A MAXIMAL FUNCTION CHARACTERIZATION OF $\boldsymbol{H}^{\boldsymbol{p}}$ ON THE SPACE OF HOMOGENEOUS TYPE

BY

AKIHITO UCHIYAMA

$$
\begin{aligned}
& \text { Abstract. Let } \psi_{0}(x) \in \delta\left(R^{n}\right) \text { and let } \int_{R^{n}} \psi_{0}(y) d y \neq 0 \text {. For } f \in \delta^{\prime}\left(R^{n}\right), x \in R^{n} \\
& \text { and } M>0 \text {, let } \\
& \qquad f^{+}(x)=\sup _{t>0}\left|f * \psi_{0}(x)\right| \\
& \text { and let } f^{* M}(x)=\sup \left\{| f * \psi _ { t } (x) | : t > 0 , \psi (y) \in \delta (R ^ { n }) \text { , supp } \psi \subset \left\{y \in R^{n}:|y|<\right.\right. \\
& \left.1\} \text {, }\left\|D^{\alpha} \psi\right\|_{L^{\infty}}<1 \text { for any multi-index } \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \text { such that } \sum_{i=1}^{n} \alpha_{i}<M\right\} \\
& \text { where } \psi_{1}(y)=t^{-n} \psi(y / t) \text {. } \\
& \text { Fefferman-Stein }[11] \text { showed } \\
& \text { THEOREM A. Let } p>0 \text {. Then there exists } M(p, n) \text {, depending only on } p \text { and } n \text {, } \\
& \text { such that if } M>M(p, n) \text {, then } \\
& \qquad c\left\|f^{+}\right\|_{L^{p}} \leqslant\left\|f^{* M}\right\|_{L^{p}}<C\left\|f^{+}\right\|_{L^{p}} \\
& \text { for any } f \in \delta^{\prime}\left(R^{n}\right) \text {, where } c \text { and } C \text { are positive constants depending only on } \psi_{0,} p, M \\
& \text { and } n . \\
& \text { We investigate this on the space of homogeneous type with certain assumptions. }
\end{aligned}
$$

1. Introduction. In this note, all functions are real valued and measurable. All numbers are real numbers.

In this section, we consider functions or distributions δ^{\prime} defined on R^{n}; the letter x denotes the vector $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ and $|x|$ denotes $\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$.

First, we define $H^{p}\left(R^{n}\right)(0<p \leqslant 1)$ following Coifman-Weiss [8].
A function $a(x)$ is called a p-atom $(0<p \leqslant 1)$ if there exists a ball $B\left(x_{0}, r\right)=$ $\left\{x:\left|x-x_{0}\right|<r\right\}$ such that

$$
\operatorname{supp} a \subset B\left(x_{0}, r\right), \quad\|a\|_{L^{\infty}} \leqslant\left|B\left(x_{0}, r\right)\right|^{-1 / p}
$$

and if $\int a(x) p(x) d x=0$ for any polynomial $p(x)$ of degree $\leqslant[n / p-n]$, where $\left|B\left(x_{0}, r\right)\right|$ denotes the Lebesgue measure of $B\left(x_{0}, r\right)$ and $[t]$ denotes the integral part of t. For $f \in \mathcal{S}^{\prime}\left(R^{n}\right)$ let

$$
\begin{aligned}
& \|f\|_{H^{p}}=\inf \left\{\left(\sum_{i=1}^{\infty}\left|\lambda_{i}\right|^{p}\right)^{1 / p}:\right. \text { there exists a sequence } \\
& \left.\qquad \quad \text { of } p \text {-atoms }\left\{a_{i}(x)\right\}_{i=1}^{\infty} \text { such that } f=\sum_{i=1}^{\infty} \lambda_{i} a_{i} \text { in } \delta^{\prime}\right\} .
\end{aligned}
$$

[^0]If such a sequence $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ does not exist, let $\|f\|_{H^{p}}=+\infty$. We define

$$
H^{p}\left(R^{n}\right)=\left\{f \in \delta^{\prime}\left(R^{n}\right):\|f\|_{H^{p}}<+\infty\right\} .
$$

Using the result of Fefferman-Rivière-Sagher [10] that refined the CalderónZygmund decomposition, Coifman [5] showed

Theorem B. If $1 \geqslant p>0$ and if $M \geqslant[n / p-n]+1$, then

$$
c\left\|f^{* M}\right\|_{L^{p}} \leqslant\|f\|_{H^{p}} \leqslant C\left\|f^{* M}\right\|_{L^{p}}
$$

for any $f \in \delta^{\prime}\left(R^{n}\right)$, where c and C are positive constants depending only on p, M and n.

Coifman [5] showed this for $n=1$ and this is extended to $n \geqslant 2$ by Latter [14].
As a result of Theorem A and Theorem B, the space $H^{p}\left(R^{n}\right)$, defined by p-atoms, can be characterized by $\left\|f^{+}\right\|_{L^{p}}$, that is,

$$
\begin{equation*}
c\left\|f^{+}\right\|_{L^{p}} \leqslant\|f\|_{H^{p}} \leqslant C\left\|f^{+}\right\|_{L^{p}} \tag{*}
\end{equation*}
$$

for any $f \in \delta^{\prime}$, where C and c depend only on p, n and ψ_{0}.
For $p=1$, L. Carleson [3] showed another proof of (*). Extending Carleson's proof, R. Coifman, G. Weiss and Y. Meyer showed that if $p=1$, then (*) holds on the space of homogeneous type (see [8, p. 642]). This proof used the duality of H^{1}-BMO and the fact that $\|\cdot\|_{H^{1}}$ is a norm. For $p<1,\|\cdot\|_{H^{p}}$ is not a norm and the argument of dual spaces is not so available.

In this note, we extend Theorem A to the L^{1}-functions defined on the space X, where X is a space of homogeneous type with certain assumptions. On the other hand, it has been shown by Macias-Segovia [16] that Theorem B holds on X. Thus, as a corollary of these results, we see that (*) holds for $p>1-\varepsilon$ on X, where ε is a positive number depending only on X.

Lastly, I would like to thank Professor R. Coifman who suggested the problem to show (*) for $p<1$ on the space of homogeneous type in 1976. I would like to thank Mr. M. Satake for valuable information.
2. Definition. In this section, x, y and z denote the elements of a topological space X and X is endowed with a Borel measure μ and a quasi-distance d. The latter is a mapping $d: X \times X \rightarrow R^{+} \cup\{0\}=[0, \infty)$ satisfying
(0) $d(x, y)=d(y, x)$ for any $x, y \in X$,
(1) $d(x, y)>0$ iff $x \neq y$,
(2) $d(x, z) \leqslant A(d(x, y)+d(y, z))$ for any $x, y, z \in X$,
(3) $A^{-1} r \leqslant \mu(B(x, r)) \leqslant r$ for any $x \in X$ and any $r \in(0, \mu(X))$.

The balls $B(x, r)=\{y \in X: d(x, y)<r\}(r>0)$ form a basis of open neighbourhoods of the point x.

