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A Maximum Entropy Enhancement for a Family
of High-Resolution Spectral Estimators

Augusto Ferrante, Michele Pavon, and Mattia Zorzi

Abstract—Structured covariances occurring in spectral analysis,
filtering and identification need to be estimated from a finite obser-
vation record. The corresponding sample covariance usually fails
to possess the required structure. This is the case, for instance, in
the Byrnes–Georgiou–Lindquist THREE-like tunable, high-reso-
lution spectral estimators. There, the output covariance � of a
linear filter is needed to initialize the spectral estimation technique.

The sample covariance estimate ��, however, is usually not compat-
ible with the filter. In this paper, we present a new, systematic way
to overcome this difficulty. The new estimate � is obtained by
solving an ancillary problem with an entropic-type criterion. Ex-
tensive scalar and multivariate simulation shows that this new ap-
proach consistently leads to a significant improvement of the spec-
tral estimators performances.

Index Terms—Convex optimization, covariance extension, max-
imum entropy, multivariable spectral estimation.

I. INTRODUCTION

T
HE covariance matrix of a vector extracted from a sta-

tionary time series has a Toeplitz structure. Yet, the cor-

responding sample covariance usually does not share this prop-

erty. It is then necessary to approximate the sample covariance

with a Toeplitz matrix. This is just an instance of a class of prob-

lems considered in the important paper [1]. Further motivation

comes from considering covariances of the output of a linear

filter: They must satisfy a certain constraint dictated by the dy-

namics which the corresponding sample covariances typically

do not.

This problem has been posed and discussed by Georgiou in

[2]. Its importance stems from the new approach to spectral

estimation (THREE) introduced by Byrnes, Georgiou, and

Lindquist in [3] and [4] (see also [5]), which may be viewed as

a (considerable) generalization of classical maximum entropy

methods. This estimator is particularly competitive in the case

of short observation records and in detecting spectral lines. In

this approach, the output covariance of a bank of filters, repre-

senting measurement devices, is used to extract information on

the input power spectrum.
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The filters impose certain structures on the output covariance

which include Toeplitz and Pick matrix as special cases. It

is then necessary to approximate the sample covariance by

nonnegative matrices possessing the required structure. The al-

ternative, as is done in most spectral estimation methods based

on second-order statistics, is to use directly the sample covari-

ance [6], [7]. As observed in [2, p.137], however, “… the effect

of inaccuracies is not well understood and has not been analyzed

in any detail — except via simulation studies.”

The purpose of this paper is to introduce a new, systematic

approach to deal with these “Caudine Forks” of the method. It

may be viewed as an attempt to answer the question raised in [2]

generalizing [1]. In order to replace with a covariance matrix

having the required structure, we set up an ancillary max-

imum entropy problem. Indeed, the estimated plays the role

of a prior and the structure requirement may be conveniently

turned into a linear constraint, see Proposition 3.2 below. The

solution of this variational problem is nontrivial. In spite of sev-

eral analogies with previous optimization problems considered

by the Byrnes-Georgiou-Lindquist school, see [3], [4], [8]–[12],

and by Ferrante, Pavon and collaborators, [13], [14], there are

also differences which require an original analysis.

The paper is organized as follows. In the next section, we

outline THREE-type spectral estimation. Section III features

a reformulation of the feasibility of the generalized moment

problem. In Section IV, the new variational approach is intro-

duced. Section V features the dual problem. The following sec-

tion introduces a matricial Newton method. Section VII is de-

voted to simulation: The performance of our approach in esti-

mating is compared to more simple-minded approaches. We

also compare the performance of THREE-like spectral estima-

tors when initialized with our estimate of versus other esti-

mates.

