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Alberto Ochoa1,2, Robin Höns1, Marta Soto2, and Heinz Mühlenbein1

1 Fraunhofer Institute for Autonomous Intelligent Systems, Sankt Augustin,
Germany

2 Institute of Cybernetics, Mathematics and Physics, Havana, Cuba

Abstract. The success of evolutionary algorithms, in particular Factor-
ized Distribution Algorithms (FDA), for many pattern recognition tasks
heavily depends on our ability to reduce the number of function evalua-
tions.
This paper introduces a method to reduce the population size overhead.
We use low order marginals during the learning step and then compute
the maximum entropy joint distributions for the cliques of the graph. The
maximum entropy distribution is computed by an Iterative Proportional
Fitting embedded in a junction tree message passing scheme to ensure
consistency.
We show for the class of single connected FDA that our method outper-
forms the commonly-used PLS sampling.

1 Introduction

In recent years, evolutionary algorithms (EA) have been successfully applied to
a wide range of problems in the field of pattern recognition. The critical issue
in this application of EA is to reduce as far as possible the number of fitness
function evaluations which depends directly of the population size of the EA.

In this paper we introduce a method which helps in reducing the popula-
tion size for a particular class of EA: the Estimation Distribution Algorithms
(EDA) [14], which can be considered as a substantial improvement of the genetic
algorithm paradigm [4].

The tractable subclass of EDA, the so-called Factorized Distribution Algo-
rithms (FDA), learn factorizations of the joint distribution, which are trees,
polytrees or general directed acyclic graphs. This information is used to con-
struct a model from which new points are efficiently sampled. FDA algorithms
use results of Graphical Models research [13].

A critical parameter both for learning and sampling is the required popu-
lation size which grows exponentially with the size of the cliques of the graph.
This paper introduces a method to reduce the population size overhead. We use
low order marginals during the learning step and then compute the maximum
entropy joint distributions for the cliques marginals of the graph. The maximum
entropy distribution is computed by an Iterative Proportional Fitting embedded
in a junction tree message passing scheme to ensure consistency.
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The outline of the paper is as follows: Section 2 gives a short introduction on
Graphical Models and Factorized Distribution Algorithms. Section 3 presents a
single connected FDA. In the next section, we introduce our maximum entropy
sampling. Then, we present our test bed and discuss the numerical results. Fi-
nally, the main conclusions of our research are given.

2 Background

2.1 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) containing nodes, repre-
senting the variables, and arcs, representing probabilistic dependencies among
nodes. In this paper we will consider binary variables, but the results can be
extended to the general discrete case.

Let X = {X1, ..., , Xn} denote the set of random variables. For any node Xi

and set of parents πXi the Bayesian network specifies a conditional probability
distribution p(xi | πxi). We use lower cases to represent the variable values.

In general, Bayesian networks can be multiple connected. In this paper we
deal with single connected graphs: these are graphs where no more than one
(undirected) path connects every two variables. Examples are chains, trees,
forests and polytrees. Whereas in trees each edge is directed away from the
root node (so each node has only one parent), in polytrees the direction of edges
is not restricted. A polytree generally has many roots (nodes without parents),
whereas a tree has only one root.

Polytrees retain many of the computational advantages of trees, but they
allow us to describe higher-order interactions than trees, because they allow
head to head patterns X → Z ← Y . This type of pattern makes the parents
X and Y conditionally dependent given Z, which can not be represented by
a tree. A polytree structure can be induced by second-order marginals using a
maximum weight spanning tree algorithm, similar to [1].

Given the structure of the probability distribution defined by the Bayesian
network, the problem is to find a factorization defining this distribution. This
factorization can be determined using a concept called junction tree.

2.2 Junction Trees

A junction tree [11,9] is an undirected tree the nodes of which are clusters of
variables. The clusters satisfy the junction property : For any two clusters V and
W and any cluster U on the unique path between V and W in the junction tree
V ∩W ⊆ U . The edges between the clusters are labeled with the intersection of
the adjacent clusters; we call these labels separating sets or separators.

