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Abstract. Tracking of anatomical structures has multiple applications
in the field of biomedical imaging, including screening, diagnosing and
monitoring the evolution of pathologies. Semi-automated tracking of
elongated structures has been previously formulated as a task for deep re-
inforcement learning (DRL), albeit it remains a challenge. We introduce
a maximum entropy continuous-action DRL neural tracker capable of
training from scratch in a complex environment in the presence of high
noise levels, Gaussian blurring and cell detractors. The trained model
is evaluated on mouse cortical two-photon microscopy images. At the
expense of slightly worse robustness compared to a previously applied
DRL tracker, we reach significantly higher accuracy, approaching the
performance of the standard hand-engineered algorithm used for neu-
ron tracing. The higher sample efficiency of our maximum entropy DRL
tracker indicates its potential of being applied directly to small biomed-
ical datasets in the absence of artificial models.

Keywords: Tracking · Tracing · Neuron · Axon · Reinforcement learning
· Maximum entropy.

1 Introduction

In the field of image analysis, tracking can be defined as the process of locating
an object through time and/or space [17], introducing an ordering in the obser-
vation points. While segmentation can be a precursor, tracking is used to provide
additional information about structures. Additionally, tracking is often used to
address partial loss of visibility of the structure caused by apparent gaps, low
contrast or occlusion, a common problem in video analysis [20], through infer-
ence. In addition, morphological attributes of spatial structures, such as branch-
ing patterns [5], can be obtained about biological structures, which can aid the
detection and treatment of ophthalmologic and cardiovascular pathologies [10].

Hand-engineered trackers have been applied to obtain measurements about
thin, elongated structures in biomedical imaging [5,17]. To address the depen-
dence of trackers on specific biomedical datasets, Dai et al. [4] extended prior
work on the application of deep reinforcement learning (DRL) to tracking in
biomedical images [23], performing subpixel neural tracking while coping with
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a limited number of labelled images [3] through the use of a synthetic dataset,
eventually performing zero-shot transfer learning on axonal images from two-
photon imaging of mouse cortex.

In order to improve the sample efficiency, and hence applicability, of the DRL
neural tracker to other biomedical datasets, we opt for the off-policy soft actor-
critic (SAC) algorithm [8]. SAC also uses a maximum entropy formulation of
reinforcement learning (RL), which leads to better exploration. In comparison to
Dai et al. [4], our tracker could be trained and validated on artificially-simulated
images modelled with a higher degree of complexity and detractors, including
background structure mimicking cell debris and high noise levels.

We show that not only does SAC benefit from vastly improved sample ef-
ficiency, but it also achieves far greater accuracy than Dai et al.’s tracker—
approaching that of the standard hand-engineered algorithm used [14]—with
only a slight drop in robustness. Furthermore, we show that the ability to train
on more complex synthetic environments increases the tracker’s generalisation
to real data. Together, this makes our approach more appealing for application
to other biomedical image datasets.

2 Background

2.1 Tracking

Segmentation was used in previous two-photon axon image analysis by Li et
al. [11] as a prior step to improve their neuron tracing algorithm. However,
by combining both techniques, the performance of the tracking algorithm be-
comes dependent on the accuracy of the segmentation process. Instead, our
semi-automatic tracking algorithm employs a local exploration strategy, where
a seed starting point of each neuron is specified explicitly. This is similar to
the Vaa3D algorithm [14], an ImageJ plugin which is currently the standard for
neuron tracing. Through the availability of seed points, the algorithm can adapt
locally to changing image quality and contrast conditions, which becomes im-
portant in neuron images with non-uniform backgrounds, such as varying noise
levels, inhomogeneous microscopic blurring and presence of cell debris [19].