II. THREE-TYPE SPECTRAL ESTIMATION

A THREE-like spectral estimation method is outlined as fol-

lows. The collection of sample data of a stochastic

process is fed to a suitably designed bank of rational filters

. The steady-state covariance matrix of the resulting

output is then estimated by statistical methods. Only zeroth-

order covariance lags of the output need to be estimated, en-

suring statistical robustness of the method. Finding now an input

process compatible with the estimated and with rational spec-

trum of prescribed maximum degree turns into a Nevanlinna-

Pick interpolation problem with bounded degree [15], [16]. The

latter can be viewed as a generalized moment problem which is

advantageously cast in the frame of various convex optimization

problems: We mention, in particular, the covariance extension

problem and its generalization, see [3], [9], [17]–[20]. These
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problems pose a number of theoretical and computational chal-

lenges for which we also refer the reader to [10], [21], [22], and

[23].

Besides signal processing, significant applications of this

theory are found in modeling and identification [12], [24], [25],

robust control [8], [11], and biomedical engineering [26].

The first, inevitable step in this procedure is to test for feasi-

bility of the generalized moment problem. Generically, with

the estimated , the problem is not feasible, i.e., does not

have the structure imposed by . Various ad hoc procedures

are then employed to approximate with another covariance

matrix. This step, although this is hardly advertised, is far from

harmless. For instance, projecting onto a suitable subspace

(see below) may destroy the definiteness of the matrix.

While our procedure replaces empirical techniques with a

precise algorithm, simulation shows that it also leads to a con-

siderable improvement in the estimate of in several critical

cases, see Section VII. Indeed, there is a significant improve-

ment of the spectral estimator even when the obtained by

the different methods approximate the true with essentially

the same level of accuracy! We forecast that this technique will

turn out to be useful in different contexts such as multivariate

statistics and identification.

III. FEASIBILITY OF THE GENERALIZED MOMENT PROBLEM

Consider a transfer function

(1)

where has all its eigenvalues in the open unit disk, has

full column rank, and is a reachable pair. Suppose

models a bank of filters fed by a wide sense stationary, purely

nondeterministic, -valued process . Assume that the spec-

tral density of is coercive. Let be the -dimensional sta-

tionary output process

(2)

We denote by the covariance of . Notice that since

is a stable matrix, is reachable and is coercive. Let

denote the -dimensional, real vector space of Hermitian ma-

trices of dimension . We denote by the family of

-valued, continuous functions on the unit circle . Let star

denote transposition plus conjugation. Consider now the linear

operator

(3)

where integration takes place on with respect to normalized

Lebesgue measure . It follows that belongs to the

linear space

(4)

In [7], [21] (see also [27]), it was shown that belongs

to if and only if there exists such that

(5)

or equivalently if and only if the following rank condition holds:

(6)

The dimension of may now be established along the

lines of [10, Lemma 4], which deals with the scalar case, and

[2, Page 137], which treats the multivariate real case.

Proposition 3.1: The linear space has real dimen-

sion .

Proof: The dimension of the linear space is in-

variant under a change of basis in the state space of . Since is

assumed to be full column-rank, we can then assume that

. From (5), we get that equals the real di-

mension of the linear space of matrices that can be written in the

form , or, equivalently (given the structure of B),

in the form , with and .

Such a dimension is .

In [13, Proposition 2.1], it was shown that, after normalizing

to the identity matrix, condition (6) could be replaced by

a geometric condition. We show next that the latter condition is

equivalent to (6) for any Hermitian .

Proposition 3.2: Given , a necessary and sufficient

condition for is that the following condition

holds:

(7)

where we denote by the orthogonal pro-

jection onto .

Proof:

Necessity: We know that there exists such that

(8)

Pre and post-multiplying this relation by , we obtain

Sufficiency: We exploit condition (6). Let us first consider

the matrix

(9)

where has full column rank and is such that

, so that is invertible. Moreover,

can be expressed as , where

has full column rank. In view of (7), we have

(10)
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We now consider the matrices

(11)

and

(12)

By (9) and (10), we get

(13)

where is an invertible matrix, since has full column

rank. Recalling that the rank of a matrix is invariant under mul-

tiplication by an invertible matrix, we conclude that

(14)

namely, by (6), .