Further we assume that X is endowed with a nonnegative continuous function $K(r, x, y)$ defined on $R^{+} \times X \times X$ satisfying
(4) $K(r, x, y)=0$ if $d(x, y)>r$,
(5) $K(r, x, x)>A^{-1}>0$,
(6) $K(r, x, y) \leqslant 1$,
(7) $|K(r, x, y)-K(r, x, z)| \leqslant(d(y, z) / r)^{\gamma}$
for any $x, y, z \in X$ and any $r \in R^{+}$, where $\gamma(>0)$ is independent of x, y, z and r. These definitions are due to [8]. Notice that there exist $C_{1}>0$ and $C_{2}>0$ such that

$$
\begin{equation*}
C_{1} K(r, x, y)>1 \tag{8}
\end{equation*}
$$

for any $x \in X, y \in X$ and $r>0$ satisfying $d(x, y)<C_{2} r$.
For any $f(x) \in L_{\text {loc }}^{1}(X)=\{f: f$ is integrable on any bounded set $\}$, let

$$
F(r, x, f)=\int_{X} K(r, x, y) f(y) d \mu(y) / r, \quad f^{+}(x)=\sup _{r>0}|F(r, x, f)|
$$

For $f(x)$ and $\infty>p>0$ let

$$
M_{p}(f)(x)=\sup _{r>0} F\left(r, x,|f|^{p}\right)^{1 / p}
$$

The following definition of $H^{p}(X)$ is also almost due to [8].
For $f(x) \in L_{\text {loc }}^{1}(X)$, let

$$
\begin{aligned}
& L(f, 0)=\sup _{x \in X, r>0} \inf _{c \in R} \int_{B(x, r)}|f(y)-c| d \mu(y) / r \\
& L(f, \alpha)=\sup _{x \in X, y \in X, x \neq y}|f(x)-f(y)| / d(x, y)^{\alpha} \quad \text { for } \alpha>0 .
\end{aligned}
$$

For $\alpha \geqslant 0$, let

$$
\begin{aligned}
\|f\|^{(\alpha)} & =L(f, \alpha) \quad \text { if } \mu(X)=\infty \\
\|f\|^{(\alpha)} & =L(f, \alpha)+\left|\int_{X} f(y) d \mu(y)\right| \mu(X)^{-(\alpha+1)} \quad \text { if } \mu(X)<\infty, \\
\mathcal{L}_{\alpha}(X) & =\left\{f \in L^{\infty}(X):\|f\|^{(\alpha)}<\infty\right\} .
\end{aligned}
$$

Then, $\|\cdot\|^{(\alpha)}$ is a norm. When $\alpha=0$, it is a BMO norm. When $\alpha>0$, it is a Lipschitz norm. If $\mu(X)=\infty$, then we consider the set of equivalence classes of functions defined by the relation " $f_{1}(x)$ and $f_{2}(x)$ in \mathcal{L}_{α} are equivalent iff $f_{1}-f_{2}$ is constant".

We say $a(x)$ is a p-atom if $\int a(y) d \mu(y)=0$ and if there exists a ball $B\left(x_{0}, r_{0}\right)$ such that

$$
\operatorname{supp} a(x) \subset B\left(x_{0}, r_{0}\right), \quad\|a\|_{\infty} \leqslant r_{0}^{-1 / p}
$$

In case $\mu(X)<\infty$ the constant function having $\mu(X)^{-1 / p}$ is also considered to be a p-atom. It is clear that

$$
\|a\|_{e_{i / p-1}^{*}} \leqslant 1
$$

where \mathcal{L}_{α}^{*} is the dual space of \mathcal{L}_{α}.
For $0<p \leqslant 1$ and $f \in \mathcal{L}_{1 / p-1}^{*}$, let

$$
\|f\|_{H^{p}}=\inf \left\{\left(\sum_{i=1}^{\infty}\left|\lambda_{i}\right|^{p}\right)^{1 / p}:\right. \text { there exists a sequence }
$$

$$
\text { of } \left.p \text {-atoms }\left\{a_{i}(x)\right\} \text { such that } f=\sum \lambda_{i} a_{i} \text { in } \mathcal{L}_{1 / p-1}^{*}\right\}
$$

If such a sequence $\left\{\lambda_{i}\right\}$ does not exist, let $\|f\|_{H^{p}}=+\infty$. We define

$$
H^{p}(X)=\left\{f \in \mathcal{L}_{1 / p-1}^{*}:\|f\|_{H^{p}}<+\infty\right\}
$$

Lastly, for $f \in L_{\text {loc }}^{1}(X)$ we define

$$
\begin{aligned}
f^{*}(x)=\sup \left\{\left|\int f(y) \varphi(y) d \mu(y)\right| / r: r>0, \operatorname{supp} \varphi \subset B(x, r)\right. \\
\left.L(\varphi, \gamma) \leqslant r^{-\gamma},\|\varphi\|_{L^{\infty}} \leqslant 1\right\} .
\end{aligned}
$$

3. The main theory. Our result is the following

Theorem 1. There exists $p_{1}<1$, only depending on X, such that for any $f \in L^{1}(X)$ and any $p>p_{1}$

$$
\left\|f^{*}\right\|_{L^{p}} \leqslant c_{1}\left\|f^{+}\right\|_{L^{p}}
$$

where c_{1} is a positive constant depending only on p and X.
Remark. For $p>1$, this is clear from the Hardy-Littlewood maximal theorem. For $p=1$, this is shown by [8].

Macias-Segovia [16] showed
Theorem C. If $f \in L^{1}(X)$ and if $1 \geqslant p>1 /(1+\gamma)$, then

$$
c_{2}\left\|f^{*}\right\|_{L^{p}} \leqslant\|f\|_{H^{p}} \leqslant c_{3}\left\|f^{*}\right\|_{L^{p}}
$$

where c_{2} and c_{3} are positive constants depending only on p and X.
Remark. This can also be proved by exactly the same way as [15]. [16] showed this theorem more generally for a "distribution" f.

As a corollary of Theorem 1 and Theorem C, we get
Corollary 1. There exists $p_{2}<1$, only depending on X, such that for any $f \in L^{1}(X)$ and any $1 \geqslant p>p_{2}$

$$
\left\|f^{+}\right\|_{L^{p}} \leqslant c_{4}\|f\|_{H^{p}} \leqslant c_{5}\left\|f^{*}\right\|_{L^{p}} \leqslant c_{6}\left\|f^{+}\right\|_{L^{p}}
$$

where c_{4}, c_{5} and c_{6} are positive constants depending only on p and X.
For the proof of Theorem 1, we need the following four lemmas.
In the following, N and Z mean $\{1,2,3, \ldots\}$ and $\{0, \pm 1, \pm 2, \ldots\}$ respectively. The letters C and $C_{i}(i=3,4, \ldots)$ denote the positive constants that depend only on A and γ. The various uses of C do not all denote the same constant.