2.2 Maximum Entropy Reinforcement Learning

RL is a branch of machine learning which provides a mathematical framework
for an agent to learn independently by interacting with its environment with
the aim of maximising its return (sum of rewards) [21]. In conventional RL,
the environment produces a state st at every timestep t after which the agent
samples an action at from a policy π, a probability distribution which maps
states to actions. Consequently, the agent receives a successor state st+1 from
the environment together with a scalar reward rt+1 as feedback to the decision
taken. This closed loop mechanism ends when a terminal state is reached.

In our scenario, a trained agent should be able to trace the centreline of
neurons in the presence of varying imaging conditions and detractors by learning



A Maximum Entropy Deep Reinforcement Learning Neural Tracker 3

an optimal sequence of decisions related to displacements in a 2D Cartesian
coordinate system. Previously, Dai et al. [4] used the on-policy proximal policy
optimisation (PPO) algorithm [18], which utilises an actor-critic (policy π and
state value function V (st)) setup [21], where both the policy and state value
function are parameterised by neural networks. In contrast, we use the off-policy
maximum entropy SAC algorithm [8].

SAC is also an actor-critic algorithm, but utilises two (soft) state-action
value functions Q(st,at) in place of the single state value function [9]. Unlike
on-policy algorithms, off-policy algorithms can learn from past trajectories, im-
proving their sample efficiency over on-policy algorithms. Then, the RL formula-
tion used by SAC has been extended with a maximum entropy term to improve
exploration and robustness [24,7]. The objective is to learn an optimal stochastic
policy π∗ which maximises both the expected discounted return and its expected
entropy [8]. Finally, SAC uses a temperature parameter which determines the
relative influence of the reward and entropy terms on the policy and thus bal-
ances the exploration-exploitation trade-off [8]. The most significant change we
made to apply this to medical images was to use a different neural network
architecture that makes use of privileged information during training [15].

2.3 Deep Reinforcement Learning in Biomedical Imaging

Deep neural networks have been used successfully as function approximators of
the policy and the state-action value function in multiple applications, includ-
ing real-world visual navigation tasks where RL agents can learn directly from
raw pixel values [2]. Their applications in biomedical imaging include landmark
detection [6], view planning [1] and vascular centreline tracing [23], which all
make use of deep Q-network algorithm [12], constraining them to using discrete
action spaces. In order to predict the centreline observation points to subpixel
accuracy, a continuous action space is required. This issue was addressed by Dai
et al. [4] through the use of PPO.

Biomedical datasets manually-labelled by experts can be both limited and
expensive to acquire. With a small dataset of 20 annotated microscopy images
available [3], Dai et al. [4] simulated synthetic images of single neurons based
on two-dimensional splines for training and tuning of hyperparameters during
validation. Since they had access to the ground truth locations of synthetic cen-
trelines during training, they used an asymmetric actor-critic architecture which
improves value function learning [15]. This is achieved by providing the critic
(value) network with extra information only during training, i.e., the binary
maps containing the neuron centrelines. The trained tracker was then tested di-
rectly on microscopy data—which can be considered transductive or “zero-shot”
transfer [13]. Similarly, we also employ the asymmetric actor-critic architecture,
whereby the two soft-Q functions (critics) of SAC are each provided with the
binary ground truth maps.
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3 Entropy-based Deep Reinforcement Learning for
Tracking

