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Fig. 1. Examples of substructures defined in the standard nearest neighbor model.

2.4 Decoding algorithm

2.4.1 Viterbi decoding:

Since both ΦT and ΦW are based on the nearest neighbor model, any

secondary structures can be decomposed into the same substructures for

both representations. Therefore, we can find the most probable secondary

structure that maximizes Eq. (2) by the Zuker-style dynamic programming

algorithm Zuker and Stiegler (1981).

2.4.2 Posterior decoding:

The posterior probability of the secondary structure y given RNA sequence

x, p(y | x), under the scoring model f(x, y) is calculated by:

p(y | x) =
exp[f(x, y)/RT ]

Z(x)

Z(x) =
∑

y∈S(x)

exp[f(x, y)/RT ],

where R is the gas constant and T is the absolute temperature. The base-

pairing probability pij is the probability that the i-th and j-th nucleotides

form a base-pair, which is defined as follows:

pij = Ey|x[I(yij = 1)] =
∑

y∈S(x)

I(yij = 1)p(y | x), (3)

where I(condition) is an indicator function which takes a value of 1 or

0 depending on whether the condition is true or false. The McCaskill

algorithm McCaskill (1990) can be utilized to efficiently calculate the

base-pairing probabilities (3) by the dynamic programming techniques.

We define a gain function between a true structure y and a candidate

structure ŷ by

G(y, ŷ) =
∑

1≤i≤j≤|x|

{

γI(yij = 1)I(ŷij = 1)

+ I(yij = 0)I(ŷij = 0)
}

, (4)

where γ > 0 is a weight for base-pairs. The gain function (4) is equal to

the weighted sum of the number of true positives and the number of true

negatives of base-pairs.

The expectation of the gain function (4) with respect to an ensemble

of all possible secondary structures under a given posterior distribution

p(y | x) is

Ey|x[G(y, ŷ)] =
∑

y∈S(x)

G(y, ŷ)p(y | x)

=
∑

1≤i≤j≤|x|

((γ + 1)pij − 1) I(ŷij = 1) + C, (5)

where C is a constant independent of ŷ.

Then, we can find ŷ that maximizes the expected gain (5) using the

recursive equations:

Mi,j = max



















Mi+1,j

Mi,j−1

Mi+1,j−1 + (γ + 1)pij − 1

maxi<k<j Mi,k +Mk+1,j

, (6)

and tracing back from M1,|x|.

We can control the trade-off between specificity and sensitivity by γ.

We call the maximization of Eq. (5) the generalized centroid estimator

(GCE) since this is equivalent to the centroid estimator Ding et al. (2005);

Carvalho and Lawrence (2008) for γ = 1. The generalized centroid

estimator is very similar to the maximum expected accuracy (MEA)

estimator Do et al. (2006). See Hamada et al. (2009); Sato et al. (2009)

for more details.

2.5 Learning algorithm

To optimize the feature parameter λW , we employ a max-margin

framework called structured support vector machines (SSVM) Tsochantaridis

et al. (2005). Given a training dataset D = {(x(k), y(k))}K
k=1, where

x(k) is the k-th RNA sequence and y(k) ∈ S(x(k)) is the correct

secondary structure for the k-th sequence x(k), we aim to find λW that

minimizes the objective function

L(λW ) =
∑

(x,y)∈D

(

max
ŷ∈S(x)

[f(x, ŷ) + ∆(y, ŷ)]

− f(x, y) + C||λW ||1
)

, (7)

where ||.||1 is the ℓ1 norm and C is a weight for the ℓ1 regularization term

to avoid overfitting to training data (we usedC = 0.001 by default). Here,

∆(y, ŷ) is a loss function of ŷ for y defined as

∆(y, ŷ) =δFN × (# of false negative base-pairs) (8)

+ δFP × (# of false positive base-pairs),

where δFN and δFP are tunable hyperparameters to control the trade-off

between sensitivity and specificity for learning the parameters. We used

δFN = 8.0 and δFP = 1.0 by default. In this case, we can calculate the

first term of Eq. (7) using the Zuker-style dynamic programming algorithm

modified by the loss-augmented inference Tsochantaridis et al. (2005).