Consider now the following situation:

• The filter is fed by the -dimensional data

and we collect the -dimensional output data .

• We compute an estimate of in the usual way

(15)

Notice that and . Moreover, for , is pos-

itive definite with probability 1. In general, does not belong

to . Indeed, and has only dimension

(Proposition 3.1). We then have to face the

following problem: Given

and with the previous properties, find a positive definite

such that is, in a suitable sense, as close as

possible to . As explained in the introduction, this problem is

motivated by THREE-like spectral estimation algorithms, see

[4], [5], where an estimate of in is needed to start

the algorithm. A simple-minded approach consists in projecting

given by (15) onto thereby obtaining a new hermi-

tian matrix , see e.g., [5, Section 8]. For a large number

of samples, we expect to be close to since the true state

covariance does belong to . The projection , how-

ever, might turn out to be indefinite and this is particularly likely

when is not large. In this case, may be further adjusted

by adding to it a matrix of the form with ,

and so large that

(16)

In this way, a positive definite matrix belonging to is

obtained. Notice that a positive definite matrix

indeed exists and can be easily computed as follows. Set

and consider the equation

(17)

Since is reachable and is a stable matrix, we have that

(17) admits a unique solution and such a solution is indeed

positive definite. In view of (5), also belongs to .

IV. NEW APPROACH TO FINDING

In this section, we present a new systematic procedure to de-

termine a positive definite which is as close as

possible to in a meaningful sense. Recall that a most funda-

mental (pseudo-)distance in mathematical statistics is the infor-

mation divergence (Kullback-Leibler index, relative entropy),

[28]. For two Gaussian distributions on with zero

mean and covariance matrices and , respectively,

it is given by

(18)

Notice that the right-hand side of (18) provides a natural pseudo-

distance, denoted henceforth by , on the space .

This fact leads us to consider the following problem.

Problem 1: Given and as in the previous

section, solve

(19)

The solution to Problem 1 provides the required .

Remark 4.1: In [2], the Umegaki-von Neumann relative en-

tropy [29] was proposed instead, restricting the search to co-

variances having the same trace as the sample covariance . In

alternative, it was there suggested that one could use as distance

the one induced by a matrix norm. Our choice is supported by

the following considerations. First, as observed in [1, p.963],

“really comes from maximum-likelihood considerations

and thus should, in some sense, give us a reasonable answer,

even if the process is not Gaussian and the vector samples are

not independent”. Second, with this distance, the solution turns

out to have a simple form and the variational analysis can be

carried through to the very end, see below. Finally, simulation

shows that THREE-like estimators initialised with work ex-

tremely well.

In what follows, we assume that and use the compact

notation . In view of Proposition 3.2, we can

reformulate Problem 1 as the problem of finding in

minimizing subject to the linear constraint

(20)

Thus, our problem resembles a most standard maximum entropy

(or, equivalently, minimum relative entropy) problem [28], [30].

As a first step, we introduce the Lagrangian function
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(21)

We consider the unconstrained minimization problem

(22)

The second and fourth term in the right-hand side of (21) do not

depend on . Hence, it is equivalent to minimize the functional

(23)

over . The first variation at in direction

is given by

By annihilating the first variation for each , we get

(24)

It is then natural to restrict our attention to multiplier matrices

satisfying the inequality

(25)

For such , we get that the form of the optimal solution is

(26)

where

(27)

It is quite interesting to notice that gives another character-

ization of as stated by the following proposition.

Proposition 4.1: Let and be defined by (27).

Then .

Proof: Let be and consider

(28)

where we employed condition (7).

Thus, the original Problem 1 is reduced to finding satisfying

(25) and such that satisfies (7). This is accomplished in the

next section via duality theory.