Junction trees are a very powerful tool for inference in Bayesian networks.
For construction of a junction tree, given a general network, we refer to [11,9].
Given a polytree, a junction tree is simple to construct: For each variable that
is not a root, create a node containing this variable and all its parents. The
separators between the nodes always consist of only one variable.



A Maximum Entropy Approach to Sampling in EDA 685

Algorithm 1 FDA
Step 0 Set t← 1. Generate N � 0 points randomly.
Step 1 Select M � N points according to a selection method.
Step 2 Learn a bayesian factorization of the selected set:

ps(x1, · · · , xn) =
n∏

i=1

p(xi | xi1, xi2, ..., xir)

Step 3 Sample N new points according to the distribution

p (x, t + 1) = ps(x1, · · · , xn)

Step 4 Set t← t + 1. If termination criteria are not met, go to Step 1.

2.3 The Factorized Distribution Algorihtms

Generally, in an FDA (see algorithm 1) the estimation (step 2) of the probability
factorization of the best individuals is used to sample (step 3) the points of the
next generation, there are no mutation nor crossover operators.

The computational cost of an FDA implementation is determined by the
number of function evaluations, the memory needed to store, and the time spent
to update and sample the probabilistic model. This time is often exponential in
the maximum number of variables that interact in the problem, or which is the
same, the size of the building blocks. FDA algorithms which use only pairwise
dependencies are cheap.

3 PADA2 – FDA Algorithm with Pairwise Independences

The Polytree Approximation Distribution Algorithm (PADA) [17,16] is a spe-
cialization of FDA (see algorithm 1) for single connected Bayesian networks. In
this paper we use PADA2 [16], which works with second order marginal distribu-
tions. PADA2 is inspired by the algorithm proposed by Rebane and Pearl [15].
We shortly review this algorithm.

A polytree with n variables has a maximum of n−1 edges, otherwise it would
not be single connected. PADA2 chooses the edges that have the largest values
for the mutual information H (X) + H (Y )−H (X, Y ) [2]. The selection of the
edges is done by a greedy Maximum Weight Spanning Tree algorithm.

Once we have constructed the skeleton a procedure tries to direct the edges
of the skeleton by using the following scheme: if X − Z − Y ∈ skeleton, then
whenever H (X) + H (Y ) = H (X, Y ) we orient the edges to Z. All other edges
are directed at random without introducing new head to head connections.

Another distinguishing feature of PADA2 concerns the sampling step 3 (see
algorithm 1). To the best of our knowledge, all FDA algorithms introduced so
far that are based on Bayesian networks use the same Monte Carlo sampling
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Fig. 1. A polytree learned by PADA2 and its junction tree.

algorithm, namely Probabilistic Logic Sampling (PLS) [6]. It is very simple.
Given an ancestral ordering of all the variables (parents before children), the
method samples Xi using p(Xi | πXi). One obvious problem of this method is
that the number of points required for estimating the conditional probabilities
correctly is exponential in the number of parents.

Both in the process of learning and sampling, FDA that learn general
Bayesian networks need a population size which is exponential in the number
of parents in order to get reliable estimates of the conditional probabilities.
PADA2 is in a different situation: its learning algorithm deals only with second
order marginals. Figure 1 shows a polytree learned by PADA2. However, note
that the resulting junction tree contains a clique with four variables (7 and its
parents 2, 3, 4) and two cliques with 3 variables, so the PLS sampling requires
4-order and 3-order marginals. Therefore, PADA2 is in a very singular situation
when it uses PLS: what is gained during learning is then lost during the sampling
step.

In the next section we will present a novel method to overcome this problem.
We fix some of the second order marginals used in the learning step, and then
compute higher order marginals (like the ones in Fig. 1) as the maximum entropy
distributions that obey the given second order marginals. It is important to note
that, in contrast to PLS, the computation of these marginals does not need a
larger sample size (population size) than the one used for learning.