Lemma 1. Let $d \nu$ be a positive measure over $X \times R^{+}$such that

$$
\begin{equation*}
\nu(B(x, r) \times(0, r))<r^{1+\delta} \tag{10}
\end{equation*}
$$

for any $x \in X$ and any $r \in R^{+}$, where $\delta \geqslant 0$ is independent of r and x. Then

$$
\left(\iint_{X \times R^{+}}|F(r, y, f)|^{p(1+\delta)} d v(y, r)\right)^{1 /(p(1+\delta))} \leqslant C_{p, \delta}\|f\|_{L_{d, k}(X)}
$$

for any $p>1$ and any $f \in L^{p}(X)$, where $C_{p, \delta}$ is independent of f.

Remark. This lemma is essentially known. For the case $\delta=0$, see [18, p. 236]. For the case $\delta>0$, see Duren [23].

Proof. Let $f \in L^{p}(X)$. Let $\lambda>0$,

$$
\begin{equation*}
V_{\lambda}=\left\{(x, r) \in X \times R^{+}:|F(r, x, f)|>\lambda\right\}, \quad q=2 A \tag{11}
\end{equation*}
$$

Let $W_{n, \lambda}=\left\{x \in X: \sup _{q^{n-1}<r<q^{n}}|F(r, x, f)|>\lambda\right\}$; then there exists $M_{f, \lambda}$ such that $W_{n, \lambda}=\varnothing$ for any $n>M$. For each $n \leqslant M$, there exist disjoint balls $\left\{B\left(y_{n j}, q^{n}\right)\right\}_{j}$ such that

$$
\begin{equation*}
y_{n j} \in W_{n, \lambda}, \quad B\left(y_{n j}, q^{n}\right) \cap\left(\bigcup_{m=n+1}^{M} \bigcup_{i} B\left(y_{m i}, q^{m}\right)\right)=\varnothing \tag{12}
\end{equation*}
$$

and that for any $x \in W_{n, \lambda}$

$$
B\left(x, q^{n}\right) \cap\left(\bigcup_{m=n}^{M} \bigcup_{i} B\left(y_{m i}, q^{m}\right)\right) \neq \varnothing .
$$

By (2) and (11)

$$
V_{\lambda} \subset \bigcup_{n} \bigcup_{j}\left(B\left(y_{n j}, q^{n+1}\right) \times\left(0, q^{n}\right)\right)
$$

Thus

$$
\begin{align*}
\lambda^{p(1+\delta)} \nu\left(V_{\lambda}\right) & \leqslant \sum_{n} \sum_{j} \nu\left(B\left(y_{n j}, q^{n+1}\right) \times\left(0, q^{n}\right)\right) \lambda^{p(1+\delta)} \\
& \leqslant \sum_{n} \sum_{j} q^{(n+1)(1+\delta)}\left(\int_{B\left(y_{n}, q^{n}\right)}|f(y)| d \mu(y) / q^{n-1}\right)^{p(1+\delta)} \tag{12}\\
& \leqslant \sum_{n} \sum_{j} q^{(n+1)(1+\delta)} q^{p(1+\delta)}\left(\int_{B\left(y_{n}, q^{n}\right)}|f(y)|^{p} d \mu(y) / q^{n}\right)^{1+\delta} \\
& \leqslant C_{p, \delta}\left(\sum_{n} \sum_{j} \int_{B\left(y_{n^{\prime}}, q^{n}\right)}|f(y)|^{p} d \mu(y)\right)^{1+\delta} \\
& \leqslant C_{p, \delta}\left(\int_{X}|f(y)|^{p} d \mu(y)\right)^{1+\delta} .
\end{align*}
$$

by (10), (12)

Then, Lemma 1 follows from the Marcinkiewicz interpolation theorem.
Lemma 2. Let $g(x)$ be a nonnegative function defined on X. Then for each $t>0$ there exist $\{x(g, t, j)\}_{j=1,2, \ldots} \subset X$ such that

$$
\begin{align*}
& 1 \leqslant C_{1} \sum_{j} K(t, x(g, t, j), y) \leqslant C_{3} \quad \text { for any } y \in X, \tag{20}\\
& g(x(g, t, j)) \leqslant C_{4} F\left(t, x(g, t, j), g^{1 / 2}\right)^{2} \quad \text { for any } j \tag{21}
\end{align*}
$$

Proof. First, we can select $\{y(t, j)\}_{j=1,2, \ldots}$ such that

$$
\begin{equation*}
d(y(t, i), y(t, j)) \geqslant(2 A)^{-1} C_{2} t \quad(i \neq j) \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j} \chi_{B\left(y(t, j),(2 A)^{-1} c_{2} t\right)}(x) \geqslant 1 \quad \text { for any } x \in X \tag{23}
\end{equation*}
$$

For each $y(t, j)$, we select $x(g, t, j)$ such that

$$
\begin{gather*}
d(x(g, t, j), y(t, j)) \leqslant(2 A)^{-1} C_{2} t \tag{24}\\
g(x(g, t, j)) \leqslant\left(\int_{B\left(y(t, j),(2 A)^{-1} C_{2} t\right)} g(y)^{1 / 2} d \mu(y) /\left((2 A)^{-2} C_{2} t\right)\right)^{2} \tag{25}
\end{gather*}
$$

Then, (20) and (21) follow from (8), (22), (23), (24) and (25).
Lemma 3. There exist $p_{1}<1$ and C_{5}, only depending on X, such that

$$
\left|\int f(y) \varphi(y) d \mu(y)\right| / r_{0} \leqslant C_{5}\left(\int_{B\left(x_{0}, r_{0}\right)} f^{+}(y)^{p_{1}} d \mu(y) / r_{0}\right)^{1 / p_{1}}
$$

for any $f \in L_{\mathrm{loc}}^{1}(X)$ and any φ, x_{0}, r_{0} satisfying

$$
\operatorname{supp} \varphi \subset B\left(x_{0}, r_{0}\right), \quad L(\varphi, \gamma) \leqslant r_{0}^{-\gamma}, \quad\|\varphi\|_{L^{\infty}} \leqslant 1
$$

Remark. I borrowed the idea of this proof from Carleson-Garnett [4] and Jones [13].

Proof. We may assume that $r_{0}=1$ and that $\varphi \geqslant 0$. Let

$$
\begin{equation*}
\varepsilon=1 /\left(4 C_{3}\right) \tag{30}
\end{equation*}
$$

and let η be a sufficiently small positive number, only depending on X. We inductively construct $\left\{x_{s j}\right\}_{s=1,2, \ldots, j=1,2, \ldots, j(s)} \subset B\left(x_{0}, 1\right)$ satisfying the following.
(31) $\left\|\sum_{j=1}^{j(s)} \chi_{B_{j j}}\right\|_{\infty} \leqslant C_{3}$ for any $s \in N$, where $B_{s j}=B\left(x_{s j}, C_{2} \eta^{s}\right)$,
(32) $f^{+}\left(x_{s j}\right) \leqslant C_{4} F\left(\eta^{s}, x_{s j}, f^{+1 / 2}\right)^{2}$,
(33) $0 \leqslant \varphi_{s}(x) \leqslant(1-\varepsilon)^{s} \chi_{B\left(x_{0,1}\right)}(x)$, where
(34) $\varphi_{s}(x)=\varphi(x)-\sum_{i=1}^{s} \varepsilon(1-\varepsilon)^{i-1} \sum_{j=1}^{j(i)} C_{1} K\left(\eta^{i}, x_{i j}, x\right)$.

