
A Maximum Entropy Model of Phonotactics and  

Phonotactic Learning* 
 

Bruce Hayes    Colin Wilson 

UCLA  

August 2006  

 

 

Abstract 

The study of phonotactics (e.g., the ability of English speakers to distinguish possible words 
like blick from impossible words like *bnick) is a central topic in phonology.  We propose a 
theory of phonotactic grammars and a learning algorithm that constructs such grammars from 
positive evidence.   

Our grammars consist of constraints that are assigned numerical weights according to the 
principle of maximum entropy.  Possible words are assessed by these grammars based on the 
weighted sum of their constraint violations.  The learning algorithm is robust against errors in the 
training data and yields grammars that can capture both categorical and gradient phonotactic 
patterns. The algorithm is not provided with any constraints in advance, but uses its own 
resources to form constraints and weight them. A baseline model, in which Universal Grammar 
is reduced to a feature set and an SPE-style constraint format, suffices to learn many phonotactic 
phenomena. In order to learn nonlocal phenomena such as stress and vowel harmony, it is 
necessary to augment the model with autosegmental tiers and metrical grids. Our results thus 
offer novel, learning-theoretic support for such representations.   

We apply the model to English syllable onsets, Shona vowel harmony, quantity-insensitive 
stress typology, and the full phonotactics of Wargamay, showing that the learned grammars 
capture the distributional generalizations of these languages and accurately predict experimental 
findings. 

                                                 
* We would like to thank Steven Abney, Jason Eisner, Robert Malouf, Donca Steriade, and audiences at the 

University of Michigan, University of California at San Diego, and UCLA for helpful input on our project. 
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1. Introduction  

In one of the central articles from the early history of generative phonology, Chomsky and 
Halle (1965) lay out a research program for the theory of phonotactics. They begin with the 
observation that the logically possible sequences of English phonemes can be divided into three 
categories:  

(1) a.  Existing words, such as brick  
 b.  Non-existing words that are judged by native speakers to be well-formed, such as blick.  
 c.  Non-existing words that are judged by native speakers to be ill-formed, such as bnick.  

The scientific challenge posed by this categorization has two parts. The first is to 
characterize the grammatical knowledge that permits native speakers to make phonotactic well-
formedness judgments. The second, more fundamental challenge is to understand the principles 
with which phonotactic grammars are acquired.  

The difficulty of this task is evident from a second point made by Chomsky and Halle, 
namely that there are grammars that fully cover the learning data but fail to capture the native 
speaker’s knowledge. For example, they note (p. 101) that both of the rules given in (2) are 
compatible with the data available to the learner. However, while the rule in (2a) correctly 
excludes *bnick, it also excludes the acceptable form blick. In contrast, (2b) appropriately 
excludes *bnick but allows blick as a possible word.  

(2) a.  Consonantal Segment → r / # b___k  
 b.  Consonantal Segment → Liquid / # Stop ___ Vowel  

The problem of phonotactic learning, then, is that of selecting a particular grammar — the 
one that is in fact acquired by native speakers — from among all of the possible grammars that 
are compatible with the learning data. Chomsky and Halle schematize the selection process as 
follows, where “AM” is the universal mechanism, or “acquisition model,” that projects 
grammars from data. 

(3) primary linguistic data → AM → grammar 

In this paper, we take up the challenge posed by Chomsky and Halle, proposing an explicit 
theory of phonotactic grammars and of how those grammars are learned. We propose that 
phonotactic grammars are composed of numerically-weighted constraints, and that the well-
formedness of an output is determined by the weighted sum of its constraint violations. We 
further propose a learning model in which constraints are selected from a constraint space 
provided by UG and assigned weights according to the principle of maximum entropy. This 
model learns phonotactic grammars from representative sets of surface forms. In this paper, we 
apply the model to data from a number of languages, showing that the learned grammars capture 
the distributional generalizations of the languages and accurately predict experimental findings.  

The organization of the paper is as follows. §2 elaborates our research goals in constructing 
a phonotactic learner, while §3 and §4 describe our learning model in detail. The next four 
sections are case studies, covering English syllable onsets (§5), Shona vowel harmony (§6), 
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stress systems (§7), and finally a whole-language analysis, Wargamay (§8). In the concluding 
section (§9), we address questions raised by our work and outline directions for future research.  

2. Goals of a phonotactic learner  

We claim that the following criteria are appropriate for evaluating theories of phonotactics 
and phonotactic learning.  

2.1 Expressiveness  

The findings of the last few decades demonstrate a striking richness of structures and 
phenomena in phonology, including long-distance dependencies (e.g., McCarthy 1988), phrasal 
hierarchies (Selkirk 1980a), metrical hierarchies (Liberman and Prince 1977, Prince 1983), 
elaborate interactions with morphology (Kiparsky 1982), and other areas, each the subject of 
extensive analysis and research. We anticipate that a successful model of phonotactics and 
phonotactic learning will incorporate theoretical work from all of these areas.  

If this view is correct, it follows that any approach to phonotactics in which the content of 
constraints is hobbled by computational considerations should be rejected. Thus, for instance, 
traditional n-gram models (Jelinek 1999, Jurafsky and Martin 2000) are quite efficient and have 
broad application in industry, but are insufficient as a basis for phonotactic analysis (see §5.3). 
Similarly, the stochastic context-free grammar of Coleman and Pierrehumbert (1997), while 
more phonologically sophisticated, rests on a single partition of words into onsets and rimes. As 
Coleman and Pierrehumbert point out, this makes it impossible in principle for the model to 
capture the many phonotactic restrictions that cross onset-rime boundaries (Clements and Keyser 
1983:20- 21) or syllable boundaries (bans on geminates, heterorganic nasal-stop clusters, sibilant 
clusters). The crucial point is that phonotactics are cross-classifying, so that no one single 
categorization can encompass them all. Thus we believe it is necessary to adopt a model that 
fully engages with phonological theory. The theory of maximum entropy provides the desired 
level of expressiveness.  

2.2 Providing an inductive baseline  

While we have emphasized the primacy of phonological theory, the precise content of the 
latter remains an area of considerable disagreement. A computational learning model can be used 
as a tool for evaluating and testing theoretical proposals. The idea is that a very simple theory 
can provide a sort of inductive baseline against which more advanced theories can be compared. 
If the introduction of a theoretical concept makes possible the learning of phonotactic patterns 
that are inaccessible to the primitive baseline system, the concept is thereby supported. For 
earlier work pursuing the inductive baseline approach, see Gildea and Jurafsky 1996, Peperkamp 
et al. (in press). 

Our own inductive baseline is a purely linear, feature-bundle approach modeled on 
Chomsky and Halle (1968; henceforth SPE). To this we will add the concepts of autosegmental 
tier (Goldsmith 1979) and metrical grid (Liberman 1975, Prince 1983), showing that both make 
possible modes of phonotactic learning that are unreachable by the linear baseline model.  



Hayes/Wilson Maximum Entropy Phonotactics p. 4 

2.3 Accounting for gradience  

All areas of generative grammar that address well-formedness are faced with the problem of 
accounting for gradient intuitions. A large body of research in generative linguistics deals with 
this issue; for example Chomsky 1963, Ross 1972, Legendre et al. 1990, Schütze 1996, Hayes 
2000, Boersma and Hayes 2001, Boersma 2004, Keller 2005, Sorace and Keller 2005, and 
Legendre et al. 2006. In the particular domain of phonotactics, gradient intuitions are pervasive: 
they have been found in every experiment that allowed participants to rate forms on a scale (e.g., 
Greenberg and Jenkins 1964, Ohala and Ohala 1986, Coleman and Pierrehumbert 1997, 
Vitevitch et al. 1997, Frisch et al. 2000, Treiman et al. 2000; Bailey and Hahn 2001, Hay, 
Pierrehumbert, and Beckman 2003, Hammond 2004) and binary responses yield similar 
responses when averaged across participants (Coleman and Pierrehumbert 1997, Pierrehumbert 
1994, Pater and Coetzee 2006). Thus, we consider the ability to model gradient intuitions to be 
an important criterion for evaluating phonotactic models. As we will show below, it is an 
inherent property of maximum-entropy models that they can account for both categorical and 
gradient phonotactics in a natural way. 

To sum up, we seek to solve Chomsky and Halle’s problem, specifying the structure of the 
module AM and testing it on actual phonotactic systems, with the goal of describing the full 
range of data including gradient intuitions. As a research strategy, we adopt the inductive 
baseline approach, requiring that phonological theories justify themselves through improvements 
in learning performance. To this end, we adopt an overall framework for learning, maximum 
entropy, that is neutral with regard to the constraints employed. We turn next to the structure of 
this model.  

3. Maximum entropy  

In this section, we justify maximum entropy on general grounds as the basis for a 
phonotactic learning model, then cover the basic concepts. For a general introduction to this 
theory, see Jelinek (1999:ch. 13), and for application to the learning and analysis of input-output 
mappings, see Goldwater and Johnson 2003, Jäger 2004.  

Maximum entropy grammars (“maxent”; Berger et al. 1996, Della Pietra et al. 1997, Eisner 
2001, Klein and Manning 2003, Rosenfeld 1996) have special properties that recommend them 
as a basis for phonotactic learning. In particular, they have been subject to thorough 
mathematical analysis, analysis that establishes their convergence properties and connection to 
the theories of information and statistical estimation. Moreover, the solutions they embody can 
be said to have a highly principled character, discussed in more detail below.  

3.1 Constraint weighting  

A maxent grammar consists of a set of constraints that are stated in the chosen 
representational vocabulary.1 The constraints are free to refer to all of the featural, structural, and 

                                                 
1 The use of constraints is the most widely adopted general approach to phonotactics. The alternative strategy 

of “licenses”, discovered by generalizing over lexical items, is also the subject of current research: for two rather 
different approaches see Albright (2006) and Heinz (to appear a, to appear b). 
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other distinctions made by the representations, and thus are not restricted by any specific 
predetermined categorization such as into syllabic roles. Any constraint that could be written in 
Optimality Theory (“OT”; Prince and Smolensky 1993/2004) or other constraint-based 
grammatical formalisms could also be a maxent constraint.  

Maxent models are distinguished not by the content of their constraints but by the method of 
constraint interaction that they employ. The constraints are not taken to be inviolable (and they 
may in fact be violated by many legal forms), nor is their interaction regulated by a strict-
domination hierarchy (as in OT). Instead, each constraint has an associated strength, or weight. 
The weight is a real number that can be thought of as scaling the importance of one constraint 
relative to others in the same grammar. The constraints and their weights determine the relative 
well-formedness of a representation as stated in definition (4).  