V. DUAL PROBLEM

The dual functional takes form

(29)

In order to find , we must maximize this function over the set

(30)

The dual problem is equivalent to minimize the following func-

tion over :

(31)

To perform this minimization it is convenient to restrict our at-

tention to a subset of defined as follows. Consider the map

(32)

Such a map is self-adjoint because

Thus, . Suppose now that takes the min-

imum value in and let . It is easy to

see that

(33)

so that the search for the solution of the dual problem can be

restricted to the set

(34)

Lemma 5.1: Consider . Then:

1) is strictly convex on .

2) .

See Appendix A for the proof.

Corollary 5.1: The dual problem

(35)

is a convex optimization problem which admits at most one so-

lution.

We now tackle the existence issue for the dual problem. To

this aim, we need a preliminary technical result whose proof is

postponed to Appendix B.

Proposition 5.1: is an open and bounded set.



322 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 2, FEBRUARY 2012

We are now ready to prove existence of the minimum point.

Theorem 5.1: The dual functional (31) has a unique minimum

point in .

Proof: In view of Corollary 5.1, we only need to show that

takes a minimum value on . First we observe that is con-

tinuous on its domain. We now demonstrate that is inf-com-

pact, i.e., the image of under the map is a com-

pact set. It is then sufficient to apply Weierstrass theorem which

states that a continuous function defined on a compact set admits

a minimum. Indeed, observing that ,

we can restrict the search for a minimum point to the image of

under . Since, as stated in Proposi-

tion 5.1, is a bounded set, to prove inf-compactness of it

is sufficient to show that

(36)

Notice that is the set of for which

(37)

is a singular positive semidefinite matrix. Thus, for

all the eigenvalues of (37) remain bounded and at least one of

them tends to . We denote with the eigen-

values of and, without loss generality, we suppose that, for

, . Hence

(38)

Corollary 5.2: The set

(39)

is compact.

VI. MATRICIAL NEWTON ALGORITHM

In this section, we present a matricial Newton algorithm with

backtracking stage for finding the minimum point of over .

To this end we introduce the linear functional

(40)

which may be interpreted as the gradient of at . Here,

is the first variation of at in direction . The

bilinear form

(41)

may be interpreted as the Hessian of at . Here,

is the second variation of at in di-

rections . The algorithm steps are the following:

1) Set the initial condition .

2) At each iteration, compute the Newton step over

by solving the following equation:

(42)

where the gradient and the Hessian are defined by

(40) and (41), respectively. Taking into account (64) and

(65) in the proof of Lemma 5.1 in Appendix A, the latter

equation may be written explicitly as

(43)

3) Set , and let until both of the following

conditions hold:

(44)

(45)

where is a real constant. Notice that, since

, condition (44) implies that

(46)

4) Set .

5) Repeat steps 2, 3 and 4 until the condition is

satisfied, where is a (small) tolerance threshold, then set

.

We suggest the following procedure to solve (42) by taking into

account the explicit form (43):

1) Take a basis of .

2) Compute

(47)

3) For each , compute:

(48)

4) Solve, by means of linear algebraic methods (the Moore-

Penrose pseudoinverse), the equation

(49)

5) By linearity, the solution to (42) is

(50)

This algorithm converges globally: In the first stage, it converges

in linear way. In the last stage, in quadratic way. The proof of

these facts is postponed to Appendix C.

VII. PERFORMANCE COMPARISON

In this section, we use the following notation:

• PJ method to denote the projection method outlined in the

last part of Section III;

• ME method to denote the maximum entropy method intro-

duced in Section IV.
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A. Performance Comparison Procedure

Suppose that we have a finite sequence extracted

from a sample path of a zero-mean, weakly stationary discrete-

time process . We want to compare the estimates

and obtained by the PJ and ME methods, respectively. In

order to make the comparison reasonably independent of the

specific data set, we average over experiments per-

formed with sequences extracted from different sample paths.