Let $\varphi_{0}(x)=\varphi(x)$. Assume that $\left\{x_{i j}\right\}_{i=1, \ldots, s-1, j=1, \ldots, j(i)}$ have been constructed and that $\varphi_{s-1}(x)$ is defined by (34). Then, by (31) and (7),

$$
\begin{align*}
\mid \varphi_{s-1}(x)- & \varphi_{s-1}(y)|\leqslant|\varphi(x)-\varphi(y)| \\
& \quad+\sum_{i=1}^{s-1} \varepsilon(1-\varepsilon)^{i-1} \sum_{j} C_{1}\left|K\left(\eta^{i}, x_{i j}, x\right)-K\left(\eta^{i}, x_{i j}, y\right)\right| \\
\leqslant & d(x, y)^{\gamma}+\sum_{i=1}^{s-1} \varepsilon(1-\varepsilon)^{i-1} C_{1} 2 C_{3}\left(d(x, y) / \eta^{i}\right)^{\gamma} \\
\leqslant & d(x, y)^{\gamma}\left\{1+\varepsilon(1-\varepsilon)^{-1} 2 C_{1} C_{3}\left((1-\varepsilon) / \eta^{\gamma}\right)^{s-1}\left(1-\eta^{\gamma} /(1-\varepsilon)\right)^{-1}\right\} \\
\leqslant & C\left((1-\varepsilon) / \eta^{\gamma}\right)^{s-1} d(x, y)^{\gamma} . \tag{35}
\end{align*}
$$

Let $\Omega_{s, \lambda}=\left\{x \in X: \varphi_{s-1}(x)>\lambda(1-\varepsilon)^{s-1}\right\}$. Applying Lemma 2 to $g(x)=f^{+}(x)$ and $t=\eta^{s}$, we get $\left\{x\left(f^{+}, \eta^{s}, j\right)\right\}_{j=1,2, \ldots}$ such that (20) and (21). Let $\left\{x_{s j}\right\}_{j=1}^{j(s)}$ be a subset of $\left\{x\left(f^{+}, \eta^{s}, j\right)\right\}_{j}$ which is contained in $\Omega_{s, 2 / 3}$. Then (31) and (32) are satisfied. By (20),

$$
\begin{equation*}
\varepsilon(1-\varepsilon)^{s-1} C_{1} \sum_{j=1}^{j(s)} K\left(\eta^{s}, x_{s j}, y\right) \leqslant C_{3} \varepsilon(1-\varepsilon)^{s-1} \quad \text { for any } y \in X \tag{36}
\end{equation*}
$$

If supp $K\left(\eta^{s}, x, \cdot\right) \cap \Omega_{s, 1-\varepsilon} \neq \varnothing$, then by (35) $x \in \Omega_{s, 2 / 3}$ because η is small. Thus by (20)

$$
\begin{equation*}
\varepsilon(1-\varepsilon)^{s-1} \leqslant \varepsilon(1-\varepsilon)^{s-1} C_{1} \sum_{j=1}^{j(s)} K\left(\eta^{s}, x_{s j}, y\right) \quad \text { for any } y \in \Omega_{s, 1-\varepsilon} . \tag{37}
\end{equation*}
$$

Similarly, if $\operatorname{supp} K\left(\eta^{s}, x, \cdot\right) \cap \Omega_{s, 1 / 2}^{c} \neq \varnothing$, then $x \notin \Omega_{s, 2 / 3}$ by (35). So,

$$
\begin{equation*}
\sum_{j} K\left(\eta^{s}, x_{s j}, y\right)=0 \quad \text { for any } y \in \Omega_{s, 1 / 2}^{c} \tag{38}
\end{equation*}
$$

and (33) follows from (30), (36), (37) and (38).
Thus

$$
\varphi(x)=\sum_{s \in N} \sum_{j=1}^{j(s)} \varepsilon(1-\varepsilon)^{s-1} C_{1} K\left(\eta^{s}, x_{s j}, x\right)
$$

and

$$
\begin{aligned}
\int f(y) \varphi(y) d \mu(y) & =\sum_{s \in N} \varepsilon(1-\varepsilon)^{s-1} \sum_{j} C_{1} \int f(y) K\left(\eta^{s}, x_{s j}, y\right) d \mu(y) \\
& =C_{1} \varepsilon(1-\varepsilon)^{-1} \sum_{s} \sum_{j}(1-\varepsilon)^{s} \eta^{s} F\left(\eta^{s}, x_{s j}, f\right) .
\end{aligned}
$$

By (32),

$$
\begin{aligned}
\left|\sum_{s} \sum_{j}(1-\varepsilon)^{s} \eta^{s} F\left(\eta^{s}, x_{s j}, f\right)\right| & <\sum \sum C_{4}(1-\varepsilon)^{s} \eta^{s} F\left(\eta^{s}, x_{s j}, f^{+1 / 2}\right)^{2} \\
& =C_{4} \iint_{X \times R^{+}} F\left(r, x, f^{+1 / 2}\right)^{2} d \nu(x, r)
\end{aligned}
$$

where $\nu=\Sigma_{s} \Sigma_{j}(1-\varepsilon)^{s} \eta^{s} \delta_{\left(x_{j j}, \eta^{s}\right)}$ and $\delta_{(x, r)}$ is the Dirac measure of the point $(x, r) \in X \times R^{+}$. Note that

$$
\nu(B(x, r) \times(0, r)) \leqslant C r(1-\varepsilon)^{\log r / \log \eta}=C r^{1+\log (1-\varepsilon) / \log \eta}
$$

and that

$$
F\left(r, x, f^{+1 / 2}\right)=F\left(r, x, f^{+1 / 2} \chi_{B\left(x_{0}, 1\right)}\right) \quad \text { on supp } \nu
$$

Then, by Lemma 1,

$$
\begin{aligned}
& \iint_{X \times R^{+}} F\left(r, x, f^{+1 / 2} \chi_{B\left(x_{0}, 1\right)}\right)^{2} d \nu(x, r) \\
& \leqslant C\left(\int_{X}\left(f^{+}(y)^{1 / 2} \chi(y)\right)^{2 /(1+\delta)} d \mu(y)\right)^{1+\delta} \\
& \quad \text { where } \delta=\log (1-\varepsilon) / \log \eta \\
& \leqslant C\left\|f^{+} \chi\right\|_{L^{1 /(1+\delta)}} \\
&=C\left(\int_{B\left(x_{0}, 1\right)} f^{+}(y)^{1 /(1+\delta)} d \mu(y)\right)^{1+\delta}
\end{aligned}
$$

This completes the proof of Lemma 3.