(4) Definition: Maxent value  

Given:  

• a grammar with constraints C1, C1, …, CN,  
• associated weights w1, w2, … wN, and  
• a phonological representation x,  

the maxent value of x, denoted h(x), is:  

exp(– Σ
i=1

N
 wi Ci (x))  

This formula can be understood by working from the inside out. We write “Ci (x)” for the 
number of violations of constraint Ci incurred by representation x. Given that wi is the weight of 
constraint Ci, the expression “wi Ci (x)” stands for the number of violations of a constraint 
multiplied by the weight of that same constraint. The sum of the weights-times-violations across 

all of the constraints is written Σ
i=1

N
 wi Ci (x). This sum is negated, “–Σ

i=1

N
 wi Ci (x)”, and then e (the 

base of the natural logarithm) is raised to the result, “exp(– Σ
i=1

N
 wi Ci (x)).” We will explain the 

presence of the minus sign below.  

Maxent values have a precise interpretation in the theory of probability: the maxent value of 
any representation is proportional to its share of the total probability of all possible 
representations. More precisely, if Z is the sum of the maxent values of all representations, then 
h(x)/Z is the probability of representation x according to the grammar. 
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In various places, we will refer simply to the sum of the weights-times-violations, without 

the final negation and exp( ) steps seen in (4). This sum, expressed by the equation Φ(x) = Σ
i=1

N
 wi 

Ci (x), will be called the score of x according to the grammar. 2  

In example (5), three representations are evaluated by the two constraints *#V (“no word-
initial vowel”) and *C# (“no word-final consonant”), to illustrate scores and maxent values.  

(5) Scores and maxent values for three representations 

x *#V (w = 3.0) *C# (w = 2.0) Score (Φ(x)) Maxent value (h(x)) 
CV 3.0 · 0 2.0 · 0 (3.0 · 0) + (2.0 · 0) = 0.0 exp(–0.0) = 1.00 
CVC 3.0 · 0 2.0 · 1 (3.0 · 0) + (2.0 · 1) = 2.0 exp(– 2.0) ≅ 0.14 
V 3.0 · 1 2.0 · 0 (3.0 · 1) + (2.0 · 0) = 3.0 exp(– 3.0) ≅ 0.05 

 
Inspection of this table reveals some properties that hold of all of the maxent grammars we 

propose. Each constraint in the grammar is assigned a weight that is greater than or equal to 0 
(i.e., weights are non-negative). Thus a form that is violation-free will receive a score of Φ(x) = 
0, hence a maxent value of exp(0) = 1, which is the highest possible value. This is attained in (5) 
by the candidate CV. Forms with one or more constraint violations have a lower maxent value, 
because maxent value is determined by raising e to the negative of the score: h(x) = exp(–Φ(x)). 
The presence of the negative sign can now be understood from the semantics of maxent values: 
forms with more violations get lower values.  

In the learning simulations later in the paper, we will connect theory to data in two ways. 
When discussing experimental data (§5), we test for a correlation between the experimental 
observations and the maxent values predicted by a grammar, since the maxent values have a 
direct theoretical interpretation in terms of probability. On the other hand, when we lack 
experimental data, as in our study of vowel harmony systems (§6) and stress (§7), it suffices to 
use just the scores, to establish how well a grammar “separates” well-formed representations 
from those that are ill-formed. If all well-formed structures receive scores that are lower (i.e. 
better) than all ill-formed structures, then we judge the grammar to have succeeded in learning 
the non-gradient phonotactic generalizations. This use of scores is equivalent to one in which a 
language is defined by all and only those representations that surpass a particular threshold.3  

3.2 Learning maxent weights  

Up to this point, we have defined maxent grammars and described how well-formedness is 
calculated from constraint violations and weights. The main goal of this paper is to develop an 
algorithm with which such grammars can be learned. It is useful to break the learning problem 
into two parts: learning the weights of a given set of constraints; and learning the constraints 
themselves. The first problem has been solved in previous research; the solution, which we 

                                                 
2 The score, as defined here, is closely related (with a change in sign) to the notion of “harmony” in Harmony 

Theory (Smolensky 1986). 
3 See Hale and Smolensky (2006) for a similar threshold approach. 
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review here, explains why the framework is referred to by the name “maximum entropy” and 
introduces the fundamental comparison between observed forms and forms that would be 
expected, or predicted, by a grammar. Previous research has not addressed the second problem in 
the domain of phonotactics; our proposal is given in the next section of the paper (§4).  

The following definition relates the weights of the constraints in a maxent grammar to the 
data from which the grammar is learned:  

(6) Maxent weighting  

Given a grammar and a set of observed forms, assign weights to the constraints so that, for 
each constraint Ci, the expected number of violations of Ci is equal to the number of 
violations that is observed in the data.  

According to a result proven by Della Pietra et al. (1997), assigning weights as in (6) yields 
a grammar that, subject to the constraints, maximizes the entropy, or disorder, of the distribution 
of well-formedness values. Intuitively, this means that the predicted well-formedness values 
must be “maximally noncommittal” (Jaynes 1983) with respect to properties that are not 
regulated by the constraints. For example, the grammar in (5) penalizes vowels that stand at the 
beginning of the word (*#V). In the absence of any evidence that particular word-initial vowels 
are worse than others, this penalty is distributed evenly across all of the vowels in the system. In 
general, our use of the principle in (6) amounts to the claim that language learners minimize their 
commitments by assuming uniform (or “flat”) distributions in the absence of impinging 
constraints.  

By enforcing the prescription “expected violations = observed violations”, one is guaranteed 
to maximize entropy — and thereby minimize departures from a uniform phonotactic well-
formedness distribution that are not motivated by the constraints (and ultimately, by the data 
from which the constraints are learned). It is a striking fact about maxent grammars that the same 
prescription also leads to a grammar that maximizes the probability of the observed data (Della 
Pietra et al. 1997). 

The number of times a constraint is violated in a body of learning data (i.e., the observed 
violation count) is conceptually and computationally straightforward: for each constraint, we 
simply sum the violations of all of the examples in the data. But it may seem odd to talk of the 
number of violations that are expected, or predicted, by a grammar. How can phonotactic 
grammars be understood as making such predictions, and how are the expected violations 
calculated? The general answer makes reference to the set of all possible phonological 
representations, which we denote by Ω. Formally, an expectation over such a set is a weighted 
average in which the weight of each member of the set is equal to its probability. Therefore, 
given the general relationship between maxent values and probability (§3.1), the expected 
number of violations of a constraint is defined as in (7).  
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(7)  Definition: Expected number of violations  

Given a grammar that determines maxent values, the expected number of violations of 
constraint Ci is the sum, over all representations x ∈ Ω, of the probability of x multiplied by 
the number of violations of Ci that x incurs:  

E[Ci] = Σx∈Ω (1/Z) h(x) Ci(x)  

In this equation, “E[Ci]” is the expected number of violations of Ci, “Ci(x)” is the number of 
times that representation x violates Ci, and “h(x)” is the maxent value of x. The number Z is the 
sum over all x in Ω of h(x), that is: Z = Σx∈Ω h(x). Dividing maxent values by Z transforms them 
into probabilities.  

If Ω were finite (and reasonably small), it would be possible to calculate expected values 
exactly by enumeration. However, in general there is no upper bound on the length of 
phonological representations: the set Ω is infinite. And even if there were an upper bound, the 
number of forms that would have to be enumerated quickly becomes intractable.  

Fortunately, there are more sophisticated methods of calculating or approximating expected 
constraint violations—methods that do not involve enumerating a vast, let alone infinite, set. 
Both of the methods that we employ incorporate the assumption that the maxent value (hence, 
probability) of a form approaches zero as the length of the form increases. But they are robust to 
various assumptions about how this relationship is formalized, and we will not discuss this issue 
further.  

The first method for computing expectations draws upon the same finite-state formalism that 
has been used in computational OT (Ellison 1994; Albro 1998, 2005; Eisner 1997; Riggle 
2004).4 An individual constraint is stated as a finite-state machine that assigns violations to 
phonological representations. Constraints are combined into a grammar using intersection 
(Hopcroft and Ullman 1979). Each path through the resulting machine represents a phonological 
representation along with its vector of constraint violations. Eisner (2001, 2002), using 
approximation methods devised by Mohri (2002), shows how to derive the expected values that 
are needed by summing over all paths through the machine. The summation need not enumerate 
all of the possible paths, since the sum over the infinite path set is performed in terms of the 
finite graph.  

The second method for computing the expected number of violations of a constraint is to 
take a large random sample from the set of all possible representations (Della Pietra et al. 1997). 
Since the maxent value of a representation can be interpreted as a relative probability, it makes 
sense to draw a sample of phonological representations from the distribution defined by the 
grammar. When the sample is sufficiently large and is drawn according to well-established 
techniques (MacKay 2003), the expected number of violations is estimated by the average 
number of violations in the sample. Generally our samples are of the same order of magnitude as 
the learning data.  

                                                 
4 We are grateful to Jason Eisner for pointing out this connection to us. 
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We use the first, finite-state method for determining the weights of constraints that are 
present in the grammar, and the random-sampling method for the purpose of evaluating the 
evidence for a new constraint. It would be possible to use the same method for both weighting 
and constraint evaluation, though at present this would result in either a loss of accuracy or a 
large increase in computational resources.  

We can now describe how these ideas play out in our machine-implemented learner. The 
process starts with an a priori initial weighting; in our simulations, all constraints begin with 
weight 1.0. The learner also calculates the observed number of violations of each constraint, 
given the data corpus. The learner then begins an iterative process of reweighting in which first 
the expected constraint violations are calculated with the current weights, and then the weights 
are adjusted in order to bring the expected values closer to the observed values. For reweighting, 
our simulations employ the Conjugate Gradient algorithm (Press et al. 1992). This iterative 
reweighting will converge to a set of weights that equate expected and observed values. 

In sum, our learner employs a variety of well-established algorithms to assign weights to 
constraints. These weights yield predictions of well-formedness, expressed as maxent values, for 
phonological forms given their constraint violations.  

4. Searching the space of possible constraints  

In selecting appropriate constraints, we face the fact that an enormous number of 
distributional generalizations are consistent with any given set of surface forms. The learner must 
have a strategy for navigating the space of possible generalizations and selecting members of that 
space for inclusion in the grammar.  

Previous research on phonotactic learning has not addressed the selection problem in a 
general form. Work in Optimality Theory (Hayes 2004, Prince and Tesar 2004, Jarosz 2006, 
Pater and Coetzee 2006) generally assumes that the constraint set is provided by UG. No 
selection problem arises under this approach, as learning consists simply of assigning a ranking 
to the constraint set. The parameter setting approach set forth by Dresher and Kaye 1990 
likewise confronts no selection problem, since the parameters and their cues are provided a 
priori. However, our interest in establishing an inductive baseline (§2.2) is incompatible with 
any rich UG approach, either constraint-based or parametric. Though it may be necessary to add 
specific universal constraints to UG, our present goal is to determine how much of phonotactic 
learning can be done without them.  

