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1. Introduction. This paper lays bare a principle which underlies the effectiveness
of an iterative technique which occurs in employing the maximum likelihood
method in statistical estimation for probabilistic functions of Markov chains. We
exhibit a general technique for maximizing a function P(1) when P belongs to a
large class of probabilistically defined functions.

In the earlier note [2], an application of an inequality was made to ecology. The
more general approach of this paper has allowed the use of a certain transformation
and inequality in maximizing likelihood function in models for stock market
behavior [3] and sunspot behavior. We also expect to apply these techniques to
problems in weather prediction.

Let A =(a;;) be an s x s stochastic matrix. Let a=(a;),i=1,:"-, s be a
probability distribution. For each i =1, ---, s let fi(y) be a probability density:
[fi(»)dy = 1. For the triple 4, a, f = {f;} we define a stochastic process {¥,} with
density

(n P(A,a,f){Yl =y, Y, =Jy2 Yp= YT}
= Z?o,i,, e ir=1Gig Qigi 1, (V)i [i,(02) o G 1iniT(yT)~

For convenience we denote this expression by P,, ..., (4, a, ).

We call the process Y = { Y,} a probabilistic function of the Markov process
{X,} determined by A. If a is chosen as a stationary distribution for the matrix A
then Y will be a stationary stochastic process.

Let A be an open subset of Euclidean n space. Suppose that to each AeA, we
have a smooth assignment 4 — (A(1), a(4), f(1)). Specifically each f,(4, -) is a density
in y and for each fixed y is a smooth function in A. Under these assumptions, for
each fixed y,, v, ==, yr, Py,...)n(B) =Py, ..., (A(D), a(d), f(A)) is a smooth
function of A. Given a fixed Y-sample y = y,, -, yr we seek a parameter value A°
which maximizes the likelihood Py(4) = P,,...,,(4) determined from A(4), a(d),
J(2) by (1).

One might suspect from the complicated nature of the expression (1) for
P, ...,.(4,a f) and the difficult analysis of maximizing this function of 4 for very
special choices of f presented in [2], [8] that a simple explicit procedure for
maximization for a general f would be quite difficult; however, this is not the case.
There is an extremely simple feature of this function which under mild hypothesis
on f enable us to define a continuous transformation J~ mapping A into itself with
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the property that P, ..., (J(4)>P,, ..., (4) unless A is a critical point of
Py, "‘)’T(A)‘

Theorem 2.1 is the simple but important principle which is applied in defining
the transformation . The convergence properties of J¥(1) as k — oo are discussed
in Proposition 2.2 and following. In Section 3, we transform Theorem 2.1 into a
form suitable for applications, viz., Theorem 3.1, and show that the method is
applicable to the Normal, Poisson, Binomial and Gamma distributions but not to
the Cauchy distribution. A feature of the first three examples is that the trans-
formation J (1) is explicitly presented as a function of the observations y; -y,
and the parameters. In each case, the transformation and its iterates are practically
computable. (See [3] for a detailed illustration of the case in which f,(4, -) is the
normal density.) In Section 4, we prove that the method is applicable to location
and scale parameters for general strictly log concave density functions (Theorem
4.1) and to the coordinates of the stochastic matrix defining the Markov process.

2. Aninequality. Let X = {1, -+, s}Tand x = {x,, - -, xp} € X. Then the function
(1) of Ais of the form: P(2) = > .. xp(x, A), with

p(xs l) = axo(;t) HtT= 1 axt_ 1xt('1)fx[(j'9 yt)

More generally let X be a totally finite measure space with measure p. Let p(x, 1)
be a positive real-valued function on X x A, where A is a subset of Euclidean space,
which is measurable and integrable in x for fixed A. Let P(1) = [xp(x, 1) du(x) and

O, X') = [xp(x, 1) log p(x, X') dp(x).
THEOREM 2.1. If O(4, 1) = O(4, A) then P(X) = P(A). The inequality is strict unless
p(x, 1) = p(x, ) almost everywhere du (x).
PROOF. log ¢ is strictly concave for ¢ > 0 since d2/dt?(logt) = —¢~2 < 0. Hence
log P(2)/P(2) = log [x p(x, Z) du(x)/P(4)
= log fx [p(x, 2) du(x)/P(2)]p(x, D)/ p(x, 1)
Z [x [p(x, 2) du(x)/P(2)] log [ p(x, 1)/ p(x, 2)]
= (P()"'[Q(4, DH—0(4, )] = 0
by hypothesis. For the first inequality we have used Jensen’s inequality for the
probability measure dv,(x) = p(x, A)du(x)/P(2). This inequality is strict unless

p(x, D/p(x, A) is constant almost everywhere dv,(x) hence unless p(x, 1) = p(x, 1)
almost everywhere du (x).