Lemma 4. If $f \in L^{p}(X)$, with $1<p \leqslant \infty$, then

$$
\left\|M_{1}(f)\right\|_{L^{p}} \leqslant C_{p}\|f\|_{L^{p}}
$$

where C_{p} is independent of f.
This is the Hardy-Littlewood maximal theorem. We omit the proof.
Proof of Theorem 1. By Lemma 3, $f^{*}(x) \leqslant C M_{p_{1}}\left(f^{+}\right)(x)$. Thus, by Lemma 4,

$$
\left\|f^{*}\right\|_{L^{p}} \leqslant C\left\|M_{p_{1}}\left(f^{+}\right)\right\|_{L^{p}}=C\left\|M_{1}\left(f^{+p_{1}}\right)\right\|_{L^{p / p_{1}}}^{1 / p_{1}} \leqslant C_{p p_{1}}\left\|f^{+}\right\|_{L^{p}}
$$

if $p>p_{1}$.
4. The kernel whose support is not compact. In this section, we relax the restriction (4). Let $K_{1}(r, x, y)$ be a nonnegative continuous function defined on $R^{+} \times X \times X$ such that
(40) $K_{1}(r, x, y) \leqslant(1+d(x, y) / r)^{-1-\gamma}$,
(41) $K_{1}(r, x, x)>A^{-1}>0$,
(42) $\left|K_{1}(r, x, y)-K_{1}(r, x, z)\right| \leqslant(d(y, z) / r)^{\gamma}(1+d(x, y) / r)^{-1-2 \gamma}$ if $d(y, z)<$ $(r+d(x, y)) /(4 A)$
for any $x, y, z \in X$ and any $r \in R^{+}$. In this case (8) holds; i.e.
(43) $C_{1} K_{1}(r, x, y)>1$
for any $x \in X, y \in X$ and $r>0$ satisfying $d(x, y)<C_{2} r$.
For any $f \in L^{1}(X)$, let

$$
\begin{aligned}
F_{1}(r, x, f) & =\int_{X} K_{1}(r, x, y) f(y) d \mu(y) / r \\
f^{(+)}(x) & =\sup _{r>0}\left|F_{1}(r, x, f)\right|
\end{aligned}
$$

Extending Theorem 1, we get
Theorem 1^{\prime}. There exists $p_{3}<1$, only depending on X, such that for any $f \in$ $L^{1}(X)$ and any $p>p_{3}$

$$
\left\|f^{*}\right\|_{L^{p}} \leqslant c_{7}\left\|f^{(+)}\right\|_{L^{p}}
$$

where c_{7} is a positive constant depending only on p and X.
As a corollary of Theorem 1^{\prime} and Theorem C, we get
Corollary 1^{\prime}. There exists $p_{4}<1$, only depending on X, such that for any $f \in L^{1}(X)$ and any $1 \geqslant p>p_{4}$

$$
\left\|f^{(+)}\right\|_{L^{p}} \leqslant c_{8}\|f\|_{H^{p}} \leqslant c_{9}\left\|f^{*}\right\|_{L^{p}} \leqslant c_{10}\left\|f^{(+)}\right\|_{L^{p}}
$$

where c_{8}, c_{9} and c_{10} are positive constants depending only on p and X.
Remark. The inequality $\left\|f^{(+)}\right\|_{L^{p}} \leqslant c_{8}\|f\|_{H^{p}}$ follows easily from (42).
For the proof of Theorem 1^{\prime}, it suffices to prove the following.
Lemma 3^{\prime}. There exist $p_{3}<1$ and C_{5}^{\prime}, only depending on X, such that

$$
\left|\int f(y) \varphi(y) d \mu(y)\right| / r_{0} \leqslant C_{5}^{\prime} M_{p_{3}}\left(f^{(+)}\right)\left(x_{0}\right)
$$

for any $f \in L^{1}(X)$ and any φ, x_{0}, r_{0} satisfying

$$
\operatorname{supp} \varphi \subset B\left(x_{0}, r_{0}\right), \quad L(\varphi, \gamma) \leqslant r_{0}^{-\gamma}, \quad\|\varphi\|_{L^{\infty}} \leqslant 1
$$

Theorem 1^{\prime} can be proved in exactly the same way as Theorem 1 , replacing Lemma 3 by Lemma 3'. For the proof of Lemma 3^{\prime}, we need the following three lemmas.

In the following, let x_{0} be fixed and let $d(y)=1+d\left(x_{0}, y\right)$.
Lemma 5. If $d(x, y) \leqslant d(y) /(2 A)$, then $d(y) /(2 A) \leqslant d(x) \leqslant 2 A d(y)$.
We omit the proof.
Lemma 2'. Let $g(x)$ be a nonnegative function defined on X. Then for each $0<t<(4 A)^{-5}$, there exist $\left\{x^{\prime}(g, t, j)\right\}_{j=1,2, \ldots}$ such that

$$
\begin{align*}
& 1 \leqslant \sum_{j} \chi_{B\left(x^{\prime}(g, t, j), c_{2} t d\left(x^{\prime}\left(g, t_{j}\right)\right)\right)}(x) \leqslant C_{3}^{\prime} \quad \text { for any } x \in X \tag{50}\\
& g\left(x^{\prime}(g, t, j)\right) \leqslant C_{4}^{\prime} F\left(t d\left(x^{\prime}(g, t, j)\right), x^{\prime}(g, t, j), g^{1 / 2}\right)^{2} \tag{51}
\end{align*}
$$

In particular,

$$
\begin{align*}
&(2 A)^{1+\gamma / 2} C_{1} \sum_{j} d\left(x^{\prime}(g, t, j)\right)^{-1-\gamma / 2} K_{1}\left(t d\left(x^{\prime}(g, t, j)\right), x^{\prime}(g, t, j), x\right) \\
& \cdot \chi_{B\left(x^{\prime}(g, t, j), C_{2} t d\left(x^{\prime}\left(g, t_{j}\right)\right)\right)}(x) \geqslant d(x)^{-1-\gamma / 2} \tag{52}
\end{align*}
$$

for any $x \in X$.
Proof. First, we can select $\left\{y^{\prime}(t, j)\right\}_{j=1,2,} \ldots$ such that

$$
\begin{gather*}
d\left(y^{\prime}(t, i), y^{\prime}(t, j)\right) \geqslant(2 A)^{-2} C_{2} t \min \left(d\left(y^{\prime}(t, i)\right), d\left(y^{\prime}(t, j)\right)\right) \quad(i \neq j) \tag{53}\\
\sum_{j} \chi_{B\left(y^{\prime}(t, j)(2 A)^{-2} C_{2} t d\left(y^{\prime}(t, j)\right)\right)}(x) \geqslant 1 \tag{54}
\end{gather*}
$$

For each $y^{\prime}(t, j)$, we select $x^{\prime}(g, t, j)$ such that

$$
\begin{align*}
& g\left(x^{\prime}(g, t, j)\right)^{1 / 2} d\left(x^{\prime}(g, t, j), y^{\prime}(t, j)\right)<(2 A)^{-2} C_{2} t d\left(y^{\prime}(t, j)\right), \tag{55}\\
& \leqslant \int_{B\left(y^{\prime}(t, j),(2 A)^{-2} C_{\left.2^{t} d\left(y^{\prime}(t, j)\right)\right)} g(y)^{1 / 2} d \mu(y) /\left((2 A)^{-3} C_{2} t d\left(y^{\prime}(t, j)\right)\right) .\right.} .
\end{align*}
$$