Another option not open to us is simply to incorporate every constraint into the grammar, 
relying on the weighting algorithm to determine the importance of each one. This is essentially 
the proposal of Pierrehumbert 2006, who applies it to the analysis of medial consonant clusters. 
This strategy could not be applied in the present context because it does not scale up: the number 
of constraints grows exponentially as the number of features increases and the domain over 
which phonotactics are stated expands.  

Our proposed solution to the selection problem is twofold. First, we adopt some rather 
modest UG principles, governing the feature inventory and the format of constraints, which yield 
a search space that is quite large—hence compatible with the inductive baseline approach—but 
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not intractably so. Second, we employ a set of heuristics to search this space effectively. The 
next two sections address these two sides of our strategy.  

We emphasize that our proposals concerning the search space, like other properties of our 
learner, constitute a theoretical claim about language learning. To be sure, they are also 
motivated by issues of implementation—but not, we think, in a way that sacrifices realism with 
respect to the human learner. If we have characterized the problem of learning phonotactic 
correctly, then the human learner faces the same search problem as our mechanical learner. The 
claim is that humans perform the search for phonotactics in a way that is functionally identical to 
the strategy we describe.  

4.1 The constraint space  

The learner is assumed to be provided with a set of features, the inventory of segments in the 
target language, and the feature specifications for each of those segments.5 In fact, it is the 
natural classes determined by the features, rather than the features themselves, that determine 
the content of a constraint. Many natural classes have multiple featural definitions, and it is 
immaterial which particular definition is used to state a constraint. For locating the natural 
classes determined by a segment inventory and feature set, we use an algorithm and software 
created by Kie Zuraw. 

Using the natural classes, we construct two basic constraint types.  

4.1.1 Simple constraints 

The first type is just a sequence of feature matrices, as in (8). 
 
(8) *  

 

 

where F, G … are features and α, β, … take the values + and –. Such a constraint is matched to 
representations as in SPE. It acts as a function, returning the number of matches. 

4.1.2 Implicational constraints 

We have also found it crucial to incorporate an idea that is central in the literature on 
phonological constraints (Halle 1959, Stanley 1967, SPE ch. 7, Fudge 1969, Prince and 
Smolensky 1993/2004), namely logical implication; for example “if a particular segment has 
feature values [αF, βG, … ], then any following segment must have the values [γH, δI … ].” An 
example from the grammar of English onsets is the following: “if a nasal occurs in an onset, any 
preceding sound must be [s]” (Fudge 1969:279, Selkirk 1982:346). This is straightforward to 
state as an implication. But without the capacity for implications, we would instead have to 

                                                 
5 For work on the learning of segments and features from the input signal, see Mielke 2004, Lin 2005. 

 .  .  . 

αF 
βG 
  
  
  

γH 
δI 
  
  
  

εJ 
ζK 
  
  
  

 .  .  . 
 .  .  . 

… 
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formulate a large set of constraints that jointly ban every segment except [s] in the context / # ___ 
[+nas]. Many similar cases can be found. 

To formalize implication, we allow exactly one of the matrices of a constraint to be 
modified by the complementation operator ^; thus [^αF, βG, … ] means any segment not a 
member of the natural class [αF, βG, … ]. For example, the limitation of prenasal segments to [s] 
as discovered by our learner (see (14.17) below) is stated as in (9).6 

(9) *   [+nas] 

 

4.1.3 Limiting the number of possible constraints 

The number of possible constraints is proportional to |C|n, where |C| is the number of natural 
classes and n is the maximum number of feature matrices that may occur in a constraint. |C|n will 
be of feasible size if both |C| and n are sufficiently small. 

|C| will in general be small to the extent that the feature system makes use of principles of 
underspecification, as embodied in works such as Kiparsky 1982; Archangeli 1984; and Steriade 
1987, 1995. In keeping with this work, we hypothesize that natural-language phonologies deploy 
feature systems that use underspecification to achieve relatively low |C| values. In our 
simulations, we use feature systems embodying both privative underspecification (e.g., [labial], 
[coronal], and [dorsal] may only take the value +) and contrastive underspecification (e.g., for 
English [voice] is specified only on obstruents, where it is contrastive).  

We have found that feature systems without underspecification cannot feasibly be used in 
our learner. For example, our feature system for English consonants defines about 200 natural 
classes, yielding roughly 30 million constraints of three natural classes or shorter. In comparison, 
the feature system of SPE, which makes no use of underspecification, defines more than 600 
natural classes; this increases the number of constraints by a factor of about 25, which defeats 
our software. 

Returning to the formula |C|n, we consider ways to limit n. We believe that no particular 
value of n can be imposed on all constraints, rather that the value of n should be sensitive to the 
internal complexity of the constraint. In other words, there is a trade-off between the size of a 
constraint (the number of natural classes that define it) and its specificity. For instance, we 
suggest that constraints on stress patterns, which manipulate a tiny number of natural classes 
(defined only by degree of stress and syllable weight), may employ an n of up to 4 (§7.3), 
whereas segmental constraints, which manipulate a far larger set of natural classes, must be 
limited to size 2, with 3 permitted under special circumstances (§5.1). We postpone the details of 
our proposals about this trade-off to the discussion of the simulations.  

                                                 
6 We will use the following abbreviations for feature names: ant = anterior; appr = approximant; cons = 

consonantal; cont = continuant; cor = coronal; dors = dorsal; lab = labial; lat = lateral; nas = nasal; son = sonorant; 
spread = spread glottis; strid = strident; str = stress; syl = syllabic; vce = voice. We will also use C for [–syllabic], V 
for [+syllabic], # for [–segment] (a word boundary; cf. SPE), and [ ] for [+segment] (any segment, also as in SPE).  









^–voice

^+ant
^+strid

  
“Assess a violation for any segment for any segment which 
 precedes [+nas] and is not [s].” 
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In sum, we limit the constraint space in two ways, reducing the size of C with 
underspecification and of n with limits on overall constraint complexity.  

4.2 Search heuristics  

Underspecification and the size/specificity trade-off ameliorate, but do not solve, the search 
problem. The set of possible constraints often numbers in the millions even with these 
restrictions in place. The learner must have a way of homing in on the constraints that are 
important for characterizing the target language. Our search heuristics take the following form:  

(10)  a.  Search first among the constraints that are most accurate (§4.2.1).  
 b.  Among constraints of (roughly) equal accuracy, search for constraints that are 

maximally general (§4.2.2).  

4.2.1 Accuracy  

We define the accuracy of a constraint as the number of violations of the constraint observed 
in the data (O), divided by the number of violations expected given the current grammar (E); 
hence accuracy equals O/E. O is straightforwardly obtainable by applying the constraint to the 
learning data. E is obtained by generating a random sample of forms with the current grammar 
(as described in §3.2) and applying the constraint to the sample. Under the reasonable hypothesis 
that languages favor accurate constraints, one would expect that a constraint with O/E of (say) 
0/1000 would be a very powerful constraint whose violation would lead to a strong intuition of 
ill-formedness, whereas a constraint with O/E of 500/1000 might at best induce a small sense of 
ill-formedness.  

The use of the O/E criterion is justified by empirical work (Pierrehumbert 1994, Frisch 
1996, Frisch and Zawaydeh 2001) which shows that it strongly predicts phonotactic well-
formedness judgments of native speakers. However, calculation of E has been limited to the 
special case in which constraints do not overlap. An advantage of the maximum entropy 
approach is that E can be estimated on a fully principled basis, using the entire set of already-
discovered constraints.  

Two further refinements are needed. First, we would expect a constraint with O/E of 0/10 to 
be “weaker” than one with 0/1000, the intuition being that in the first case violations are 
expected to be rare in any event. To reflect this intuition, we follow the method of adjustment 
proposed by Mikheev (1997; see also Albright and Hayes 2002, 2003), which substitutes a 
statistical upper confidence limit on O/E for O/E itself. Using this method, a difference in 
accuracy between 0/10 and 0/1000 comes out not as 0 vs. 0, but as 0.22 vs. 0.002.7 Second, in 
our implementation we do not actually sort the constraints by accuracy, but rather use an 
approximate criterion consisting of a stepwise rising accuracy scale (e.g., O/E < .001, OE < .01, 
and so on).  

                                                 
7 We use a value of α = 0.975 for the upper confidence limit, which in our experience largely suffices to 

exclude pointless constraints from the learned grammars without also excluding constraints with explanatory merit. 
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4.2.2 Generality  

Within the strata defined by the accuracy scale, our system selects constraints in order of 
generality. The idea that the learner of phonology seeks simple generalizations goes back at least 
to SPE, though it has typically been applied at the level of entire grammars or grammar 
fragments rather than to individual rules or constraints.  

We implement generality as a two-level hierarchy. First, shorter constraints (fewer matrices) 
are treated as more general than longer ones. This procedure is effective, because longer 
sequences can often be assessed on the basis of the shorter sequences they contain. For instance, 
the well-formedness of a consonant cluster C1C2C3 is usually determined by that of C1C2 and 
C2C3 (Clements and Keyser 1983, Pierrehumbert 1994). In such cases, early discovery of simple, 
widely-applicable constraints obviates the need for more complex ones.  

From the same principle it follows that among constraints of equal length, we should first 
search those whose matrices contain the most general featural expressions. The classic way of 
assessing featural generality is the feature-counting metric of SPE. However, in keeping with our 
overall emphasis on natural classes instead of their featural expressions, we suggest that the 
value of a constraint is proportional to the number of segments contained in its classes, and we 
employ a simple metric to sort the constraints on this basis. When subordinated to the feature 
matrix count criterion, this yields the final search order.  

In sum, our learner primarily seeks constraints that are accurate, following an ascending 
sequence of thresholds for O/E. To chose among constraints at the same threshold, it prefers 
constraints that are short, and among these, constraints that have more general natural classes. 
Using these procedures, a constraint space in the tens of millions can be effectively searched. 
This, in turn, makes our system a fulfillment of our original goal of creating an inductive-
baseline learner.  

4.3 Learning a phonotactic grammar  

The complete process of learning alternates between constraint selection and constraint 
weighting: a new constraint is selected, following the criteria of §4.2, and then all the constraints 
are reweighted, following the method of §3.2. This alternating procedure is necessitated by the 
O/E accuracy criterion for constraint selection. Recall that E is estimated using whatever 
constraints are already in the grammar. Each newly introduced constraint, once weighted, alters 
the values for E, and it is these updated values that are relevant for selecting new constraints. 
Moreover, reweighting must be carried out on the entire constraint set, not just the new 
constraint, since the new constraint often takes over some of the explanatory burden borne by its 
predecessors.8 

The overall algorithm is summarized as in (11).  