To minimize the objective function (7), we can apply stochastic

subgradient descent (Fig. 2) or its variant.

3 Results

3.1 Implementation

Our algorithm was implemented as a program called MXfold, which is

short for the MaX-margin based rna FOLDing algorithm. The source code

is available at https://github.com/keio-bioinformatics/

mxfold. The free energy parameters λT was implemented using the

Vienna RNA package version 2.3.5 Lorenz et al. (2011).
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1: λW ← 0

2: repeat

3: for all (x, y) ∈ D do

4: ŷ ← argmaxŷ [f(x, ŷ) + ∆(y, ŷ)]

5: for all λWi ∈ λW do

6: λWi ← λWi − η(φWi(x, ŷ)− φWi(x, y) + CsgnλWi)

7: end for

8: end for

9: until all the parameters converge

Fig. 2. The stochastic subgradient descent algorithm for SSVMs. sgn is the sign function.

η > 0 is the predefined learning rate.

3.2 Datasets

In order to evaluate our algorithm, we performed computational

experiments on the four datasets assembled by Rivas et al. Rivas et al.

(2012), TrainSetA/TestSetA and TrainSetB/TestSetB. TrainSetA and

TestSetA were collected from the literature Dowell and Eddy (2004); Do

et al. (2006); Andronescu et al. (2007); Lu et al. (2009); Andronescu et al.

(2010). TrainSetB and TestSetB were extracted from Rfam Gardner et al.

(2011), which contain 22 families with 3D structures. The literature-based

sets “A” and the Rfam-based sets “B” are structurally diverse. Furthermore,

highly identical sequences were removed from all the four datasets. We

excluded a number of sequences that contain pseudoknotted secondary

structures in the original data sources from all the four datasets since

all algorithms evaluated in this study were designed for RNA secondary

structure prediction without pseudoknots. The dataset is also available at

https://github.com/keio-bioinformatics/mxfold.

3.3 Evaluation measures

We evaluated the accuracy of predicting RNA secondary structures through

the sensitivity (SEN) and the positive predictive value (PPV), defined as:

SEN =
TP

TP + FN
, PPV =

TP

TP + FP
,

where TP is the number of correctly predicted base-pairs (true positives),

FP is the number of incorrectly predicted base-pairs (false positives),

and FN is the number of base-pairs in the true structure that were not

predicted (false negatives). We also used the F-value as the balanced

measure between SEN and PPV, which is defined as their harmonic mean:

F =
2× SEN × PPV

SEN + PPV
.

3.4 Effects of scoring models

In order to confirm the effects of integration of the thermodynamic model

and the machine leaning based model, we performed computational

experiments on the datasets described in Sec. 3.2. The trainable parameters

of the machine learning based model were trained from TrainSetA. Each

model was evaluated with the prediction accuracy of the Viterbi decoding

on TestSetA and TestSetB. Table 1 shows the prediction accuracy of three

models: the thermodynamic model (TM) that employs only fT (x, y) in

Eq. (2), the machine learning model (ML) only with fW (x, y), and our

model that integrates the thermodynamic model and the machine learning

based model (TM+ML), indicating that our model (TM+ML) performed

the most accurate prediction. On TestSetA, our models was slightly better

than ML only model. On TestSetB that contains structurally dissimilar

RNAs from TrainSetA, the difference of the accuracy between TM+ML

and ML is larger.

Table 1. The accuracy of each scoring model

Model TestSetA TestSetB

SEN PPV F SEN PPV F

TM 0.682 0.659 0.670 0.598 0.485 0.536

ML 0.703 0.764 0.732 0.575 0.550 0.563

TM+ML 0.715 0.761 0.737 0.617 0.565 0.590

TM: the thermodynamic model, ML: the machine learning

based model trained with TrainSetA, and TM+ML: the

integrated model.
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Fig. 3. The accuracy for each feature representation with different context lengths L on

TestSetA (top) and TestSetB (bottom).