The first inequality of (50) follows from (54), (55) and Lemma 5. The second inequality of (50) follows from (53) and (55). (51) follows from (55) and (56). If $x \in B\left(y, C_{2} t d(y)\right)$, then

$$
\begin{equation*}
d(x) \geqslant d(y) /(2 A) \tag{57}
\end{equation*}
$$

by Lemma 5. Thus (52) follows from (57), (50) and (43).
Lemma 6. Let $0<r<1$ and let $\left\{x_{j}\right\}_{j=1,2, \ldots}$ be such that

$$
\begin{equation*}
\sum_{j} \chi_{B\left(x_{j}, C_{2} r d\left(x_{j}\right)\right)}(x) \leqslant C_{3}^{\prime} \quad \text { for any } x \in X . \tag{60}
\end{equation*}
$$

Let $0 \leqslant a, a+\gamma / 2 \leqslant b \leqslant 2 \gamma, 0 \leqslant M$ and let

$$
u_{j}(x)=d\left(x_{j}\right)^{-1-a}\left(1+d\left(x_{j}, x\right) /\left(r d\left(x_{j}\right)\right)\right)^{-1-b} \chi_{M}\left(d\left(x_{j}, x\right) /\left(r d\left(x_{j}\right)\right)\right)
$$

where $\chi_{M}(\cdot)$ is the characteristic function of $[M, \infty)$. Then

$$
\sum_{j} u_{j}(x) \leqslant C_{6} d(x)^{-1-a} \max \left(r^{b},(1+M)^{-b}\right) .
$$

Proof. For each $t \in N$, let $v_{t}(x)=\sum_{j}^{\prime t} u_{j}(x)$, where $\Sigma_{j}^{\prime t}$ means $\sum_{j: 2^{t-1}<d\left(x_{j}\right)<2^{\prime}}$. First,

$$
\begin{align*}
v_{t}(x) \leqslant & 2^{-(t-1)(1+a)} \sum_{j}^{\prime t}\left(1+d\left(x_{j}, x\right) /\left(r 2^{t}\right)\right)^{-1-b} \chi_{M}\left(d\left(x_{j}, x\right) /\left(r 2^{t-1}\right)\right) \\
\leqslant & C 2^{-(t-1)(1+a)}\left(r 2^{t}\right)^{-1} \\
& \cdot \int\left(1+d(y, x) /\left(r 2^{t}\right)\right)^{-1-b} \chi_{M}\left(d(y, x) /\left(r 2^{t-1}\right)\right) d \mu(y) \quad \text { by }(60) \\
\leqslant & C 2^{-(t-1)(1+a)}(1+M)^{-b} / b . \tag{61}
\end{align*}
$$

If $2^{t-1}>2 A d(x)$, then $d\left(x_{j}, x\right) \geqslant C d\left(x_{j}\right)$. Thus,

$$
\begin{align*}
v_{t}(x) & \leqslant C 2^{-(t-1)(1+a)} r^{1+b} \sum_{j}^{\prime t} 1 \\
& \leqslant C 2^{-(t-1)(1+a)} r^{1+b} r^{-1} \text { by }(60) . \tag{62}
\end{align*}
$$

If $2^{t}<d(x) /(2 A)$, then $d\left(x_{j}, x\right) \geqslant C d(x)$. Thus,

$$
\begin{align*}
v_{t}(x) & \leqslant C 2^{-(t-1)(1+a)}\left(1+d(x) /\left(r 2^{t}\right)\right)^{-1-b} \sum_{j}^{\prime t} 1 \\
& \leqslant C 2^{-(t-1)(1+a)} d(x)^{-1-b} r^{1+b} 2^{t(1+b)} r^{-1} \quad \text { by }(60) . \tag{63}
\end{align*}
$$

Summing up (61)-(63), we get the desired estimate.
Proof of Lemma 3^{\prime}. We may assume $r_{0}=1$ and $\|\varphi\|_{L^{\infty}}<2^{-1-\gamma / 2}$. Let

$$
\begin{equation*}
\varepsilon=\min \left(1 / C_{8},(2 A)^{-1-\gamma / 2} / 2\right) \tag{70}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{7}=2(2 A)^{1+\gamma / 2} C_{1}, \quad C_{8}=4 C_{6} C_{7} . \tag{71}
\end{equation*}
$$

Let η be a sufficiently small positive number to be determined later.
We inductively construct $\left\{x_{s j}\right\}_{s \in N, 1<j<j(s)} \subset X$, and $\left\{\varepsilon_{s j}\right\}_{s \in N, 1<j<j(s)} \subset$ $\{-1,0,1\}$, where $j(s)$ can be ∞, satisfying
(72) $\left\|\Sigma_{j} \chi_{B_{j}}(x)\right\|_{L^{\infty}} \leqslant C_{3}^{\prime}$ for any $s \in N$, where $B_{s j}=B\left(x_{s j}, C_{2} \eta^{s} d\left(x_{s j}\right)\right)$,
(73) $f^{(+)}\left(x_{s j}\right) \leqslant C_{4}^{\prime} F\left(\eta^{s} d\left(x_{s j}\right), x_{s j}, f^{(+) 1 / 2}\right)^{2}$,
(74) $\left|\varphi_{s}(x)\right| \leqslant(1-\varepsilon)^{s} d(x)^{-1-\gamma / 2}$, where

$$
\begin{align*}
\varphi_{s}(x)= & \varphi(x)-\sum_{i=1}^{s} C_{7} \varepsilon(1-\varepsilon)^{i-1} \\
& \cdot \sum_{1<j<j(i)} \varepsilon_{i j} d\left(x_{i j}\right)^{-1-\gamma / 2} K_{1}\left(\eta^{i} d\left(x_{i j}\right), x_{i j}, x\right) . \tag{75}
\end{align*}
$$

Let $\varphi_{0}(x)=\varphi(x)$. Assume that $\left\{x_{i j}\right\},\left\{\varepsilon_{i j}\right\}(1 \leqslant i \leqslant s-1,1 \leqslant j<j(i))$ have been constructed and that $\varphi_{s-1}(x)$ is defined by (75).

If $d(x, y) \leqslant \eta^{s-1} d(x) /(4 A)^{2}$, then $d(x, y) \leqslant\left(\eta^{s-1} d\left(x_{i j}\right)+d\left(x_{i j}, x\right)\right) /(4 A)$. Thus,

$$
\begin{aligned}
\mid \varphi_{s-1}(x)- & \varphi_{s-1}(y)\left|\leqslant|\varphi(x)-\varphi(y)|+\sum_{i=1}^{s-1} C_{7} \varepsilon(1-\varepsilon)^{i-1}\right. \\
& \cdot \sum_{j} d\left(x_{i j}\right)^{-1-\gamma / 2}\left|K_{1}\left(\eta^{i} d\left(x_{i j}\right), x_{i j}, x\right)-K_{1}\left(\eta^{i} d\left(x_{i j}\right), x_{i j}, y\right)\right| \\
\leqslant & |\varphi(x)-\varphi(y)|+2 \sum_{i=1}^{s-1} C_{7} \varepsilon(1-\varepsilon)^{i} \\
& \cdot \sum_{j} d\left(x_{i j}\right)^{-1-\gamma / 2}\left(d(x, y) /\left(\eta^{i} d\left(x_{i j}\right)\right)\right)^{\gamma}\left(1+d\left(x_{i j}, x\right) /\left(\eta^{i} d\left(x_{i j}\right)\right)\right)^{-1-2 \gamma}
\end{aligned}
$$