4 Maximum Entropy

4.1 Entropy and the Maximum Entropy Principle

The Entropy [2] of a probability distribution for a random variable X is given
by

H(X) = −
∑

x

p(x) log p(x) . (1)

If p(x) = 0, then log p(x) is not defined. For this case, we set 0 log 0 = 0.
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The entropy is a measure of the disorder in the distribution, or of our uncer-
tainty about the outcome of a random experiment.

The Maximum Entropy Principle states that, supposing we are looking for a
probability distribution fulfilling some given contraints, we should choose among
the possible solutions the one with the highest entropy. This is historically
founded on Bernoulli’s “principle of insufficient reason”. It was introduced and
advocated by Jaynes [7,8]. For a motivation and discussion of Maximum Entropy,
see [5].

4.2 Maximum Entropy Sampling in PADA2

The method is a variation of previous methods for learning probability distribu-
tions on junction trees [10,12].

First we construct a junction tree from the polytree, as described in Sect.
2.2. On each node of the junction tree, we maintain a probability distribution of
the contained variables (remember, a child and its parents).

Then we find a closed tour through the junction tree that visits each node
at least once. On this tour we perform two steps:

1. Calculate the local distribution by iterative proportional fitting,
2. Pass a message to the next cluster on the tour, in order to ensure consistency

between the clusters.

4.3 Iterative Proportional Fitting

The local iteration consists of finding the maximum entropy distribution of a
child and its parents, given the second order marginals. This is done by Iter-
ative Proportional Fitting. IPF computes iteratively a distribution qτ (x) from
the given marginals pk(xk), k = 1, . . . , K, where xk is a subvector of x and
τ = 0, 1, 2, . . . is the iteration index. Let n be the dimension of x and dk be
the dimension of xk. Then, starting from the uniform distribution, the update
formula is

qτ+1(x) = qτ (x)
pk(xk)∑

y∈{0,1}n−dk

qτ (xk,y)
(2)

with k = ((τ − 1) mod K) + 1.
For the proof that IPF converges to the maximum entropy solution, see [3]

and references therein. Note that the effort is exponential in the clique size.

4.4 Message Passing

A message from a cluster W to a cluster V , separated by S = V ∩W , is sent by
the following algorithm:

qnew
S (xS) =

∑

xW \S

qold
W (xS ,xW\S) qnew

V (x) = qold
V (x)

qnew
S (x|S)
qold
S (x|S)

Here x|S denotes the vector x, restricted to the variables in S.
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4.5 Sampling in the Junction Tree

Using the distributions within the junction tree, the sampling of points works as
follows:

Start from any node in the junction tree, sample values for the variables from
the local probability distribution. Then, proceed to the neighbors and sample
values for the new variables, conditioned on the variables which have already
been sampled. When each node has been visited, the sampled individual is com-
plete.

For example, from the structure in Fig. 1, this algorithm samples using the
factorization

pJT(x) = p(x1, x2, x5)p(x3, x4, x7|x2)p(x6, x8|x7) ,

whereas PLS uses the factorization

pPLS(x) = p(x1)p(x2)p(x3)p(x4)p(x5|x1, x2)p(x6)p(x7|x2, x3, x4)p(x8|x6, x7)

which is not an exact factorization of the underlying distribution.

5 Numerical Results

Now we present the set of additive decomposable functions (ADF) that will be
used in our experiments.

1. The Deceptive Function of order k, F dec
k , is defined as follows. u denotes the

number of 1s in the string. We set fdec
k (u) = k if u = k, and fdec

k (u) = k−1−u
otherwise. The function F dec

k is a separable function of subset size k, with
n = k ∗ l.