3.5 Effects of feature representations

We evaluated the prediction accuracy of the Viterbi decoding on TestSetA

and TestSetB for several feature representations. Figure 3 shows the

accuracy for each feature representation with different context lengths

L = {0, 3, 5, 7, 10, 15, 20}. This indicates that the difference of the

accuracy onL ≥ 7 is negligible although longer sequential features enable

more accurate prediction. In addition, as shown in Fig. 4 that shows the

running time for each context length, sequential features of longer context

lengths need more calculation time. Therefore, we set the default context

length L = 7 since shorter sequential features decrease the number of

trainable features reducing the risk of overfitting.
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measured on Linux OS v2.6.32 with Intel Xeon E5-2680 (2.80 GHz) and 64 GB memory.

3.6 Comparison with competitive methods

We compared our algorithm with the competitive methods including

CentroidFold version 0.0.15 Hamada et al. (2009); Sato et al. (2009),

CONTRAfold version 2.02 Do et al. (2006), RNAfold in the Vienna

RNA package version 2.3.5 Lorenz et al. (2011) and ContextFold version

1.00 Zakov et al. (2011). For the posterior decoding methods with the trade-

off parameter γ in Eq. (5), we used γ ∈ {2n | n ∈ Z,−5 ≤ n ≤ 10}.

Figure 5 shows PPV-SEN plots for each method, indicating that our

algorithm works accurately on TestSetA and TestSetB. On TestSetA,

ContextFold (F=0.742) is slightly better than MXfold with Viterbi

decoding trained from TrainSetA (F=0.737). Whereas, on TestSetB,

ContextFold (F=0.496) is much worse than MXfold with Viterbi decoding

trained from TrainSetA (F=0.590) and others. Furthermore, MXfold with

Viterbi decoding trained from both training datasets performed the most

accurate prediction (F=0.626).

Figure 6 shows the running time for each method for the lengths

of input sequences in TestSetA, indicating that our algorithm with the

Viterbi decoding is comparable with the other methods in the running time

although our algorithm with the posterior decoding is much slower than

the other methods.

4 Discussion

Table 1 compares the three models: the thermodynamic model (TM), the

machine learning based model (ML) and the integrated model (TM+ML).

Since the thermodynamic model fT (x, y) is implemented using the

Vienna RNA package, the prediction result of TM is similar to that of

RNAfold. The result on TestSetA indicates that the difference between

ML and TM+ML is very small. We can explain that this is because the

trainable parameters of ML and TM+ML are identical to each other, and

the learning algorithm works well on both models. On the other hand,

since the literature-based TrainSetA and the Rfam-based TestSetB are

structurally diverse as described in Sec. 3.2, TestSetB includes a number of

substructures whose scoring parameters cannot be trained from TrainSetA.

TM+ML model can calculate scores for such “unobserved” substructures

using the thermodynamic energy parameters although ML only model

cannot. Our integrated model can improve the prediction accuracy by

complementing missing parts each other.

We compared the learnability of our model for several context lengths

L of sequential features in Fig. 3. Most existing models including RNAfold

and CONTRAfold use the context length 3 ≤ L ≤ 5, whose accuracy
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Fig. 5. PPV-SEN plots comparing our algorithm with the competitive methods on TestSetA

(top) and TestSetB (bottom).
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Fig. 6. The running time for the lengths of input sequences measured on Linux OS v2.6.32

with Intel Xeon E5-2680 (2.80 GHz) and 64 GB memory.

shown in Fig. 5 is close to that of our model with the same range of

the context length. Although Fig. 3 shows that longer context length of

sequential features enables us to improve the prediction accuracy, its effects

tend to be saturated at L = 7. The objective function of our algorithm (7)

contains the ℓ1 regularization term, by which rarely used parameters (e.g.,
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sequential features with L > 7) quickly shrink toward zero at line 6 of

Fig. 2. Hereby, the risk of overfitting caused by rarely observed features

can be reduced.