                                                 
8 It is for this reason that completed grammars often include constraints of weight zero, functionally 

equivalent to removing them from the grammar. These usually are constraints that were selected early but rendered 
obsolete by subsequent discoveries. We omit such constraints in reporting simulation results. 
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(11) Phonotactic learning algorithm   

Input to the algorithm: a set Σ of segments, a set F of features, a set D of surface forms, an 
ascending set A of accuracy levels, and a maximum constraint size N  

1 begin with an empty grammar G  
2 for each accuracy level a in A  
3   do  
4    select the most general constraint (§4.2.2) with accuracy less than a (if  one 
    exists) and add it to G  
5    train the weights of the constraints in G (§3.2)  
6   while a constraint is selected in step 4  

As stated here, the learning algorithm terminates when the search in (11.4) fails to return a 
new constraint at the least stringent accuracy level. It is also possible, in the interest of 
expediency, simply to stipulate a maximum grammar size.  

In what follows, we first assess the effectiveness of our inductive baseline model against 
data from a classic area of phonotactic study, the onset inventory of English (§5). We then move 
away from our inductive baseline, showing the crucial effectiveness of autosegmental tiers 
(Shona vowel harmony, §6) and the metrical grid (unbounded stress, §7). Our final analysis takes 
on the phonotactics of an entire language, Wargamay (§8).  

5. English Onsets and Gradient Well-formedness  

The inventory of syllable onsets in English is an ideal empirical domain for the testing of 
phonotactic learning models. The basic generalizations have been extensively studied 
(Bloomfield 1933, Whorf 1940, O’Connor and Trim 1953, Fudge 1969, Selkirk 1982, Clements 
and Keyser 1983, Hammond 1999), and data are available from experimentation that permit rival 
models to be evaluated. In this section, we report the results of learning maximum-entropy 
constraints on word-initial onsets.  

5.1 Learning simulation 

For our onset simulation, we provided our system with a learning corpus drawn from the 
word-initial onsets in the online CMU Pronouncing Dictionary.9 In order to allow the model to 
characterize segments as onset-initial or onset-final, we included a boundary element, 
represented by “#”, so that the onset of string, for example, was represented as #str#.  

It is not known to what extent learners of English are affected by exposure to “exotic” onsets 
such as [zw] (as in Zwieback), [sf] (sphere), and [pw]) (Puerto Rico). To deal with these, we 
made two onset corpora, one from which the onsets that we intuitively judged exotic were 
expunged, and another that included all of the onsets that are attested in our own vocabularies. 
The corpora were created before any modeling was done, so we can claim not to have tailored 

                                                 
9 http://www.speech.cs.cmu.edu. 
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them to get the intended results. In any event, we found that our own model and others obtained 
better predictions when trained on the non-exotic corpus, and we report those results here.10 

The full training data, with frequencies,11 are given in (12). 

(12) The English onset training set 

k 2764, r 2752, d 2526, s 2215, m 1965, p 1881, b 1544, l 1225, f 1222, h 1153, t 1146, pr 1046, w 
780, n 716, v 615, g 537, d 524, st 521, tr 515, kr 387,  379, gr 331, t 329, br 319, sp 313, fl 290, 
kl 285, sk 278, j 268, fr 254, pl 238, bl 213, sl 213, dr 211, kw 201, str 183,  173, sw 153, gl 131, 
hw 111, sn 109, skr 93, z 83, sm 82, r 73, skw 69, tw 55, spr 51, r 40, spl 27,  19, dw 17, gw 11, 
w 4, skl 1 

We used a fairly standard feature set for English, taken mostly from SPE and from Halle and 
Clements (1983). We controlled the total number of natural classes defined (§4.1.3) by using 
both contrastive and privative underspecification, shown below with blanks. 

(13) Feature set for English consonants 

 p t t k b d d g f  s  h v  z  m n  l r j w 
cons + + + + + + + + + + + + + + + + + + + + + – – – 
appr – – – – – – – – – – – – – – – – – – – – + + + + 
son – – – – – – – – – – – – – – – – – + + + + + + + 
cont – – – – – – – – + + + + + + + + +        
nas                  + + +     
voice – – – – + + + + – – – – – + + + +        
spread             +            
lab +    +    +     +    +      + 
cor  + +   + +   + + +   + + +  +  + +   
ant  + –   + –   + + –   + + –  +  + –   
strid  – +   – +   – + +   – + +  –  – –   
lat                     +    
dors    +    +            +     
high                       + + 
back                       – + 

 
We set the maximum constraint size n (§4.1.3) at 3 and the accuracy schedule (§4.2.1) at 

(.001, .01, .1, .2, .3). To implement our proposed trade-off between constraint size and featural 
specificity (§4.1.3), we stipulated that no constraint could contain more than two matrices drawn 

                                                 
10 A more principled alternative would be to model a community of learners, each of which is exposed to a 

random sample from the larger corpus. Pierrehumbert 2001b shows that this approach sheds light on the relationship 
between the specificity of a phonotactic constraint and its learnability. 

11 These are type, not token frequencies. Using the latter produces less accurate results in modeling the 
experimental data discussed below (§5.3). In general, it appears that the use of type frequencies yields better results 
in modeling any sort of phonological intuitions based on the lexicon; see Bybee (1995, 2001), Pierrehumbert 
(2001a), Albright (2002), Albright and Hayes (2003), and Hayes and Londe (in press). 
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freely from the full feature set; the remaining matrix of a size 3 constraint was limited to a set of 
seven “core” natural classes, i.e., the class containing only the boundary marker (#) and the 
classes [±syllabic], [±consonantal], and [±sonorant].  

5.2 The learned grammar  

Under these conditions, the learner induced the following 24 constraints in order. Multiple 
runs yielded identical constraint and weights.  

(14) The learned grammar for English onsets 

Constraint Wght Comment Examples 
1. *[+son, + dors] 5.45 * *, *s 
2. *[+cont,+voice,–ant] 2.87 *; see also #22. *  

3. *






^–voice

^+ant
^+strid

 [–son] 
6.83 Obstruents may only be preceded by [s]. *kt, *kk, *skt 

4. *[ ][+cont] 6.66 Fricatives may not cluster with preceding C. *sf, *s, *sh, *sfl 
5. *[ ][+voice] 6.64 Voiced obstruents may not cluster with preceding C. *sb, *sd, *sgr 

6. *



^+cons

^–son  [+cons] 
0.86 Obstruents, nasals, and [l] may only be preceded by 

oral (not [h]) obstruents. 
*hl, *hl, *wl, etc. 

7. *



^+cons

^–son  [+cor] 
3.44 Coronals may only be preceded by oral obstruents. *hr, *hl 

8. *[+son][ ] 5.36 Sonorants may not cluster with following C. *jw 

9. *[–strid] 



^–cons

^+son   
3.29 Nonstrident coronals may only be followed by non-[h] 

glides. 
*tl, *dl, *l, *stl 

10. *[ ][+strid] 1.87 Stridents must be initial in a cluster. *st 

11. *[+lab]



^+son

^+cor   
5.82 Labials may cluster only with following coronal 

sonorants. 
*pw, *fw, *spw vs. 
pr, fr, spr 

12. *






^–voice

^+ant
^+strid

 



+cons

+lab   
1.30 Labial true consonants may only be preceded by [s].  *m, *km vs. sp, sm 

13. *[–ant][^–cons,+cor] 5.45 Nonanterior [coronals] may only cluster with [r]. *l, *w vs. r 

14. *



+voice

+cor  



^–cons

^+son   
0.56 Voiced coronals may only cluster with [r] *dl, *zl vs. dr 

15. *[–cons][^+back] 2.57 Glides may cluster only with [w]. *hj vs. hw 
16. *[+cont,+voice][ ] 5.48 Voiced fricatives cannot cluster with a following C. *vl, *vr 

17. *[






^–voice

^+ant
^+strid

 [+nas] 
6.59 Nasals may only be preceded by [s]. *kn, *fn, *spn vs. 

sn, sm 

18. *[+vce,+strid][ ] 1.21 Voiced stridents may not cluster with a following C. *dr 
19. *[–cont,–ant][ ] 5.09 Affricates may not cluster with a following C. *tr 
20. *[+ant,+strid][–ant] 4.98 Anteriority assimilation *sr vs. r 
21. *[ ][–back] 5.86 [j] may not cluster with a preceding C. (Beauty, etc., 

assumed to have a [ju] diphthong; Clements and 
Keyser 1983, 42) 

*[bj]ons  

22. *[+cont,+vce,+cor] 2.52 *voiced coronal fricative (violable) , z 

23. *[+vce]



^+son

^+cor   
3.06 Voiced obstruents may only be followed by coronal 

sonorants (violable). 
gw, dw vs. gr, dr 
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24. *[–strid]



^–cons

^+cor   
3.24 Nonstrident (coronals) may only be followed by 

coronal glides; i.e. [j] (violable). 
tw, w, stw vs. tr, 
r, str 

Note that while most of the constraints rule out impossible onsets, the last three learned 
penalized onsets that are merely strongly underrepresented in the English lexicon. 

5.3 Assessing the learned grammar  

We assessed the learned grammar first by comparing its predictions with the English 
lexicon, then by checking it against experimental results. 

5.3.1 Comparison with the lexicon 

We sought to determine whether the grammar would admit the attested onsets of English 
(defined as those included in the learning data) and exclude all others. To this end, we created a 
list of all logically possible onsets consisting of up to three English phonemes. Tested on this list, 
the grammar assigned penalty scores (§3.1) of at least 3.24, to all unattested onsets. In particular, 
the six lowest scores for clusters not in the learning data were: [stw] 3.24, [sr] 4.98, [tr] 5.09, 
[jw] 5.36, [] 5.39, and [] 5.45. Of these, the least penalized form [stw] has been called an 
“accidental gap” in the literature (Fudge and Shockey, ms.; Rastle et al. 2002).  

Most of the attested onsets received perfect scores (0). However, a few of the rarest onsets in 
the language did receive penalties: [] 2.52, [z] 2.52, [gw] 3.06, [tw] 3.24, [w] 3.24, [dw] 6.30. 
Given the rarity of these onsets, only the last score strikes us as being clearly in error. 

We conclude that the grammar did a reasonably good job of separating good from bad 
onsets, the threshold (cf. (§3.1)) falling at a score of about 3.5. 