ProrosiTION 2.1. Let p(x, A) be continuously differentiable in A for almost all x.
Let (1) be a continuous map of A — A such that for each fixed 1, T (1) is a critical
point of Q(A, A') as a function of A'. Then all fixed points of I are critical points of P
and if moreover P(T (R)) > P(A) unless I (A) = A, all limit points of T"(1,) are
fixed points of T for any Ao € A.

PROOEF. 0P(1)/04; | L =00(A, ANJOA/ |, - ;. Thus A is a critical point of P iff it is
a critical point of Q(4, 1) as a function of A’. Hence by the hypothesis on 7, if
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J (A1) = A then A is a critical point of P. Suppose that I "(4,) converges to 4. Then
T"*1(),) converges to T (1); so P(T"(ly)) < P(T™ 1 (Ay) £ P(T"+(4,)) and
P(2) £ P(J(A) £ P(4). Thus P(A) = P(J (1)) and since this equality can only hold
if 7 (4) = A, this shows that: all limit points of the sequence {7 "(1,)} are fixed
points of 7.

3. The transformation 7 and applications. The remainder of this paper will
consist of applications of Theorem 2.1 in various situations of interest. To
a given P(1) = [yp(x, ))du(x) there is naturally associated the auxiliary
function: Q(4, ) = [xp(x, A)logp(x, X')du(x). If we define T7:A - A by T (1) =
{leA|max,; A0, X)) = Q(4, D)} then Q(4, 7(A) = O(4, 1) so Theorem 2.1
guarantees P(J (1)) = P(X). Under natural hypotheses on P we will see that

(i) 7 exists and is single valued;
(ii) 7 is continuous;
(iii) 7 is effectively computable;
(iv) P(Z (X)) > P(X) save when 4 is a critical point of P in which case 4 is a fixed
point of 7.

If P has finitely many critical points, for example, it follows from (iv) that for
each A not a critical point, J"(A) approaches a critical point of P which will be a
local maximum (save for starting points 4 in a lower dimensional manifold). We
cannot rule out limit cycle behavior of the iterates " without some hypothesis on
the critical point set of P as above.

Let A = R®. For almost all x let log p(x,4) = Y i_; log p(x, 4;) where for each i
and almost all x log p(x, 4,) is strictly concave in 4; and lim;,,, logp{(x, 1,) =
—00. Define Q,(4, 4;") by

0/, 4) = fx p(x, A)log p(x, 4;) du(x).

Then for 1 fixed, Q;(4, A;") is a strictly concave function of 1, which - —o0 at
+ 00 and hence has a unique global maximum [;, which is a critical point of
0., A/). Define I : A — 1 = {1;}.

THEOREM 3.1. Under the above assumptions, for all Ae A P(T (1)) = P(L) with
equality if and only if A is a critical point of P or equivalently is a fixed point of 7.

PROOF. ‘
Q(l, Z) = Zf=1 Qi()w Zl) = Z?=l a4, ;Li) = Q(/l, A)

so Theorem 2.1 implies P(1) = P(4). Since for each i Q(4, 4,) is strictly concave in
2; the inequality Q(4, 1) = Q(4, A) (and hence the inequality P(1) = P(4)) will be
strict unless 1; = A;foreachi. Thislatter is the case iff 0Q,/04; [ v=2=0,i=1,-s;
ie.,0P[0d;]|,=0,i=1,",s.

Here is a sample of the inequalities that can be analyzed via our technique.
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PrOPOSITION 3.1. If y,, t = 1, - -+, T is a sequence of real numbers and c, = ¢, ...,,
then

P(;L) = Zx Cx th 1 exp(_ le,_ytl)
assumes its global maximum at a point 1 where each 1, is some y,,.