We are now ready to describe the comparison procedure:

• Fix the transfer function .

• At the -th experiment is fed by the data and

we collect the output data .

• Compute the consistent estimate of the covariance

matrix of the output from , with , as in

(15). Note that the first output samples

are discarded so that the filter can be considered to operate

in steady state.

• From , estimate and using PJ and

ME method respectively.

• Compute the relative error norm1 between and its esti-

mates and

• When the experiments are completed, compute the mean

and the variance of the relative error norm

(51)

• Count the times that the method adjusts the projected

estimation by adding to it the quantity . This

number is denoted as .

The output of this procedure are the parameters and .

Clearly, the smaller these parameters, the better estimation is

expected.

B. Simulation Results for the Real Scalar Case

We choose a real scalar process with a high-order spectral

density (represented by the solid line in Fig. 1). The bank of

filters has the following structure

(52)

First we choose

(53)

1Here the norm � � � is the spectral norm. i.e., the matrix norm induced by
the Euclidean norm in .

Fig. 1. Mean spectra comparison using Prior-THREE spectral estimation
method, with the bank of filters (52)–(53).

TABLE I
PARAMETERS � , � , � , � , �� FOR ��� GIVEN BY (52)–(53)

In this case, the true covariance of the process

has the following eigenvalues , ,

, , , .

Thus has a condition number of the order of . In Table I,

we present the results obtained for different lengths of the

observed sequences . In this case, the method devel-

oped in this paper appears produce only a very marginal im-

provement with respect to the projection method. Moreover,

as increases, and decrease for both methods: In fact,

with probability one as . Therefore, as

increases, the performances of the two methods are more and

more similar. This picture, however, changes dramatically if the

time-constants of the dynamics of the filter are significa-

tively different. Consider, for example, a filters bank with the

same structure (52) but with

(54)

In this case, the eigenvalues of are , ,

, , , . Thus, the con-

dition number of is of the order of . In Table II we present

the results obtained for different lengths of the observed se-

quences .

In this situation, the condition number of is larger than in

the previous case. Thus, the projection of (that is a perturbed

version of ) onto yields a matrix that, in many

cases, fails to be positive definite (or even positive semidefinite).

This explains why the number of failures is significant. Re-

call that, when the projection fails to be positive definite, the

PJ method adjusts by adding a positive definite matrix

belonging to . For each experiment, is the same.
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TABLE II
PARAMETERS � , � , � , � , �� FOR ��� GIVEN BY (52)–(54)

TABLE III
PARAMETERS � , � , � , � , �� FOR ��� GIVEN BY (55)–(56)

Hence, the adjustment cannot provide a good estimate of . This

is the heuristic reason why, in this case, the estimates provided

by our method largely outperform those obtained by the pro-

jection method. Indeed, even increasing to 1000 (so that the

observed sequences are pretty long), the differences in the per-

formances remain remarkable.

Remark 7.1: We hasten to anticipate that even in the case of

the filters bank (52)–(53), with or larger, when the

estimation errors of the PJ and ME methods have practically

the same mean and variance, the THREE-like spectral estimator

performs much better when initialized with than when

initialized with (see next section).

C. Simulation Results for the Real Multivariable Case

We consider a bivariate real process with a high-order spec-

tral density . As for the scalar case, we consider two filters

banks with the same structure

(55)

In the first case

(56)

In this case, the true has the following eigenvalues:

, , , ,

, . The corresponding error means and vari-

ances for the two estimation methods PJ and ME are reported

in Table III for different values of the length of the observed

data sequences .

The second filters bank has the same structure (55), but the

eigenvalues of are closer to the unit circle

(57)

In this case, the true has the following eigenvalues:

, , , ,

, . The corresponding error means and

TABLE IV
PARAMETERS � , � , � , � , �� FOR ��� GIVEN BY (55)–(57)

TABLE V
PARAMETERS � , � , � , � , �� FOR ��� GIVEN BY (58)

variances are reported in the Table IV. As it can be observed

from the tables, the scenario is the same as in the scalar case:

The ME method performs remarkably better than the PJ method,

particularly for the second filters bank.