We now define the key entities of RL in the context of tracking neural centrelines.
Environment: Owing to the availability of only 20 greyscale expert-annotated
axonal mouse cortex images [3], we simulate artificial images of single neurons
“on the fly” in a pseudo-random manner with controlled degrees of complexity
during training. We introduce a few modifications to the images generated by
Dai et al. [4] in terms of the cosinusoidal axon intensity profiles and presence
of detractors with the aim of imitating the complex natural environment of
neurons (refer to Subsection 4.1 for further details). Figure 1 shows examples
of synthetic (both ours and Dai et al.’s [4]) and microscopy images for visual
comparison; matching the rough structure of the real data appears to be enough
for some generalisation to real data. The terminal state definition is described
in the supplementary material.
State Space: Our state space is the same as that of Dai et al. [4]. We refer the
reader to the supplementary material for further details.
Action Space: Actions in a continuous control space are sampled by the agent
directly from its stochastic policy. We parameterise the policy as a Gaussian
“squashed” by a tanh function; the actions are then floating point numbers
∈ (−1, 1), and represent subpixel displacements in the image’s coordinate system
without requiring any further processing.
Reward Function: The reward function has to be defined in such a way so as
to achieve the aim of tracing the neural centreline with subpixel accuracy. We
use a simplified version of the original reward function formulated by Dai et al.
[4] and include a full description in the supplementary material.
Agent: The agent’s policy and two soft Q-functions are modelled using convo-
lutional neural networks, as shown in Figure 2 of the supplementary material
along with their input states. The actor network outputs the parameters of two
independent Gaussian distributions, namely the means µ and logarithm of the
standard deviations logσ. We constrain logσ ∈ [−20, 2] to prevent highly deter-
ministic or stochastic policies. The support for the distributions is bounded with
a tanh squashing function and the sampled actions represent displacements in
the x−y coordinate system of the images. The two critic networks each output a
scalar soft Q-function, Q(st,at). We provide more explanation behind the choice
of this SAC variant [9] as well as the final training algorithm for subpixel neural
tracking in the supplementary material.

4 Experiments

4.1 Datasets & Performance Evaluation

There are two different datasets used throughout our experiments: the synthetic
and microscopy images of neurons (see Figure 1 for examples). For reasons dis-
cussed in Section 2.1, the starting points of the neurons of each dataset are
provided to all trackers as seed points.
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(a) SSI (b) CSI (c) RI

Fig. 1. Comparison of synthetic and microscopy datasets: (a) a simple artificially-
simulated image (SSI) used during training by Dai et al. [4] with relatively low levels
of background noise, no blurring and no cells, (b) a complex synthetic image (CSI)
used in our training, generated with Gaussian blurring, “cell debris” and higher levels
of background noise, and (c) a real image (RI) obtained from the somatosensory cortex
of a mouse using two-photon microscopy [3].

Synthetic Dataset We first train and validate our tracker on synthetic single-
neuron images. The ability to train the agent in the synthetic dataset is also an
implicit part of performance evaluation. We increased the complexity of images
simulated by Dai et al. [4] in several ways. We choose cosine intensity profiles
for axons to imitate regions in different stages of synaptic transmission. Highly-
illuminated blob-like structures are also present to simulate synaptic boutons.
We add background image structure mimicking cell debris as well as Gaussian
and Poisson noise as detractors from the centreline to be tracked. Finally, a
common artefact in real datasets is an out-of-focus microscope, which we try to
capture using the Gaussian blurring operation.

Microscopy Dataset We evaluate the performance of our best performing
maximum-entropy DRL trained tracker on a mouse cortical axon dataset [3]1.
There are 20 greyscale images, maximum-intensity projected from 3D stacks,
with their corresponding binary ground truth images annotated by an expert.

Metrics In order to quantify and compare the performance of our tracker,
two measures are used: the root mean squared error (RMSE) and coverage [4].
The RMSE quantifies the perpendicular error between the predicted and target
centrelines and thus, represents the accuracy of the tracker. To measure the
robustness of the tracker, we utilise the coverage, which is the proportion of the
neuron tracked by predicted points that lie within a margin of 3 pixels of the
target centreline.