ProoF. We have Q(4, 1) = Z,04(4, 4;") where Q(4, 1)) = —Ey,(z)[/l —y,] with
(i) = 0. Then Q,(4, A;) = —ooas|l|—>oo

0
PYE Qi 4) = =Y yil®)sgn (4 —y), A # any y,,
is monotonic decreasing from oo at 4;' = —o0 to —oo at 1,/ = o0, constant in

intervals between y,, and changes sign at some y, = 1,.. We then have Q,(4, 1,) =
max, 0,4, ) = Q4 4;). By Theorem 2.1 P(1) 2 P(2). Now if ; is any para-
meter which appears in P(1) with a non-zero coefficient ¢, then P(l)—) —oo as
|4 = o0 so that P() assumes its maximum at some point 2. But (1) =1 is a
point with each 7, a y,,and P(1) = P(1) = max P(}).

Applications of Theorem 3.1 to familiar probability distributions. Let X =
{1,-+,s}7 and x= {x;, ", xp}eX. For i=1,---,s let f{(r) be a strictly log
concave probability density function. For each i we obtain a one parameter family
of density functions by introducing 4; as a location parameter: f(r—4,). For a
given fixed real sequence y,, ‘-, yr let p(x,4) =[]/~ /e (i —4,) and P(}) =
Y eexP(x, Hu(x), u(x) > 0. Then logp(x, 2) = Y-, logpi(x, 4,) where

log pi(x, 4;) = st,- log fi(y,—4)
with S,; denoting the set of 7 such that x, = i. Also logf,(y,—4,) is strictly concave
in A; for each y, and - — o0 as |1[ — o0 since f; is a probability density. Hence,
Theorem 3.1 is applicable.

Theorem 3.1 applies straight away to these three examples: the density fi(4, y) =
cexp(—k|A;—y["), e> 1,k >0and — o0 < 4; < oo, the Poisson distribution on the
non-negative integers fi(4, y) = e"*2/y! and 0 £ A, < oo and the binomial distri-
bution on the integers 0,1, -, N, fi(4, ») = (DA(1=2)" > and 01, £ 1. In
each case the method is the same. We determine the transformation J~ by solving
explicitly for the unique A, zero of 9/04;Q(4, ') = 0. For example, in the first
case 7 (1); = 1, is the unique zero of

Yeexl=1exp (= |2 =y InCx) Ls,. |4/ =y~

For ¢ = 2 we have the important case of the normal density.
In each of these three cases 7 (1) has the explicit form

9_()')1 = [Zx eX /'l(x) HtT= 1 vi(x)fx,()'x,, yt)] ' [Zx eX ”(x) HrT= 1 ni(x)fx,(/lxa yt)] -t

where v(x) = Y5y, and n(x) is the number of elements in S,;. In the most impor-
tant case where p(x) = @,,0, 1, Gyr_ 12

TA); = [Zt 17:(1)3’1][2 1')’,(1)]—
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where 7,(/) may be obtained through backward and forward inductive compu-
tations in z. We have y,(i) = o,(i)f,(i) where

o)) = Zf: 1% - l(i)aij bj(lj,}%),
i= 19...7s’t: 2’...’7-‘)

ﬁr(l) = Z§'=1 ﬁt+1(j)au _,(/tpyt+ l)

i=1,,8t=T-1,---,1.y,(i) has a probabxllstlc interpretation as the 4 likeli-
hood of theevent { Y, =y, Y, = y,, "+, Y7 =y, X, = i}. See [6].

The analysis of the case of the gamma density is somewhat more complicated.
In particular we do not have an explicit expression for 7 (4). Nonetheless Theorem
3.1 still applies. Here is a discussion.

The expression f, ,(r) = (I'(v)) " 'o"r* " 'e™™, a > 0, v > 0 defines a two parameter
family of densities for r = 0. Here F(v) §0 r”_le_’a’t is the gamma function. Let
{a;, v;:i =1, -+, 5} be unknown parameters and let

P, v) = Y uO) T T 1 far i (9 = 2 PO%s 0, v)u(X) and
Qo v,0', V') = ZX p(x, o, V)u(x) Zf: 1 ZSM log fai’w’(yt)a
= le= 1 Qi(as v, (Xi,, V,',).