by (42). The second term is equal to

$$
\begin{gather*}
2 d(x, y)^{\gamma} C_{7} \varepsilon \sum_{i=1}^{s-1}(1-\varepsilon)^{i} \eta^{-i \gamma} \sum_{j} d\left(x_{i j}\right)^{-1-3 \gamma / 2}\left(1+d\left(x_{i j}, x\right) /\left(\eta^{i} d\left(x_{i j}\right)\right)\right)^{-1-2 \gamma} \\
\leqslant 2 d(x, y)^{\gamma} C_{7} \varepsilon \sum_{i=1}^{s-1}\left((1-\varepsilon) / \eta^{\gamma}\right)^{i} C_{6} d(x)^{-1-3 \gamma / 2} \\
\leqslant d(x, y)^{\gamma}\left((1-\varepsilon) / \eta^{\gamma}\right)^{s-1} d(x)^{-1-3 \gamma / 2} \tag{76}
\end{gather*}
$$

by Lemma 6, (70) and (71).
Let

$$
\Omega_{s, \lambda}=\left\{x \in X: \varphi_{s-1}(x)>\lambda(1-\varepsilon)^{s-1} d(x)^{-1-\gamma / 2}\right\} .
$$

Applying Lemma 2^{\prime} to $g(x)=f^{(+)}(x)$ and $t=\eta^{s}$, we get $\left\{x^{\prime}\left(f^{(+)}, \eta^{s}, j\right)\right\}_{j}$ such that (50) and (51). Let $x_{s j}=x^{\prime}\left(f^{(+)}, \eta^{s}, j\right.$). Then, (72) and (73) are satisfied. Let $\varepsilon_{s j}=\operatorname{sign}\left(\varphi_{s-1}\left(x_{s j}\right)\right)$ and let

$$
w_{s}(x)=C_{7} \varepsilon(1-\varepsilon)^{s-1} \sum_{j} \varepsilon_{s j} d\left(x_{s j}\right)^{-1-\gamma / 2} K_{1}\left(\eta^{s} d\left(x_{s j}\right), x_{s j}, x\right) .
$$

Note that

$$
\begin{align*}
\left|w_{s}(x)\right| & \leqslant C_{7} \varepsilon(1-\varepsilon)^{s-1} \sum_{j} d\left(x_{s j}\right)^{-1-\gamma / 2}\left(1+d\left(x_{s j} ; x\right) /\left(\eta^{s} d\left(x_{s j}\right)\right)\right)^{-1-\gamma} \\
& \leqslant 4^{-1}(1-\varepsilon)^{s-1} d(x)^{-1-\gamma / 2} \tag{77}
\end{align*}
$$

by Lemma 6, (70) and (71).
If $d(x, y)<C_{9} \eta^{s-1} d(y)$, where $C_{9}=\left(\varepsilon(2 A)^{-1-3 \gamma / 2} / 2\right)^{1 / \gamma}$, then

$$
\begin{equation*}
d(y) /(2 A) \leqslant d(x) \leqslant 2 A d(y) \tag{78}
\end{equation*}
$$

by Lemma 5 and

$$
\begin{align*}
\left|\varphi_{s-1}(x)-\varphi_{s-1}(y)\right| & \leqslant|\varphi(x)-\varphi(y)|+2^{-1} \varepsilon(1-\varepsilon)^{s-1} d(y)^{-1-\gamma / 2} \text { by (76) } \\
& \leqslant \varepsilon(1-\varepsilon)^{s-1} d(y)^{-1-\gamma / 2} \tag{79}
\end{align*}
$$

by $\operatorname{supp} \varphi \subset B\left(x_{0}, 1\right), L(\varphi, \gamma) \leqslant 1$. Thus, if $y \notin \Omega_{s, 0}$ and if $d(x, y) \leqslant C_{9} \eta^{s-1} d(y)$, then by (79) and (78),

$$
\varphi_{s-1}(x)<\varepsilon(1-\varepsilon)^{s-1} d(y)^{-1-\gamma / 2}<(2 A)^{1+\gamma / 2} \varepsilon(1-\varepsilon)^{s-1} d(x)^{-1-\gamma / 2}
$$

and, by (70),

$$
\begin{equation*}
B\left(y, C_{9} \eta^{s-1} d(y)\right) \cap \Omega_{s, 1 / 2}=\varnothing \tag{80}
\end{equation*}
$$

So, if $x \in \Omega_{s, 1 / 2}$, then by (52), (71) and (80),

$$
\begin{aligned}
w_{s}(x)> & 2 \varepsilon(1-\varepsilon)^{s-1} d(x)^{-1-\gamma / 2}-C_{7} \varepsilon(1-\varepsilon)^{s-1} \sum_{j} d\left(x_{s j}\right)^{-1-\gamma / 2} \\
\cdot & \left|K_{1}\left(\eta^{s} d\left(x_{s j}\right), x_{s j}, x\right)\right| \chi_{C_{9} \eta^{-1}}\left(d\left(x, x_{s j}\right) /\left(\eta^{s} d\left(x_{s j}\right)\right)\right)
\end{aligned}
$$

By Lemma 6, the second term is less than

$$
C_{7} \varepsilon(1-\varepsilon)^{s-1} C_{6} d(x)^{-1-\gamma / 2}\left(C_{9} \eta^{-1}\right)^{-\gamma}
$$

Since η is sufficiently small, we see that

$$
\begin{equation*}
w_{s}(x)>\varepsilon(1-\varepsilon)^{s-1} d(x)^{-1-\gamma / 2} \quad \text { on } \Omega_{s, 1 / 2} \tag{81}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
w_{s}(x)<-\varepsilon(1-\varepsilon)^{s-1} d(x)^{-1-\gamma / 2} \quad \text { on }\left(\Omega_{s,-1 / 2}\right)^{c} \tag{82}
\end{equation*}
$$

In this way, by (77), (81) and (82), we see that $\varphi_{s}(x)$ defined by (75) satisfies (74).
Thus,

$$
\varphi(x)=\sum_{s \in N} \sum_{j} C_{7} \varepsilon(1-\varepsilon)^{s-1} \varepsilon_{s j} d\left(x_{s j}\right)^{-1-\gamma / 2} K_{1}\left(\eta^{s} d\left(x_{s j}\right), x_{s j} ; x\right)
$$