4.2 Training & Validation

We tune the original SAC model’s hyperparameters on a held-out synthetic
dataset of 20 images for a 10:1 training/validation split. During the validation

1 Dataset available at: https://www.zenodo.org/record/1182487#.XP2UBS2ZMxc.

https://www.zenodo.org/record/1182487#.XP2UBS2ZMxc
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process, we investigated whether the absence of detractors, such as cells and
boutons, in the environment has an impact on the agent’s transfer learning
ability. In addition, we looked into whether adding a local response normalisation
layer [16] after each ReLU activation function of the feature learning stage could
tackle the lower contrast of the microscopy dataset and improve generalisation
to the real data. Finally, for each variant mentioned, we considered automatic
entropy tuning [9]. We observed that models trained in the absence of detractors
(simulated boutons or cell debris) performed worse on the microscopy dataset
(details in the supplementary material), indicating the importance of being able
to train DRL agents on more challenging image data. In contrast, we were unable
to train a PPO tracker [4] on this more complex synthetic image data. Our best
performing model is the original SAC trained for 3.5×105 timesteps using a fixed
temperature parameter α of 1.0 in the presence of all detractors. Its training
requires approximately 2000 synthetic images and takes around 5 hours on K80
GPUs. We refer the reader to the supplementary material for the variance across
5 random seeds during training. Our code is available at https://bitbucket.org/
bicv/maximum-entropy-drl-tracker.

4.3 Testing

Our best SAC model was tested on the microscopy dataset, without further
tuning of parameters or hyperparameters. As in Dai et al. [4], we take into
consideration the higher resolution of the microscopy images by extracting larger
windows of sizes 15 × 15 pixels and 31× 31 pixels before downscaling all views
to 11× 11 pixels. We increase the maximum episode length from 200 to 350 to
account for the larger dimensions of the microscopy images. The starting point
of each axon is provided to the agent separately in multi-axon images.

Table 1 compares the performance of our best-performing tracker against Dai
et al.’s PPO tracker [4] and the Vaa3D algorithm [14]. The RMSE and cover-
age values of the individual microscopy images are shown in the supplementary
material. Despite the slightly lower coverage of our maximum entropy tracker in
comparison to PPO, it achieves much higher accuracy, approaching that of the
Vaa3D algorithm.

Table 1. Test performance of 20 microscopy images: mean and ±1 standard deviation
of the root mean squared error (RMSE) in pixels and coverage of the SAC and PPO
DRL trackers, and the Vaa3D algorithm. Note that although the maximum-entropy
DRL tracker is less robust than the PPO DRL tracker, its accuracy approaches that
of the Vaa3D algorithm.

SAC PPO Vaa3D

RMSE Coverage RMSE Coverage RMSE Coverage

4.36± 3.63 0.808± 0.242 27.62± 27.96 0.841± 0.130 1.75± 1.73 0.923± 0.089

https://bitbucket.org/bicv/maximum-entropy-drl-tracker
https://bitbucket.org/bicv/maximum-entropy-drl-tracker
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5 Conclusion

We proposed a maximum entropy DRL tracker trained in a complex environ-
ment simulated to mimic an axon microscopy dataset. Our training algorithm
combines the state-of-the-art SAC algorithm [9] with the asymmetric actor-critic
architecture [15]. Our improvements on prior work [4] include the requirement
for only a small training dataset owing to the high sample efficiency of the cho-
sen off-policy training algorithm. We also demonstrate the ability to track neural
centrelines to subpixel accuracy in the presence of background image structure
mimicking cell debris and higher noise levels. Finally, while our maximum en-
tropy DRL tracker is less robust with its slightly lower coverage value, it has an
accuracy 6-fold higher than the PPO tracker, with its RMSE approaching that
of the standard algorithm for neuron tracing [14].

The maximum entropy DRL tracker can be combined with active contour
methods to track boundaries of other structures, such as walls of blood vessels,
after redefining the reward function based on the nature of the structure of in-
terest. Furthermore, the need for a smaller labelled dataset of only 2000 images
increases the likelihood of training the tracker directly on biomedical datasets
in cases where artificial models cannot be built easily. Future work could in-
clude training in synthetic multi-axon images and accounting for branching of
neurons, potentially by combining the network with an automatic junction de-
tection algorithm [22], or extending to subvoxel tracking through extending the
environment to 3D, and introducing highly anisotropic spatial sampling into the
environment—a common challenge in confocal imaging.
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