Let o, v be fixed throughout. Q(«, v, o/, v;/) &> — o0 asa;’, v,/ = 0 or co. We write

Qi(a’ Vv, ail, Vi/) = ZtT= 1 yt(l) logfag’vi’(yt)'

For «, v fixed, one proves using the infiite expansion for logI'(v) [1] page 16, that
the Hessian of the Q; function with respect to the prime coordinates is negative
definite. (The Hessian of a function F(xi, ', x,) is the matrix: (0*F|ox0x).)
Hence Q(a, v, cx,', v;) is strictly concave as a function of the two variables «;’, v;".
Since Q; (oz v, o, v/)—= —c0 as v/, a; go to the boundary, we conclude that
0(a, v, o, v;') has a unique critical point &;, ¥; which is a global maximum and is
obtained as a solution of dQ,/0x, =0, 8Q;/dv, = 0. As usual P({&;, V,}) > P(a, v)
save at critical points («, v) of P.

The Cauchy density yields a counterexample which shows the difficulties in
applying Theorem 3.1 to a wider class of density functions. If f(r) = = '(1+r?)"!
then d?f/dr? = —2n~'(1=3r?)(1+r?) 3 is only concave for 3r* < 1 so we cannot
proceed as in the preceding examples for the one parameter family of Cauchy
densities with location parameter: f(4, r) =z~ '(14+(r—4)?)~'. On the contrary it
is easy to see that the function

!

1+(, ,1)2

4,2 =
need not have a unique zero for suitable {y,}. For A fixed, one of those critical
points of Q,(4, 4;") will provide a global maximum of Q,(4, 4;") and hence a suitable
1, but some further procedure is needed for finding such a global maximum.
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4. Some general situations where the transformation . is applicable. With a given
probability density function f(x) we can obtain a two parameter family f,, ,(4) by
introducing location and scale parameters m and o > 0 respectively: f, ,(u) =
6~ f((u—m)/o). Given density functions fj, - * -, f; consider

P(m’ O') P({ml’a }) - z #(x) l—[ fx:( O—'—._t)
xeX Xt

where u(x) =0, and again X = {1, ---, s}7. Let v,(m, o) be the summand of P;

then the auxiliary functions Q; are

Qi(m,a,m;,0/) = Z v(m, o) sti [logf((y,—m)a/)—loga/]
and Q(m, o, m’,6’) = Y i_,Q(m, o, m/, 6).
The next theorem shows that our procedure carries over to such functions P if

we require (essentially) only the natural hypothesis that each f; is strictly log
concave.

THEOREM 4.1. For i =1, -+, s let f{(u) be a strictly log concave density function
with its unique local maximum at u =0, and assume for every state i the following
non-pathology condition holds: 3 times t, = t,(i), n =1, 2 such that y, # y,, and
Y xe,=i Vx(M, 0) >0, n=1, 2. T hen for fixed m and o, the system of equation
00Q/om;’ =0, 6Q/06 = 0 has a unique solution {m, , G;'} which is the global maxi-
mum of Q(m, 6, m', ¢’) as a function of m" and &' Deﬁnmg T (m, 0) = {m/, &} we
then have P(T (m, 6)) = P(m, 6) with strict inequality unless (m, o) is a critical point
of P or equivalently I (m, 6) = (m, o).

PROOF. Since 0Q/om; = 8Q;/dm; and 0Q/dc; = 0Q;/0c;, we may consider the
functions Q; independently. For notational convenience we suppress the depen-
dence of Q; on m = {m;} and ¢ = {0}, then delete the subscripts i and the primes
as well. In such notation the theorem is proved by showing Q(m, 6) » — o0 as
(m, o) approaches the boundary 6Q of Q(|m| < 0, 0 < ¢ < ), and that Q has a
unique critical point in Q which is a local and hence global maximum. Now

Q(m9 0') = Zx Uy Zs,a [lng(Zt) - IOg 0']
where z, = (y,—m)[o. If y, = y,(i) = Y s,V then
Q(m,0) = }.[- v[log f(z)—loga].