F dec
k =

l∑

i=1

fdec
k (xki−k+1 + . . . + xki)

2. The next function is also a separable ADF with blocks of length 5. In each
block the FirstPolytree5 function is evaluated. This function has the fol-
lowing property: Its Boltzmann distribution with parameter β ≈ 2 has a
polytree structure with edges x1 → x3, x2 → x3, x3 → x5 and x4 → x5. The
reader can easily check this by constructing the Boltzmann distribution and
then checking marginal dependencies. The definition of the function is given
below.

x fPoly
5 (x)

00000 -1.141
00001 1.334
00010 -5.353
00011 -1.700
00100 0.063
00101 -0.815
00110 -0.952
00111 -0.652

x fPoly
5 (x)

01000 -0.753
01001 1.723
01010 -4.964
01011 -1.311
01100 1.454
01101 0.576
01110 0.439
01111 0.739

x fPoly
5 (x)

10000 -3.527
10001 -1.051
10010 -7.738
10011 -4.085
10100 1.002
10101 0.124
10110 -0.013
10111 0.286

x fPoly
5 (x)

11000 -6.664
11001 -4.189
11010 -10.876
11011 -7.223
11100 -1.133
11101 -2.011
11110 -2.148
11111 -1.849
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We recall that the basic claim of our research is that our maximum entropy
approach to sampling requires a smaller population size than PLS. In this section
we will compare these two sampling methods for PADA2.

All the experiments use a fixed truncation selection pressure (τ = 0.3), do not
use elitism and are run until a maximum of 20 generations. We perfom 100 runs
for each experiment. We use as test functions Deceptive 4 (with 20 variables),
Goldberg Deceptive 3 (21 variables) and the FirstPolytree5 (20 variables).

As can be seen in Table 1, the improvement in comparison with conventional
PLS is enormous. E. g. for Deceptive 4, our new method finds the optimum in
93 % of the cases for only 800 individuals, whereas PLS even with a population
size of 5000 succeeds only in 64 %.

It is also remarkable that the number of generations until success stays the
same or even improves. It has also stabilized, as can be seen from the decrease
in the standard deviation.

Table 1. Numerical results. D4 - Deceptive 4, D3 - Goldberg Deceptive 3, FP5 - First-
Polytree 5. N - population size, %S - Success rate, Gc - generation where the optimum
is found, MES - maximum entropy sampling, PLS - probabilistic logic sampling.

N 200 600 800 5000

PLS %S 1 12 16 64
D4 Gc 5± 0.0 8.0± 3.9 8.3± 3.5 9.23± 3.5

MES %S 21 76 93 100
Gc 11.14± 4.5 8.6± 3.2 8.4± 2.5 6.1± 1.3

PLS %S 0 8 10 92
D3 Gc − 9.75± 1.5 8.7± 3.2 7.21± 1.2

MES %S 2 69 90 100
Gc 8.5± 0.7 7.4± 1.1 7.0± 1.2 5.84± 0.9

PLS %S 25 50 54 55
FP5 Gc 10.08± 2.08 10.42± 2.59 10.59± 2.34 10.8± 1.5

MES %S 59 100 100 100
Gc 5.14± 1.07 3.93± 0.7 3.66± 0.59 2.92± 0.44

6 Summary and Conclusions

The paper introduces a new method for sampling individuals in EDA. Here
we restrict ourselves to single connected Bayesian networks (polytrees). In a
forthcoming paper, we will discuss the multiple connected case.

The polytree induces canonically a junction tree. Its nodes contain the higher-
order marginal distributions that are needed in the sampling phase. These are
computed from the given second order marginals using the maximum entropy
principle. The conventional “Probabilistic Logic Sampling” is replaced by sam-
pling inside the junction tree.
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We explore the method by applying it on three benchmark problems. The im-
provement in comparison with the previous method turns out to be tremendous.
We conclude that using this sampling, we can greatly reduce the population
size. This results in a big saving of function evaluations which is critical for any
pattern recognition application of evolutionary computation.
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