D. Simulation Results for the Complex Case

So far we have considered only real examples because this

situation is more common in control engineering applications.

Since the theory has, however, been developed for the more gen-

eral complex case, we also include the following complex ex-

ample where the process is a high order (the McMillan degree

of the corresponding spectral density is 80) complex-valued

scalar process. Let and be defined by

(58)

where and , ,

, , , . The

eigenvalues of the matrix are , ,

, , , . Table V,

where the performances of our method are compared to those of

the projection method, shows that also in this case our approach

is particularly convenient.

VIII. APPLICATION TO SPECTRAL ESTIMATION

As mentioned in the introduction, there is a family of spectral

estimation methods which need to be initialized with a positive

definite estimate of the actual state covariance

. For example, in the case when the process is scalar, the

THREE estimator [4] finds the maximum entropy spectrum

satisfying the constraint

(59)

The estimated spectral density can be expressed in closed form

(see [20]) as

(60)
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In [10], this setting was generalized by introducing the possi-

bility of considering prior information encoded in an a priori

spectral density . More precisely, a Kullback–Leibler type of

pseudo-distance for coercive spectra was introduced

(61)

and the corresponding constrained approximation problem was

solved. In the following, we will denote the corresponding es-

timator, in which the estimate is obtained by minimizing (61)

under constraint (59), as “Prior-THREE.” We observe that (60)

provides, also in the multivariable case, the maximum entropy

spectral density satisfying (59), cf. [20]. The generalization to

the multivariable case of the Prior-THREE algorithm, however,

is more challenging since the variational analysis cannot be car-

ried through. In [31] and [32], this generalization has been suc-

cessfully carried out in a different metric induced by a Hellinger-

type distance.

Next, we compare the estimated spectral densities, obtained

by one of the THREE-like spectral estimation algorithms, when

initialized with the true variance and with the two estimates

and . We stress that, while the results of Section VII

compare the estimated covariance or to the true ,

the following comparison evaluates the different performances

directly in terms of the main applications of the methods, i.e.,

spectral estimation and spectrum approximation.

A. Simulation Results for the Scalar Case Using the

Prior-Three Algorithm

From the procedure presented in Section VII-A, we get

the state covariance estimates and for

. Thus, we exploit this set of estimates (with

experiments and ) as input state covariances

for the chosen spectral estimation method. Here we describe

the case of the method Prior-THREE:

• We consider a prior spectral density that may de-

pend on the data and hence is indexed on .

• For each experiment , we compute the spectrum estimate

using Prior-THREE with inputs and the

true variance .

• For each experiment , we compute the spectrum estimates

, and of the Prior-THREE algo-

rithm using the same “a priori” spectral density

and taking and , respectively, as state

variance.

• When the spectral estimates are completed, we compute

the mean estimates

(62)

Fig. 2. Mean error norm comparison using Prior-THREE spectral estimation
method, with the bank of filters (52)–(53).

and the mean of the error norm for each method with re-

spect to

(63)

Remark 8.1: Notice that the very same procedure may be

employed to deal with the THREE estimation procedure which

is just the special case of the Prior-THREE corresponding to the

choice for the prior spectral density.

Notice also that, in the above procedure, an essential degree of

freedom is the filter bank . Indeed, the choice of has

profound implications (see [4], [10], [33] and [13]). In fact, it

turns out that the spectrum estimate has better resolution in those

sectors of the unit circle where more eigenvalues are located

close to the unit circle.

To perform the comparison, we have chosen the two filters

used in Section VII-B and we have set the prior spec-

tral density to be where

is a three-order AR model estimated from the

sequence extracted from the -th sample path of the

process .