5.3.2 Modeling experimental data 

We also assessed the grammar on its ability to replicate the gradient judgments of English 
speakers. To this end we modeled the data from one of the earliest experiments on phonological 
well-formedness intuitions, Scholes 1966. Scholes obtained yes/no ratings of 66 monosyllabic 
non-words from a group of seventh grade students (N=33). The students were asked, for each 
form, whether it “is likely to be usable as a word of English”. The syllable rimes of the nonwords 
were kept few, and deliberately bland, so that the great bulk of the variation in responses can 
plausibly be attributed to the onsets. Following a method developed and verified by Coleman and 
Pierrehumbert 1997 and Frisch et al. 2000, we take the proportion of “yes” responses obtained in 
Scholes’ study, pooled across students, to be an indicator of the mean well-formedness intuition 
of individuals in the population. Frisch et al. 2000 demonstrate that this method yields scores that 
are highly correlated with well-formedness ratings on a numerical scale. As with results from 
similar studies, the pooled Scholes data shows a gradient transition from relatively well-formed 
to highly ill-formed clusters; see figure (16) below.  

As discussed §3.1, our learned grammar assigns a score -Φ(x) to each possible onset x. In 
order to render these scores comparable in overall distribution to the experimental data, we 
introduced one free parameter T, as in (15).  
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(15) predicted-rating(x) = exp(– Φ(x)/T )  

Using the best fit value for T, we found that the correlation of predicted ratings against 
observed ratings (fraction of “yes” responses) was r = 0.94. This means that most of the variation 
in the subjects’ responses is explained by the model. The following scattergram shows the 
predictions of the model plotted against subject ratings for all 62 onsets in the Scholes 
experiment.  

(16) Performance of the model in predicting the data of Scholes (1966) 
 

 

 
The correlation of 0.94 becomes more meaningful when compared with the correlations 

obtained under alternative approaches. We tested five other models, described as follow.  

 I.  In order to compare our machine-learned constraints with a hand-crafted grammar, we 
translated the constraints proposed by Clements and Keyser (1983) into our own 
formalism and assigned them weights as in §3.2. 12  

                                                 
12 The constraints consisted of numbers 1, 2, 4, 6, 7, 8, 12, and 15 of (14) above, plus *[–vce][+vce],  

*[ ][–cont,–ant], *[+cont][+cont], *[+lab][+lab], *[–strid][+lat], *[–vce,+ant,+strid], [–cons,+cor],  
*[+cont,–vce,–ant][^–cons,+cor], and *[–vce,+ant,+strid][–cont,–vce,+ant][+back]. 

Observed
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The other four alternatives differ from ours in having substantially less representational power, 
and were intended primarily to test the usefulness of featural representations in accounting for 
human well-formedness judgments.  

 II. The grammar labeled “without features” in (17) below was learned in the same way as 
our model, but differs in having only single-membered natural classes (one per segment 
in the inventory).  

 III. We implemented Coleman and Pierrehumbert’s (1997) onset-rhyme model, which has 
one rule for each onset type in the learning data, and does not use segmental or featural 
information to relate non-identical onsets.13  

 IV. We also included an n-gram model from computational linguistics, constructed with the 
ATT GRM library (Mohri 2002, Allauzen et al. 2005).14 This model uses segmental 
representations, not features, and was trained with standard methods.  

 V. Lastly, we tested an analogical model patterned after Bailey and Hahn (2001). This 
model assesses well-formedness not with grammatical constraints, but on the basis of the 
aggregate resemblance of the word under consideration to all the words in the learning 
data.15  

All models were fitted to the data with a free parameter T, just as was done with our own model.  

The performance (measured by r) of the various models is summarized below.  

(17) Model   r       
 our model  0.94  

 Clements-Keyser constraints with maxent weights  0.93  
 Coleman and Pierrehumbert 1997  0.89  
 our model without features  0.88  
 n-gram model  0.88  
 analogical model  0.83  

As can be seen, our machine-learned grammar was sufficiently accurate that it slightly 
outperformed a carefully hand-crafted grammar. It may be an additional advantage of our 
grammar that, unlike the Clements-Keyser system, it imposes slight penalties on rare (and to our 
judgment, slightly marginal) onsets such as [w]. These two grammars outperform all the others; 

                                                 
13 In training this grammar, we used the standard Good-Turing estimation technique (see, for example, 

Jurafsky and Martin 2000).  
14 http://www.research.att.com/sw/tools/grm/. 
15 We explored a number of versions of this model and found that the best-performing version was one that 

used the segmental similarity metric of Frisch, Broe and Pierrehumbert (2004) and that paid no head to token 
frequencies in the learning data. 
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a plausible reason is they are the only models that employ the standard apparatus of phonological 
theory, namely features and natural classes. 16

 

6. Nonlocal phonotactics: Shona vowel harmony  

The English onset simulation was a demonstration of our model in its simple, inductive 
baseline version. We consider next a phonotactic pattern that requires us to move beyond the 
baseline. The pattern in question, involving vowel harmony, is nonlocal, imposing restrictions on 
nonadjacent sounds, since the vowels in question can be separated by strings of consonants.  

We focus on the harmony system of Shona, a Bantu language of Zimbabwe (Fortune 1955, 
Beckman 1997, Riggle 1999.) We chose Shona because it has relatively few exceptions in stems, 
so that vowel harmony is plainly evident as a phonotactic principle. In this respect Shona differs 
from other vowel harmony languages (cf. Kiparsky 1973 for Hungarian, Clements and Sezer 
1982 for Turkish), where abundant disharmonic stems would create problems for a purely 
phonotactic learning strategy. For the same reason, we limit our study to verbs, where the 
harmony pattern is closest to exceptionless.17  

6.1 The Shona data pattern  

Shona has five vowels: [i e a o u], whose distribution is restricted by the harmony principles 
given below (examples, given in Shona orthography, are from Hannan 1981): 

(18) Shona vowel distribution 

a.  e, o may occur as follows: 
  i. in initial syllables, as in beka ‘belch’, gondwa ‘become replete with water’. 
  ii. e may occur non-initially if the preceding vowel is e or o, as in cherenga 

‘scratch’, fovedza ‘dent’. 
  iii. o may occur non-initially if the preceding vowel is o, as in dokonya ‘be very 

talkative’. 
b.  i, u may occur as follows. 
  i. in initial syllables, as in gwisha ‘take away’, huna ‘search intently’. 
  ii. i may occur non-initially unless the preceding vowel is e or o, as in kabida ‘lap 

(liquid)’, bhigidza ‘hit with thrown object’, churidza ‘plunge, dip’. 
  iii. u may occur non-initially unless the preceding vowel is o, as in baduka ‘split’, 

bikura ‘snatch and carry away’, chevhura ‘cut deeply with sharp instrument’, 
dhuguka ‘cook for a long time’. 

                                                 
16 A final note concerning these models. Bailey and Hahn (2001) suggest that improvements in modeling can 

be obtained if constraint-based and analogical models are blended. We find that this is true, but only to a limited 
extent. If we augment our model with the outputs of the analogical model, r rises from 0.94 to 0.95, with 
comparable levels of improvement in the case of the other models. The relative performance of the models remains 
unaffected. 

17 For the idea that particular parts of speech have special phonotactics, see Smith (2001). 



Hayes/Wilson Maximum Entropy Phonotactics p. 21 

c.  a is freely distributed.18  

In dynamic terms, this implies a kind of asymmetrical harmony for [high]: the mid vowels e, 
o require a following high i to be lowered to e, and the mid vowel o requires a following u to be 
lowered to o. In fact, Shona suffixes alternate in height in order to remain in conformity with 
these requirements (Fortune 1955:26, Beckman 1997:10-11), though our focus is on harmony as 
a phonotactic pattern.  

We analyzed 4399 Shona verbs taken from the online version of Hannan’s (1959) Shona 
dictionary, available from the CBOLD project.19 Inspection of the corpus showed that even in 
verbs, the harmony system is not free of exceptions: a fair number of idiophones and borrowings 
violate the normal harmony pattern. The details are given in chart (18), which gives totals from 
our training set for all 25 possible two-vowel sequences. The chart gives both the raw counts and 
an ad hoc O/E estimate, namely the raw frequency divided by the product of the two individual 
vowel frequencies. The latter gives a clearer notion of over- or under-representation by 
compensating for the overall frequencies of vowels. Phonotactically aberrant cases are classified 
intuitively as “ ”, “?”, or “*” according to the kind of violation they contain.  

(19) Shona vowel distribution: corpus data 

 Vowel 
sequence Count 

Ad hoc 
O/E 

 
Status Classification 

 a a  1539 0.63   
 a e 3 0.006 * Noninitial e without harmony trigger 
 a i 532 0.83   
 a o 1 0.002 * Noninitial o without harmony trigger 
 a u 587 0.627   
 e a 655 1.28   
 e e 601 5.65   
 e i 3 0.023 * i not lowered after e 
 e o 0 0.00 * Noninitial o without harmony trigger 
 e u 264 1.33   
 i a 1220 1.91   
 i e 0 0.00 * Noninitial e without harmony trigger  
 i i 507 3.05   
 i o 0 0.00 * Noninitial o without harmony trigger 
 i u 179 0.72   
 o a 650 1.25   
 o e 156 1.44   
 o i 23 0.17 ? i not lowered after o (weak trigger) 
 o o 705 6.37   
 o u 20 0.10 ? u not lowered after o (weak trigger) 

 

                                                 
18 However, in our learning data, final vowels are always /a/, since the dictionary entries for verbs all end 

with the suffix /-a/. 
19 http://www.cbold.ddl.ish-lyon.cnrs.fr/.  
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 u a 1815 1.91   
 u e 4 0.02 * Noninitial e without harmony trigger 
 u i 180 0.72   
 u o 1 0.005 * Noninitial o without harmony trigger 
 u u 845 2.28   

 

The detailed data illustrate an aspect of Shona that has to our knowledge not been previously 
noticed: o is somewhat “weak” as a harmony trigger, in that the high vowels i and u follow it 
with modest frequency. The sequences o i and o u are nevertheless underrepresented, and we will 
assume that a phonotactic grammar should take account of this; this claim is reflected in our 
assignment of “?” status to these sequences. 

6.2 Failure of the inductive baseline model  

Adopting a straightforward feature system for Shona segments, we ran our inductive 
baseline learner on Shona. The settings were the same as for the English onset simulations 
(§5.1), with a few exceptions. We set n (the maximum number of feature matrices in a 
constraint) at 4, the reason being that for V1CCV2 sequences, the harmonic dependency between 
V1 and V2 has no chance of being detected unless constraints can span four feature matrices. In 
addition, we extended the highest accuracy threshold (§4.2.1) very slightly from 0.3 to 0.35, 
which (ultimately) proved necessary for capturing the marginal status of o u and o i. We ran the 
learner more or less at the limit of our equipment (a multi-day run), gathering 200 constraints.  