Now Q(m, 6) » — oo iff [/~ f(z,)"/6*" — 0, and that this is indeed the case as
(m, 6) - 6Q rests on two facts. Namely, a strictly log concave density function f(u)
is always less than e~*!“! if @ > 0 is sufficiently small and |u| is sufficiently large, so
that lim,,,u"f(u) = 0 for any n; also it is precisely the above non-pathology
condition which guarantees for every m the existence of a r = t(m) such that
z,# 0 and y, > 0, so that as ¢ — 0 the desired behavior of Q occurs. The lengthy
. but straightforward details are omitted.

We finish by showing each critical point of Q in Q is a local maximum, for it is
then obvious topologically (and follows rigorously from Morse theory) that Q has
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only one local maximum, which is then a unique global maximum. Since this is
true for every i, an application of Theorem 2.1 completes the proof. Let g = logf.
Then
0*Q
om?
2
a«'g = 1 aQ 2 Zyt thg”(zt)'i'_lz‘Z')’t 2,9'(z),
oo 6°5

1 ”
= 07 Z Y9 (zt)a
t

and
0%Q -1 6Q
om 60 c m

Now 02Q/ém? < 0 since g”’ < 0. At a critical point §@/0m = 0Q/dc = 0, and the
determinant det (H) of the Hessian H of Q(m, o) is given by

o* det (H) = Zt Ve g”(zt) Zt Ve th ”(Zt) (Zt Ve Z¢ g”(zt) )2 + Zt Ve g”(zt) Zr VeZ2:9 (Zt)

Now ug'(u) <0 since g’(0) =0, so the third term above is positive. Since the
function %2 is convex, the sum of the first two terms is also positive, which proves
H is negative definite at a critical point and the proof of the theorem is complete.

It is to be noted that H is not in general a negative definite form.

-2 Z :2,9"(2,).

COROLLARY 4.1. Let f(u) = exp(—c|u|")a > 1. Then logf(u) = —c|u|* is strictly
concave so the previous theorem applies. The special case o = 2, the normal distri-
bution is of great utility. The unique critical point {#;, &;} is then simply computed

from:
m; = [Zt )’z(i))’:] [Zt 7:( l)] -t
6i2 = [Zt )’t(i)ytz] [Zt )’t(i)] - miz-

Since y,(i) is proportional to the a posteriori probability of being in the state i at
time ¢, the reestimation {#,, &;} has an obvious probabilistic interpretation which
led to its original use.

Application. We finally carry out the transformation  on all the coordinates
mentioned in Section 1; i.e., we will include the stochastic matrix coordinates
A = (a;;) and starting probabilities @ = ().

We consider the situation in which each y,e(l, 2, - - -, m) and each f; is a proba-
bility distribution in (1, 2, - - -, m) rather than a probability density on the reals
since this was the case originally dealt with [2], [6]. The following mutatis mutandis
applies to the case where each f; is a centered log concave density function as in
Theorem 4.1.

Let P(a, A,f) = Y cexP(x, a, A, f) where

p(X, a, A,f) = Ay, ],_,[1T= 18x, ;xtfxt())t)
andy,e{l,2,--, m}. Then
Qa, A.f,a', A f) =Y p(x,a,A,f){logas,+ loga;, _ .+ . logfi(y)}
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is an extremely simple function of the variables a’, A’ and f'. In fact an elementary
computation shows that there is a unique @’, A’, f’ which maximizes Q as a function
of the primed coordinates. We find:

a,.' = [Zxo:ip(x, a, A,f)][zx P(x, a, A’f)]—1
a;j = [pr(x, a, A’f) th- 1 =X =] 1][2" p(X, a, A’f) Z"" 1=iez1 1]_ '
fjl(k) = [Zx p(xs a, A’f) th:'f-,\’t:kl ][Zx p(x’ a, A’f) Zxr=f 1] !

Hence, the transformation 7 :{a, A4,f}—{a, 4,f} increases the function
P(a, A, f). Strict inequality holds save at fixed points of J or critical points of P
suitably interpreted.
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