Figure 5 shows that ContextFold achieved the best accuracy on

TestSetA, but the worst on TestSetB. Similarly, the accuracy of

CentroidFold on TestSetB remarkably deteriorated compared with that on

TestSetA. The common point between ContextFold and CentroidFold is the

training data: ContextFold and the Boltzmann likelihood (BL) parameter

set used in CentroidFold were trained from the S-Full dataset Andronescu

et al. (2010), which is one of the datasets included in TrainSetA. This

suggests that ContextFold and the BL parameter set fell into the overfitting.

There is a possibility that ContextFold trained from TrainSetA+B

achieves more accurate prediction than MXfold trained from TrainSetA+B.

However, ContextFold might not work well for other sequences dissimilar

from TrainSet A and B because of the overfitting. Meanwhile, we can

expect that our algorithm that integrates the thermodynamic model still

performs robust and accurate prediction without overfitting for such

sequences due to the integrated thermodynamic model.

The posterior decoding algorithms are known to be one of effective

approaches for many combinatorial optimization problems Carvalho and

Lawrence (2008). In fact, the posterior decoding with CONTRAfold

(MEA) achieves much better accuracy than its counterpart of the Viterbi

decoding as shown in Fig. 5. However, we can surprisingly observe no

advantage for the posterior decoding for MXfold (GCE). CONTRAfold

was trained by the conditional log-linear models (CLLMs) in which the

expectation of the occurrence of features is used for calculating gradients

of the objective function. The posterior decoding algorithms employ the

base-pairing probabilities that are also calculated by the expectation of

the occurrence of base-pairs. This can be interpreted that the optimization

with CLLMs is appropriate for the posterior decoding. SSVM used by our

algorithm considers only the optimal structure with the (loss augmented)

Viterbi algorithm for each training step. This means that SSVM is

optimized for the Viterbi decoding, but not for the posterior decoding that

considers not only the optimal structures but also the distribution of all

possible structures. As shown in Fig. 6, the posterior decoding algorithms

are much time-consuming compared with their counterparts of the Viterbi

and MFE algorithms. Therefore, although the posterior decoding with

the parameters learned by CLLMs is one of the best solution from the

viewpoint in the prediction accuracy, the Viterbi algorithm with SSVM is

a practical alternative.

5 Conclusion

We proposed a novel algorithm for RNA secondary structure prediction that

integrates the thermodynamic approach and the machine learning based

weighted approach. Our fine-grained model combines the experimentally

determined thermodynamic parameters with a large number of scoring

parameters for detailed contexts of features that are trained by the

structured support vector machine (SSVM) with the ℓ1 regularization

to avoid overfitting. Our benchmark shows that our algorithm achieves

the best prediction accuracy compared with existing tools, and heavy

overfitting as shown in ContextFold cannot be observed.

Accurate secondary structure prediction for long RNA sequences has

been demanded since long non-coding RNAs (lncRNAs) have recently

been emerging. To respond to such demand, we need to implement the

sparsification technique Backofen et al. (2011) to our algorithm with the

Viterbi decoding. As shown in Fig. 6, ContextFold that implements the

sparsification technique enables us fast structure prediction even for long

sequences.

The base-pairing probabilities calculated from the posterior

distribution have been required for various applications for RNA

informatics such as family classification Sato et al. (2008); Morita

et al. (2009), pseudoknotted RNA secondary structure prediction Sato

et al. (2011), RNA-RNA interaction prediction Kato et al. (2010) and

simultaneous aligning and folding Sato et al. (2012). Accurate base-pairing

probabilities calculated by our algorithm can improve the quality of such

applications.
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