To test the resulting grammar, we gave it 50 test words to rate. Of these, 25 took the form 
mVmVma, where the two slots labeled “V” were filled with all possible vowel pairs (mimima, 
mimema, etc.) The remaining 25 were similar, but took the form mVndVma, chosen to test if the 
system had learned the harmonic restrictions across consonant clusters.  

The inductive baseline model achieved only minimal descriptive success. It did find five 
valid harmony constraints applicable to VCV sequences, shown in (20). 

(20) Results of the inductive baseline learner applied to Shona 

   Constraint Weight 

 a. *a [ ][–high, –low]  4.75 
 b. *[–back][ ] o 4.70 
 c. *[+high][ ][–high, –low]  4.22 
 d. *[–high, –low][ ] i 3.51 
 e. *a [ ] o 1.80 

These sufficed to rule out all the ill-formed cases of mVmVma; they also penalized ?momima 
(with the same value as *memima), and left only ?momuma classified erroneously as perfect. 
However, for the mVndVma forms, the model failed completely: no constraints regulating the 
vowels of V1CCV2 were found, so all of these were classified as perfect, irrespective of their 
vowels.  
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We judge that the reason for this failure lay in the unmanageable hypothesis space. The 
number of four- matrix constraints is very large, and the available search time was consumed 
before the relevant V-to-V constraints could be found.20 The presence of a not inconsiderable 
number of triple clusters (e.g. [ndw]) in Shona renders the possibility of the inductive baseline 
learner succeeding even more remote.  

6.3 Moving beyond the inductive baseline: projections  

From the viewpoint of contemporary phonological theory, the analytic approach to vowel 
harmony offered by our inductive baseline system is a rather unlikely one. Phonologists have 
long been aware that vowel harmony systems normally “care” only about the vowels of the 
string, and have adopted formal devices that permit this, expressing the nonlocal process in local 
terms. This can be done, for instance, with an autosegmental tier for vowels (Clements 1976, 
Goldsmith 1979), perhaps incorporated into some conception of feature geometry (Archangeli 
and Pulleyblank 1987, Clements and Hume 1995). Without attempting to choose between these 
theories, we argue that a vocalic representation can make certain harmony systems learnable that 
would not otherwise be. 

To create the effects of a vowel tier within the computational limits of our system, we use a 
slightly different conception, due originally to Vergnaud (1977; see also McCarthy 1979). We 
assume that every phonological representation automatically generates a vowel projection, which 
is a substring consisting of all and only its vowels, appearing in the same order as in the main 
representation. Projections are scanned during the discovery of phonotactic constraints in the 
same way as the full representation, and every phonotactic constraint applies on its own 
projection. Thus, for example, the constraint *[–high, –low][+high], as defined on the vowel 
projection, forbids mid-high vowel sequences irrespective of how many consonants intervene.  

A projection is defined by a set of criterial feature values, and consists of feature matrices 
containing only the values of the projected features. For example, the vowel projection employs 
the single criterial feature value [+syllabic], and projects the features that classify vowels, which 
for our Shona feature set are [high], [low], and [back]. We assume that projections also include 
the SPE feature [segment], which (in its minus value) designates the word boundary. To give an 
example, the verb gondwa, from (18), is shown in (21) in both its complete representation (which 
we will call the “default projection”) and its vowel projection.  

                                                 
20 As a control, we also considered whether the Shona lexicon fails to instantiate the principles of harmony 

properly for vowel pairs that are separated by consonant clusters. To test this, we made up a set of pseudowords, of 
the form VCCV, extracted from all such sequences in the real training set (e.g., [iga] from tigamidza. Our 
improved vowel-projection learner (see below, §6.3) learned from these a reasonable approximation of the harmony 
pattern. This shows that the failure of the inductive baseline learner cannot be attributed to gaps in the learning data, 
but rather must be the result of the wrong learning strategy. 
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(21) [–seg] g o n d w a [–seg] Default projection 
 

 [–seg]  






+high

–low
+back
+seg

     






–high

+low
+back
+seg

  [–seg] Vowel projection 

We amplified our inductive baseline learner to create projections and scan them for 
phonotactic generalizations. The modified version of the learner alternates among the available 
projections, learning from each in turn. For the purpose of determining maxent values (§3.1), the 
constraints on all projections apply in parallel. 

6.3.1 A vowel projection-based grammar for Shona 

With this augmented capacity in place, we reran the Shona simulation. The learner quickly 
found all available constraints on the vowel projection; they were always among the first 30 
learned. Since the constraints from the default projection are of little interest here, we therefore 
allowed learning to terminate after 30 constraints. We ran the model ten times, and give a 
representative result in (22). 21 

(22) Grammar learned for Shona: vowel projection constraints 22 

 Constraint Weight Comment 

1. *a [–high, –low] 5.81 e and o are unlicensed after a. 
2. *[+high][–high, –low] 5.46 e and o are unlicensed after high vowels. 
3. *[–low, –back] o  5.01 Neither i nor e triggers mid harmony, so o after 

these vowels is unlicensed. 
4. *o V u  4.19 Long-distance harmony 
5. *[–high, –low] i  2.56 See discussion below. 
6. *o u  2.16 o is a relatively weak harmony trigger. 
7. *e i  1.98 With #5, makes e a strong harmony trigger.  

 
The constraints of the grammar have straightforward interpretations in terms of the 

generalizations given earlier, with the exception of the last three constraints. #5 and #6, with 
relatively low weights, combine to make o a weak harmony trigger, resulting in the lower 
penalties for o i and o u seen in (23) below. Words containing e i violate both #5 and #7, 

                                                 
21 Of the ten test runs, six yielded exactly the same vowel tier constraints; of these, we present results from 

the grammar whose test scores best correlated with the mean (across 25 vowel patterns). The worst pairwise 
correlation for any two learning runs was r = 0.984. The variation in empirical predictions, which are small, can be 
seen in the 1 s.d. error bars in Fig. (23) below. 

22 One constraint relevant to vowel sequencing was learned on the default tier: a requirement that all final 
vowels must be [a]. We omit this constraint from (22), since it merely expresses an arbitrary property of the training 
set, namely the use of [a]-final citation forms (fn. 18). 
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receiving a combined score of 4.54. Thus, the grammar predicts that e should be a strong 
harmony trigger for front vowels.23 

We tested the grammars learned by giving them the same test words to rate (mVmVma, 
mVndVma) on which the inductive-baseline grammar had failed. The results are shown in Fig. 
(23). Since corresponding pairs with these two frames (e.g. mimima, mindima) emerged with 
identical predictions, they are conflated in the figure.  

(23) Scores for Shona vowel sequences from projection-based learner. 
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We claim that these predictions represent a good approximation of Shona vowel 

phonotactics. All forms marked as “ ” in (19) above received perfect scores (0). All forms that 
are fully illegal under the principles of Shona vowel harmony (“*” in (19)) received substantial 
penalty scores (black bars). Finally, the intermediate forms where o does not trigger lowering 
(“?” in (19)) receive consistently intermediate scores, shown in dark gray. 

The system further predicts that of the bad forms, *mimoma and *mindoma, which have a 
vowel sequence nowhere seen in the training set, should be worse than the others. To verify this 
prediction (essentially that both “*” and “**” forms occur), experimental data on Shona would 
be required.  

In conclusion, we claim that that our learner has achieved a reasonable approximation to 
Shona vowel sequencing phonotactics. The learning of Shona harmony became possible only 
when we moved beyond our inductive baseline model to incorporate a vowel projection. Thus, 
the concept of a vowel tier (or close equivalent) can be defended on learnability grounds: in 
controlled comparative simulations, it proves essential to phonotactic learning.  

                                                 
23 Two outlier grammars in our series of ten simulations avoided these complications, learning the more 

intuitive constraint *o [+high]. 
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7. Locality in stress patterns: the metrical grid  

Another type of non-local phonotactics is found in stress systems. Where stress is 
predictable, it is often analyzed derivationally: a grammar assigns a stress contour to each form, 
based on its segmental or syllabic representation. But predictable stress is also a phonotactic 
pattern, a regularity of surface forms. We adopt this perspective here, noting that it readily 
extends (Selkirk 1980b) to languages like English where stress is not fully predictable, but obeys 
important restrictions.  

7.1 A simple case: unbounded stress  

The locality of stress is seen clearly in so-called unbounded stress patterns. One such 
pattern, attributed to Eastern Cheremis and various other languages (Hayes 1995:§7.2), works as 
follows:  

(24)  a.  Every heavy syllable has some degree of stress.  
 b.  Every initial syllable bears some degree of stress. 
 c.  Of the stressed syllables in a word, the rightmost bears main stress.  

In terms of main stress, this is a “default to opposite” system (Prince 1985), with the pattern 
“rightmost heavy, else initial.” The generalization in (24c) has been called “End Rule Right” 
(Prince 1983), a term we will use below. 

This description implies two clear instances of nonlocality. First, the fact that exactly one 
syllable bears main stress (“culminativity”; Hayes 1995) is a nonlocal observation that cannot be 
stated in our inductive baseline model. Because our model imposes a limit n on the number of 
feature matrices that may appear in a constraint (§4.1.3), it can only require that the main stress 
appear within n syllables of a particular word edge or other landmark; it cannot quantify over all 
syllables of a word to determine that exactly one of them bears main stress. The same 
considerations imply that the End Rule Right restriction in (24c) cannot be captured by our 
inductive baseline learner; there is no guarantee that this syllable will fall within the n-syllable 
limit. 

A representation for stress that addresses these locality issues is the metrical grid, proposed 
by Liberman (1975) and employed as the basis of general theorizing on stress patterns by 
Liberman and Prince (1977), Prince (1983) and much subsequent work. From the earliest work, 
theorists have recognized the implications of the grid for phonological locality.24  

In a typical grid, every syllable is assigned to a terminal level grid position, represented here 
as a row of x’s at the bottom of the grid. Every stressed syllable is designated as such by 
assigning it an additional x on the second row up from the bottom. Main stressed syllables are 
also assigned an x on the third, highest row. This is illustrated in the following representation, 

                                                 
24 It has often been argued that the grid should be amplified with constituency information, such as foot 

structure (Liberman and Prince 1977, Halle and Vergnaud 1987, Hayes 1995). The present discussion makes no use 
of such constituency, taking an agnostic view on whether it exists. For discussion of “hidden structure” of this kind, 
see §9.2. 
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which shows a schematic 13-syllable word containing three heavy syllables, obeying the stress 
pattern in (25). 

(25)         x      Main stress row 
 x   x  x   x      Stress row 
 x x x x x x x x x x x x x  Syllable row 
 L L L H L H L L H L L L L  Syllables: H = heavy,  

L = Light 

Since all of this phonological material belongs to a single word, the brackets for word division 
enclose all levels of the grid.  