So,

$$
\begin{aligned}
\left|\int f(y) \varphi(y) d \mu(y)\right| & \leqslant C_{7} \sum_{s} \sum_{j} \varepsilon(1-\varepsilon)^{s-1} \eta^{s} d\left(x_{s j}\right)^{-\gamma / 2} f^{(+)}\left(x_{s j}\right) \\
& \leqslant C \iint_{X \times R^{+}} F\left(r, x, f^{(+) 1 / 2}\right)^{2} d \nu(x, r)
\end{aligned}
$$

by (73), where

$$
\begin{align*}
\nu & =\sum_{s} \sum_{j} \varepsilon(1-\varepsilon)^{s} \eta^{s} d\left(x_{s j}\right)^{-\gamma / 2} \delta_{\left(x_{y,}, \eta^{s} d\left(x_{y j}\right)\right)} \\
& \leqslant C \sum_{t \in N} \varepsilon 2^{-t \gamma / 2} \sum_{s j: 2^{t-1}<d\left(x_{s j}\right)<2^{t}}(1-\varepsilon)^{s} \eta^{s} \delta_{\left(x_{y, v}, \eta^{v} d\left(x_{j,}\right)\right)} \\
& =\sum_{t \in N} 2^{-t \gamma / 2} \nu_{t} \tag{83}
\end{align*}
$$

Note that $\nu_{t}(B(x, r) \times(0, r)) \leqslant\left(2^{-t} r\right)^{1+\log (1-\varepsilon) / \log \eta}$ and that

$$
F\left(r, x, f^{(+) 1 / 2}\right)=F\left(r, x, f^{(+) 1 / 2} \chi_{B\left(x_{0}, C 2^{\prime}\right)}\right) \quad \text { on supp } \nu_{t}
$$

Let $\delta=\log (1-\varepsilon) / \log \eta$. Then, by Lemma 1 ,

$$
\begin{aligned}
\iint_{X \times R^{+}} & F\left(r, x, f^{(+) 1 / 2} \chi_{B\left(x_{0}, C 2^{\prime}\right)}\right)^{2} d \nu_{t}(x, r) \\
& \leqslant C 2^{-t(1+\delta)}\left(\int_{B\left(x_{0}, C 2^{\prime}\right)} f^{(+) t /(1+\delta)} d \mu\right)^{1+\delta} \\
& \leqslant C M_{1 /(1+\delta)}\left(f^{(+)}\right)\left(x_{0}\right)
\end{aligned}
$$

for each $t \in N$. Thus, by (83), we get

$$
\left|\int f(y) \varphi(y) d \mu(y)\right| \leqslant C M_{1 /(1+\delta)}\left(f^{(+)}\right)\left(x_{0}\right)
$$

5. Examples.

Example 1. If we set $X=R^{n}, d(x, y)=|x-y|^{n}$ and

$$
K(r, x, y)=\psi_{0}\left((x-y) / r^{1 / n}\right)
$$

(where $\psi_{0} \in \mathscr{D}\left(R^{n}\right)$, supp $\psi_{0} \subset\left\{x \in R^{n}:|x|<1\right\},\left|\psi_{0}(x)-\psi_{0}(y)\right| \leqslant|x-y|$, $\psi_{0}(x) \geqslant 0, \psi_{0}(0)>0$), then (0)-(7) are satisfied with $\gamma=1 / n$. In this case, the definitions of H^{p} in $\S \S 1$ and 2 coincide for $p>n /(n+1)$. Since $\mathcal{L}_{1 / p-1}\left(R^{n}\right)=\{0\}$ for $p<n /(n+1)$, the definition in $\S 2$ is not valid for $p<n /(n+1)$.

$$
K_{1}(r, x, y)=\left(1+|x-y|^{2} / r^{2 / n}\right)^{-(n+1) / 2}
$$

satisfies (40)-(42) and $K_{1}(r, x, y) / r$ is the Poisson kernel.
Example 2. If we set $X=\Sigma_{2 n-1}=\left\{z \in C^{n}: z \cdot \bar{z}=\sum_{j=1}^{n} z_{j} \bar{z}_{j}=1\right\}$ and $d(z, w)$ $=|1-z \cdot \bar{w}|^{n}$, then $\Sigma_{2 n-1}$ is a space of homogeneous type by using the Lebesgue surface measure. Let $\varphi_{0}(t) \in C^{\infty}(0, \infty)$ be a function such that $\varphi_{0}(t)=1$ on $(0,1 / 2), \varphi_{0}(t)=0$ on $(1, \infty)$ and $\varphi_{0}(t) \geqslant 0$. Then, $K(r, z, w)=\varphi_{0}(d(z, w) / r)$ satisfies (0)-(7) with $\gamma=1 /(2 n)$.

$$
K_{1}(r, z, w)=|1-t z \cdot w|^{-2 n}\left(1-t^{2}\right)^{n} r
$$

where $t=1-r^{1 / n}(0<r \leqslant 1)$, satisfies (40)-(42) and $K_{1}(r, z, w) / r$ is the Poisson-Szegö kernel. ($H^{p}\left(\Sigma_{2 n-1}\right)$ has been investigated by many mathematicians. For example, see [7], [8], [12] and [19].)

References

1. A. P. Calderón, An atomic decomposition of distributions in parabolic \boldsymbol{H}^{p} spaces, Advances in Math. 25 (1977), 216-225.
2. A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1-64.
3. L. Carleson, Two remarks on H^{1} and BMO, Advances in Math. 22 (1976), 269-275.
4. L. Carleson and J. Garnett, Interpolating sequences and separation properties, J. Analyse Math. 28 (1975), 273-299.
5. R. Coifman, A real variable characterization of H^{p}, Studia Math. 51 (1974), 269-274.
6. R. Coifman and R. Rochberg, Another characterization of BMO (preprint).
7. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), 611-635.
8. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
9. E. B. Fabes, R. L. Johnson and U. Neri, Spaces of harmonic functions representable by Poisson integrals of functions in BMO and $\mathrm{C}_{p, \lambda}$, Indiana Univ. Math. J. 25 (1976), 159-170.
10. C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between H^{p} spaces, the real method, Trans. Amer. Math. Soc. 191 (1974), 75-82.
11. C. Fefferman and E. M. Stein, \boldsymbol{H}^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
12. J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J. 45 (1978), 815-845.
13. P. W. Jones, Constructions with functions of bounded mean oscillation, Ph.D. thesis, University of California, 1978.
14. R. H. Latter, A characterization of $H^{p}\left(R^{n}\right)$ in terms of atoms, Studia Math. 62 (1977), 92-101.
15. R. H. Latter and A. Uchiyama, The atomic decomposition for parabolic H^{P} spaces, Trans. Amer. Math. Soc. 253 (1979), 391-398.
16. R. Macias and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Advances in Math. 33 (1979), 271-309.
17. \qquad , Lipschitz functions on spaces of homogeneous type, Advances in Math. 33 (1979), 257-270.
18. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970.
19. _, Boundary behavior of holomorphic functions of several complex variables, Princeton Univ. Press, Princeton, N. J., 1972.
20. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971.
21. A. Uchiyama, A remark on Carleson's characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 35-41.
22. N. Th. Varopoulos, BMO functions and the $\bar{\partial}$-equation, Pacific J. Math. 71 (1977), 221-273.
23. P. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143-146.

Department of Mathematics, College of General Education, Tôhoku University, Kawauchi, Sendai, Japan

[^0]: Received by the editors July 23, 1979.
 AMS (MOS) subject classifications (1970). Primary 46E99; Secondary 46E30.
 Key words and phrases. H^{p}, space of homogeneous type, BMO, Lipschitz space, maximal function, Poisson kernel, Poisson-Szegö kernel.