In Fig. 1 the mean spectra corresponding to the filters bank

(52)–(53) are depicted. In Fig. 2 the corresponding mean error

norms are represented.

It is apparent that our method produces an estimate for

which the corresponding spectral density approximates

the true almost as well as the estimation produced starting

from the true , while the estimation corresponding to

is highly unsatisfactory. Notice also that, although in this case

and appear quite similar (see the table in the previous

section), the estimated spectra are very different and the ME

method provides a considerable improvement, cf. Remark 7.1.

Figs. 3 and 4 show the mean spectra and the mean error norm,

respectively, when the filters bank (52)–(54) is employed. As

expected, in this case the inferior performance of the method
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Fig. 3. Mean spectra comparison using Prior-THREE spectral estimation
method, with the bank of filters (52)–(54).

Fig. 4. Mean error norm comparison using Prior-THREE spectral estimation
method, with the bank of filters (52)–(54).

when compared to the method is more salient while the

method practically performs as well as the estimation

produced by employing the true . Similar results are obtained

when using the THREE estimator ( ).

B. Simulation Results for the Multivariable Case

We have carried out this comparison along the very same lines

of Section VIII-A employing the same and the same two

filters used in Section VII-C. The only differences with

respect to Section VIII-A are the following:

1) For the spectral estimation, we have employed the max-

imum entropy estimator (60) in which we have plugged

the true variance and the two estimates and .

2) We have modified (63) by using the matrix induced norms

in place of the absolute values.

3) We have illustrated only the mean of the errors norm since

comparing the 2 2 spectral densities would require four

pictures for each case.

Fig. 5. Mean of the error norm comparison using maximum entropy spectral
estimation method, with the bank of filters (55)–(56).

Fig. 6. Mean of the error norm comparison using maximum entropy spectral
estimation method, with the bank of filters (55)–(57).

Fig. 5 shows the mean of the error norm in the case of filters bank

(55)–(56). Although and are quite similar in this case

(see the table in the previous section), the difference among the

mean error norms is more evident and the ME method provides

an estimate closer to the estimate obtained using the “true” .

Finally, in Fig. 6, the mean of the error norm is depicted for the

case of the filters bank (55)–(57). The spectral estimate obtained

using is clearly unsatisfactory with respect to the one ob-

tained using . In conclusion, the significant improvement

in spectral estimation brought about by our method occurs also

in the multivariable setting.

IX. CONCLUSION

In this paper, we have proposed a new systematic approach

to initializing the THREE-like spectral estimation algorithms.

Our approach hinges on an ancillary maximum entropy problem

whose theoretical and computational aspects have been here

thoroughly investigated. It appears that, in several critical cases,

the projection method of Section III provides a poor estimate

of the covariance matrix , compromising the quality of the

spectral estimator. Moreover, simulation shows that, even when
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the projection-based estimate looks close to our estimate

, the spectral estimator initialized with significantly

outperforms the other one. Indeed, it often performs nearly as

well as the estimator initialized with the true state covariance

.

APPENDIX

A. Proof of Lemma 5.1:

1) First of all, observe that is an open, convex subset of

. Moreover, since is the negative of a dual functional, it is

convex. For , we compute the directional derivative

(64)

The second variation, in directions , is given by

(65)

Consider now

(66)

which, as expected, is a nonnegative quantity since is posi-

tive definite. Suppose now that . The equation

(67)

is the Lyapunov equation associated to the pair where

we regard as the unknown . It follows that

can be expressed as

(68)

Since , from it follows that

. Thus, taking (68) into account, we have that

implies . Accordingly, we have that is

strictly positive for any non zero , and consequently,

is strictly convex on .

2) Notice that the first and the second variation of exist and

are continuous on . The same applies to the third variation in

directions

Similarly, since , it can be shown that

has continuous directional derivatives of any order in . Thus

for any .