Grid formalism makes it possible to characterize the nonlocal patterns described above in 
local terms. The requirement that every word have exactly one stress is expressed by requiring 
that there be exactly one x between each pair of word brackets on the main stress row. The 
constraint for the End Rule Right generalization can be expressed locally as in (26). 

(26) * x  Main stress row 
  x x Stress row 

The literal interpretation is, “avoid a main stress mark when another grid mark follows on the 
immediately lower row.” 

7.2 Formalizing grids as projections  

The idea, then, is that by providing localist representations of patterns that would appear as 
non-local in an inductive-baseline representation, the grid should make possible the learning of 
stress generalizations that would otherwise be missed. To test this idea, we constructed a 
formalization of the grid, using the same device of projection used earlier for vowel harmony.  

For simplicity, we assumed an inventory of terminal elements consisting of just six symbols, 
each designating a syllable type: { L , «L, L, H, «H, H }. L designates light syllables and H heavy; 

and the IPA diacritics [    «   ] designate stressless, secondary stressed, and main stressed 
syllables. These six entities were classified with a simple system of prosodic features: [heavy], 
[stress], and [main]; where primary stress is [+stress, +main] and secondary stress is [+stress,  
–main]. We used these features (plus the SPE feature [segment], which distinguishes segments 
from word boundaries) to express the grid as a set of projections: 

(27) Formalizing a metrical grid with projections 

  Selecting features  Projected features  

 a. Main projection  [+main]  [segment]  
 b. Stress projection  [+stress]  [segment], [main]  
 c. Default projection  none  all  

The three projections are shown in detail for a schematic form in (28).  

word 
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(28) Forming a grid with projections: representation for [«L L  H L] 

 [ ]–seg     [ ]+seg    [ ]–seg   
Main
projection  

 [ ]–seg   



+seg

–main    



+seg

+main    [ ]–seg   
Stress
projection  

 [ ]–seg   






+seg

–heavy
+stress
–main

  






+seg

–heavy
–stress
–main

  






+seg

+heavy
+stress
+main

  






+seg

–heavy
–stress
–main

  [ ]–seg   
Default
projection  

This representation is closely analogous to a traditional grid, we can be seen if one simply 
replaces every matrix containing [+segment] with x and mark word boundaries with brackets, as 
shown in (29).  

(29)    x  Main stress row 
 x  x  Stress row 
 x x x x Syllable row 
 L L H L   

The projection version may appear to be richer in information, since each row encodes the 
presence of higher level grid marks with its featural content. However, traditional use of grids 
has generally done more or less the same, relying on geometrical (“dominated by”) rather than 
featural descriptions. We judge that our version, which is computationally tractable, represents a 
reasonable approximation to the original intent of grid theory.  

7.3 Learning stress with grids  

We tested our learner under this scheme by having it try to learn the schematic stress pattern 
in (24). As training data, we employed all concatenations of length five or fewer of the symbol 
set { L  «L L H «H H }that obey (24) ( [L], [H], [L L], [«L H], [H L], [«H H], [L L  L], and so 
forth). With this training set, the projections of (27), and the same learning parameters as in the 
English onset simulation (§5.1), our system discovered the five constraints in (30).25  

                                                 
25 Multiple runs yielded identical constraints and weights. 

word 
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(30) Grammar learned for stress pattern (24) 

 Constraint Projection Weight Comment 

1. *# #  Main  6.68 Culminativity 
2. *[+main][+stress] Stress  9.86 End Rule Right 
3. *H Default  7.33 WEIGHT-TO-STRESS (Prince and Smolensky  

    1993:56) 
4. *# [–stress] Default 10.46 Every word must begin with a stress. 

5. *



  

   



+stress

–heavy   Default  9.34 Light syllables may be stressed only if initial. 
 

We tested this grammar by calculating the scores it derives for every possible string up to 
length five drawn from the complete inventory { L , «L, L, H, «H, H }. The grammar successfully 
assigned perfect scores to all legal forms, and penalty scores of at least 6.68 to all illegal ones. 

Moreover, our inductive baseline learner cannot learn this stress pattern. Indeed, it cannot 
even represent the grammar that would be needed: if the maximum number of matrices used in a 
constraint is n, the grammar will be defeated by words of length n + 1. Thus, when we set n at 4, 
the grammar learned failed to rule out five-syllable forms like *[H L  L  L  H], with two primary 

stresses and *[«H L  L  L  L] (with none).  

In sum, hierarchical representations permit the statement of nonlocal generalizations using 
formal principles that are stated locally. In previous work, this property has been noted as an 
important basis for developing a constrained theory of possible stress patterns (see, e.g., Hayes 
1995:34). But by the same token, the locality property is important to learning, since it makes it 
possible to discover the crucial generalizations using a learner with a sharply restricted search 
space.  

7.4 Other stress rules  

To get a clearer idea of the performance of the model in learning stress systems, we let it 
attempt to learn similar schematic simulations for the empirical typology of quantity-insensitive 
systems compiled by Gordon (2002). Gordon’s research interest was in developing an a priori 
constraint set whose factorial typology (Prince and Smolensky 1993:§3.1) would match with the 
observed natural language systems. Here, we simply use his 33 observed stress patterns as a 
criterion for our model, to determine whether they could all be learned.  

Our simulations were done along the same lines as in §7.2, except that since the languages 
in question make no distinction of syllable quantity, the terminal vocabulary was limited to just 
three elements distinguished by stress level (σ, «σ, σ). We followed Gordon in including words 
of up to eight syllables in the training sets, and in a couple cases made minor corrections to 
Gordon’s typology, making use of the cited source materials.  

For n (the maximum number of matrices in a constraint), we employed a value of 4. This 
follows our earlier claim (§4.1.3) that constraint systems permit a trade-off of length against 
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internal complexity. Since the feature system for prosodic properties (here, just {[±stress], 
[±main]}) is impoverished, a value of 4 is feasible without creating a huge search space. Setting 
n at 4 permits the system to learn constraints like [–main][ ][ ] #, which is used for deriving 
antepenultimate stress (see, for example, the entry for Georgian in Appendix A). 

The 33 grammars learned by our system contained a variety of constraints, of which the six 
most common are given in (31). 

(31) Commonly learned stress constraints 

  Constraint  Tier  Languages/33 Comment 

 1. * # # Main 33 Culminativity 
 2. *[+stress][+stress] Default 21 *CLASH (Prince 1983) 
 3. *[+main][+stress] Stress 14 End Rule Right 
 4. *[+stress][+main] Stress 13 End Rule Left 
 5. *[–stress][–stress] Default 12 *LAPSE (Prince 1983) 
 6. *[ ][+stress] # Default 12 See §9.1. 

We tested the 33 learned grammars by examining all possible strings of length 8 or less 
composed of the elements (σ, «σ, σ). This test showed that our model was entirely successful in 
distinguishing the well-formed from the ill-formed strings, assigning a perfect score to every 
legal form and a substantial penalty to every illegal one, in each language. For the full set of 
learning data and grammars, see Appendix A.  The constraints are discussed further in §9.1. 

8. A whole-language analysis: Wargamay  

The ultimate goal of our learning model is to induce a complete description of the 
phonotactics of any given language. In this section, we take a first step toward this goal by 
applying the model to data from the Australian aboriginal language Wargamay (Dixon 1981). 
Wargamay was chosen because of its interesting quantity-sensitive stress system, and because 
Dixon’s meticulous description of its phonotactics provides a baseline against which our learned 
grammar can be evaluated (see also Sherer 1994, Hayes 1995, Kager 1995, McGarrity 2002). 
The theoretical issues addressed here are similar to those discussed earlier. In particular, our 
study of Wargamay provides further evidence for the utility of multiple projections in 
phonological representations, and reveals gradient well-formedness patterns that are not fully 
accounted for by previous work on the language.  

8.1 Segments, features, and training data 

The phoneme inventory of Wargamay is given below in IPA.  
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(32)  Wargamay phonemes 

  Consonants  Labial Apico- Retro- Lamino- Velar 
   alveolar flex palatal 
Stops  b d   g 
Nasals  m n    
Trill   r 
Approximants lateral  l  
 central w   j 
 

 Vowels 
 Front Central Back 
high i, i  u, u 
low  a, a 

These phonemes have various allophones, involving contextual or free variation, as well as 
optional neutralizations, as described in Dixon (1981:16-17). We idealize somewhat in 
abstracting away from these details.  

The features we assumed are as in (33). 

(33) Feature chart for Wargamay 

 b d j g m n   r l  j w i  a u «i «a «u i a u i a u
syl – – – – – – – – – – – – – + + + + + + + + + + + + 
cons + + + + + + + + + + + – – – – – – – – – – – – – – 
appr – – – – – – – – + + + + + + + + + + + + + + + + + 
son – – – – + + + + + + + + + + + + + + + + + + + + + 
lab +    +                     
cor  + +   + +  + + +               
ant  + –   + –  + + –               
lat         – + –               
dors    +    +                  
high            + + + – + + – + + – + + – + 
back            – + – + + – + + – + + – + + 
long              – – – – – – – – – + + + 
stress              – – – + + + + + + + + + 
main              – – – – – – + + + + + + 
 

We used as our learning data the vocabulary of approximately 950 items included in 
Dixon’s grammar. We removed reduplicated forms, which Dixon treats as two separate 
phonological words, and a handful of forms that contain blatant violations of the phonotactic 
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system.26
 The set of remaining forms was considerably smaller than the learning data for our 

previous analyses and contained only one item of more than four syllables. We judged this 
corpus to be too limited to serve as input to our learner, particularly because we are interested in 
learning the stress system of the language. Therefore, we inflected each nominal and verbal root 
according to the morphological description given by Dixon (1981:27ff.). The resulting set 
contains about 6000 words and instantiates the stress pattern across a range of word lengths from 
one to six syllables. In the following sections, we discuss how the grammar learned from these 
data accounts for the segmental and stress phonotactics of Wargamay.  

8.2 Learning simulation  

The resources our learner used for Wargamay integrate those from the previous sections. We 
deployed projections for a metrical grid (as in (28)) as well as a vowel projection (§6.3).27

 Our 
Wargamay grids were amplified versions of what was used in the previous section, since instead 
of just schematic syllable strings, we had to deal with complete representations. Sidestepping the 
question of syllabification (see §9.2 for discussion), we defined a Weight projection whose 
selecting feature was [+syllabic], and whose projected features were [long], [stress], [main], and 
[segment]. Since only long-voweled syllables count as heavy in Wargamay, this sufficed to 
provide a lowest-level grid layer that could represent syllable count and weight. 

The feature matrix limit n was set at 4 for the grid projections (see §7.4) and 3 elsewhere; 
otherwise, all parameter settings for the learner were set the same as in the English onset 
simulation (§5.1).  