B. Proof of Proposition 5.1:

Before proving that is bounded, we establish a prelimi-

nary lemma.

Lemma B.1: Let be given by (27) and let be given

by (32). Given a sequence with , if

then .

Proof: The proof is divided into two steps.

Step 1: Consider a sequence , such

that as . Since , the

minimum singular value of the map restricted to

is strictly positive. Accordingly

(69)

Step 2: It now remains to show that, if

as tends to infinity, then also . We prove the

following equivalent statement. Given a sequence , if

there exists such that then, there exists

such that . Notice that equation

(70)

is a discrete-time Lyapunov equation corresponding to the pair

. Since is a stable matrix, we have

(71)

Hence, we have

(72)

where

(73)

The latter is a finite quantity since is a stable matrix.

We proceed to prove Proposition 5.1. By (30) and (34), it

follows that is an open set. We know that each must

satisfy the following inequality:

(74)

Therefore

(75)

where denotes the spectrum of the matrix and

(76)

We now show that a sequence , with ,

and , cannot belong to , i.e., is bounded.
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To this end, it suffices to show that the minimum eigenvalue

of tends to so that, for large enough, does not

satisfy (75). By Lemma B.1, implies that, as

approaches infinity, . Hence

(77)

for any given positive definite matrix . In particular, if we

choose , since (see Proposi-

tion 4.1), we have

(78)

Since is Hermitian, from (77) and (78) it follows

that , and hence , have at least one eigenvalue

tending to as approaches infinity. In conclusion, there

exist an integer and an eigenvalue of such that

(79)

Hence, in view of (75), , and we may

conclude that is a bounded set.

C. Proof of Proposition 5.1:

Since the minimum of exists and is unique, we investigate

the global convergence of our Newton algorithm. To prove the

convergence we need of the following result.

Proposition C.1: Consider a function

twice differentiable on with the Hessian of at .

Suppose moreover that is strongly convex on a set ,

i.e., there exists a constant such that for

, and is Lipschitz continuous on . Let be

the sequence generated by the Newton algorithm. Under these

assumptions, Newton’s algorithm with backtracking converges

globally. More specifically, decreases in linear way for a

finite number of steps, and converges in a quadratic way to the

minimum point after the linear stage.

Proof: See [34, 9.5.3, p. 488].

To prove the convergence of our algorithm, we proceed in the

following manner: Identify a compact set such that

and prove that the second variation is coercive and Lipschitz

continuous on . We then apply Proposition C.1 in order to

prove convergence.

Since , we consider the set

(80)

which is compact (see Corollary 5.2). The presence of the back-

tracking stage in the algorithm guarantees that the sequence

is decreasing. Thus , .

Proposition C.2: Consider the Hessian defined in (41)

and the associated quadratic form. The following facts hold:

1) As a quadratic form, is coercive and bounded on ,

namely there exist such that

(81)

2) is Lipschitz continuous on .

Proof:

1. First, observe that . Since is a compact set, there

exists such that

(82)

Accordingly, for ,

where , since is not the zero

matrix when , as observed in the proof of Lemma

5.1. Since , it follows that is continuous

on the compact where it is also strictly positive definite.

Hence, is coercive and bounded on .

2. and , therefore is

Lipschitz continuous on .

Proposition C.3: The sequence generated by the

Newton algorithm of Section VI converges to the unique min-

imum point of in .

Proof: Proposition C.1 applies to functions with domain

contained in , . The functional is defined over a

subset of the linear space which has finite dimension

on . We define as the column vector (with

entries) obtained by stacking the columns of one over the

other, and we consider the following change of representation:

(83)

Let be the corresponding representation of

. It follows that:

• By Lemma 5.1 is twice differentiable

on

• By Proposition C.2 and since is a bilinear form,

follows that is strongly convex on and is Lipschitz

continuous on .

Therefore all the hypothesis of Proposition C.1 are satisfied and

the conclusion follows.
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