The system learned a large grammar, which we limited by fiat to 100 constraints. Multiple 
runs yielded essentially identical results, and we discuss only one representative run here. In 
what follows, rather than covering the whole grammar all at once, we will divide Wargamay 
phonotactics into various empirical domains, discussing the constraints learned and the system’s 
performance for each.  

8.3 Segmental phonotactics  

8.3.1 CV sequencing  

The sequencing of consonants and vowels in Wargamay phonotactics is straightforward. 
Every word must begin with a consonant, vowel sequences are not permitted, and consonant 
clusters cannot appear at the beginning or end of the word. The grammar constructed by our 
learner accounts for these restrictions economically:  

                                                 

26 These are [gilagan] ‘old woman’ ([g] cluster, derived from [gila] ‘old man’), [ijama] ‘ask’ ([m] 
cluster), [jawujbai] ‘big kangaroo’ ([nb] cluster, with the phonotactically-regular variant [jawujmbai]), and the 
loanwords [drajga] ‘tracker’ (initial cluster), [gaguu] ‘cockroach’ (final obstruent), and [lajn] ‘line’ (initial [l] and 
final cluster). 

27 As it happened, no constraints of any interest were learned on the Vowel projection. We included it for the 
sake of realism; language learners are not generally told in advance whether their language will have vowel 
harmony. 
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(34) Constraints on CV sequencing 

Constraint  Weight  Comment  

*#V  3.64  No initial vowels  
*VV  5.84  No vowel sequences  
*#[ ]C  5.73  No initial consonant clusters (given *#V)  
*CC#  2.92  No final consonant clusters  

8.3.2 Initial and final consonants  

Any consonant except [r] or [l] (the anterior approximants) can appear at the beginning of 
the word, and a subset of the sonorants ([m n  l r j]) may appear word-finally. The learned 
grammar captures these restrictions with the following constraints:  

(35) Constraints on word-initial and word-final consonants  

Constraint  Weight  Comment  

*# [+appr,+ant]  4.93  No initial [r] or [l]  
*[–lat] #  4.97  No final [r] or []  
*[–son] #  4.59  No final obstruents  
*[–syl,+back] #  3.84  No final [w] 
*[+dors] #  3.79  No final dorsals  
*[+lab] #  3.63  No final labials  
*[+appr, –ant] #  1.95  No final []  

With these constraints, the grammar penalizes all of the unattested word-initial and word-final 
consonants, and gives all of the attested word-initial consonants perfect scores. However, with 
respect to word-final position it is more restrictive than Dixon’s description. The constraint 
*[+lab]# penalizes both [b], which is not possible finally, and [m], which does occur in that 
position. Similarly, the constraint *[–lat]#, whose weight seems too high to us, penalizes both 
unattested []# and attested [r]#.  

Inspection of the learning data explains why the learner singles out [m] and [r], among the 
consonants that are attested finally, as relatively ill-formed. There are exactly four items in 
Dixon’s vocabulary that end in [m], and none of the inflectional affixes end in this consonant. 
Consequently, [m]-final words make up less than 1% of the consonant-final words in the 
inflected learning data. The numbers for [r]-final words are only slightly higher (11 vocabulary 
items, < 1% of consonant-final learning data). In comparison, all of the other attested word-final 
consonants occur in at least 5% of the consonant-final inflected words of the learning data. Thus 
the learner has selected constraints against the attested word-final consonants that are 
substantially rarer than their competitors.  

8.3.3 Intervocalic consonants and clusters  

The richest area of Wargamay’s segmental phonotactics is its inventory of intervocalic 
consonant sequences. Every single consonant is attested intervocalically, and our learned 
grammar contains no constraints against consonants in the environment / V ___ V. However, the 
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inventory of biconsonantal and triconsonantal clusters is quite restricted. Dixon identifies the 
following cluster types as possible root-internally:  

(36) Legal root-internal consonant clusters in Wargamay (Dixon 1981)  

 a.  homorganic nasal-stop sequences ([mb nd  g])  
 b.  [n l r  j] followed by [b  g m  ] (i.e., by the set of non-apical stops and nasals) 
 c.  [l r  j] followed by legal nasal-stop sequences or [w]  

Many of the clusters included in this description are unattested ([n l m  j lnb lnd ln 
lng rmb rnd rnb rn rng nb nd n ng jmb jnd j jng jw]) or occur in just one vocabulary item 
([n j rw  g w jnb). A generalization not noted by Dixon is that triconsonantal clusters 
containing non-homorganic nasal-stop sequences are marginal: [lnb ln lng rnb rn rng nb n 
ng jng] are among the unattested clusters, and [jnb jn] occur in only one or two roots. A 
generalization evidently related to (36b) that the apical sequence [nd] never occurs within a 
triconsonantal cluster (thus [lnd rnd nd jnd] are unattested in roots).  

Because roots can end in consonants, and some of the inflectional affixes are consonant-
initial, one might expect a much larger inventory of intervocalic clusters in conjugated forms 
(Dixon 22). To a large extent, this expectation is dashed by morpheme-specific alternation. For 
example, the ergative/instrumental case ending, which is [-gu] after vowels, loses its initial 
nasal and undergoes place of articulation assimilation when combined with nasal-final roots; this 
alternation, like others documented by Dixon, serves to reinforce the phonotactic pattern found 
root-internally. There are, however, clusters that appear only under inflection, namely [mg m n 
 rd ld l j lnd]. While [n l j] are accidental gaps on Dixon’s analysis, the other members 
of this set expand the phonotactic system in virtue of their initial non-apical nasals and clustering 
apical stops.  

The constraints learned by our model capture the major generalizations on Wargamay 
consonant clusters and adjudicate the marginal cases in way that is sensitive to frequency of 
occurrence.28  

(37) Constraints on intervocalic consonant clusters  

Constraint  Weight  Comment  

*[–son]C  7.27  The first member of a cluster must be a sonorant. 
*C[+appr,–syl]  6.78  The second member of a cluster must not be [r l  j].  
*[+dors][+cor]  5.38  No dorsal-coronal clusters  
*[+lab][–son,+cor]  5.35  No labial-[d ] clusters (allows [mg m])  
*[–ant][+ant]  4.83  *[  j][d n r l] (allows [ j])  
*[–appr,–ant][+lab]  4.83  *[ ][+labial] (allows [nb nm])  
                                                 

28 Recall that the learner was presented with inflected forms that do not contain any root/affix annotations. 
Further below we also discuss the constraints learned from the smaller set of roots. 
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*[+dors][+lab]  4.77  No dorsal-labial clusters  
*[+lab][+dors]  4.47  No labial-dorsal clusters  
*[–lat][+son,+ant]  3.32  *[r ][n r l]  
*CC[–syl,+son] 2.92  *CC[+sonorant]  
*[+dors][–syl,+son]  2.33  Allows [g]  
*[–appr][+son,+ant] 2.27  Allows [j] before [n]  
*[+lab][+son,–syl]  2.17  Allows [mg]  
*[–appr,–ant][+son,+dors] 2.13 *[ ] before []  
*[+back,–syl]C  1.93  No [w]-initial clusters  
*[–cons,–syl][+ant]  1.88  No glides before apico-alveolars  
*[+lab][+son,+lab]  1.20  *[mm] (allows [mb])  
 
Of the approximately 2400 two- and three- consonant clusters that are logically possible 

given the Wargamay segment inventory, these constraints assign perfect scores to only 51. The 
clusters predicted to be perfect include all of the homorganic nasal-stop sequences (36a), all of 
the clusters of type (36b), and the clusters of type (36c) that contain homorganic nasal-stop 
sequences (i.e., [rmb r rg lmb l lg mb  g jmb j jg]). In addition, the constraints 
assign perfect scores to some clusters that are not found in the learning data, namely [m rg lg 
jg g lnb ln lng]. Of these, [m lnb ln lng] are accidental gaps according to Dixon’s 
analysis.29

 The remaining clusters, [rg lg g jg], can be rationalized as projections from the 
attested triconsonantal clusters (which begin with [r l  j]) and the frequent occurrence of [g] in 
the learning data (resulting from the combination of a root ending in [] and the invariant 
dative/allative suffix [-gu]).  

The constraints penalize some consonant clusters that are found in the learning data. Many 
of these are clusters that occur only under inflection ([mg m n  l]). The others are clusters 
that occur in just one or two roots ([nm n r rw lw w jnb j]).  

In summary, there is a good numerical and qualitative fit between the clusters predicted by 
the learned grammar and Dixon’s analysis. To the extent that the two differ, this can be attributed 
either to the fact that the set of clusters found in conjugated forms is larger than the set found in 
roots, or to a greater sensitive to frequency on the part of our model. The present analysis 
captures one major generalization that was not noted by Dixon, namely that non-homorganic 
sequences are marginal post-consonantally (especially after non-lateral sonorants).  

As a further check of our model’s ability to account for the consonant cluster inventory of 
Wargamay, we allowed it to learn constraints from the uninflected vocabulary items. The result, 
as expected, was a much tighter fit to this simpler portion of the language. Of the unattested 

                                                 

29 The constraints allow non-homorganic nasal-stop clusters after [l], but not after [r  j], because [ln] is about 
10 times more frequent than any of [rn n jn]. That is, the system projects such triconsonantal clusters in proportion 
to the frequency of their biconsonantal components (cf. Pierrehumbert 1994). 
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clusters, only [m rmb] were assigned perfect scores. And of the attested clusters, only rarely-
occurring [r rw lw w nm n jnb] were penalized.  

8.3.4 Consonant-vowel combinations  

In comparison to consonant cluster phonotactics, the regularities governing consonant-vowel 
combinations in Wargamay are understudied. However, Dixon (1981) does note one restriction 
on VC sequences: [ij] occurs pre-vocalically, but not before a consonant or at the end of the 
word. Further evidence for this phonotactic comes from the phonological rule of Yotic Deletion 
(Dixon 1981: 23), which eliminates [j] in the environment [i] { C, # } . Our model learns three 
constraints to cover this part of the system:  

(38)  Constraints for yotic deletion  

 Constraint  Weight  Comment  

 *[–back,+syl][–cons][^–long,+back]  3.87  *[i][jw]C, *[i][jw][i]  
 *[+high,+syl][^+son,+cor]#  3.64 *[iu]C#, where C ∉ [nrl]  
 *[–back,+syl][^+son,+cor]#  1.79 *[i]C#, where C ∉ [nrl]  

Notice how the learner, in its rigorous pursuit of general constraints (§4.2.2), goes beyond 
Dixon’s narrow description of the [ij] phonotactic. In the learning data, there are no instances of 
[iw]C (recall that [w] cannot appear in the first position of a consonant cluster) or [i][jw][i]; the 
first constraint folds these gaps together with the ban on [ij]C. Similarly, there are only nine roots 
in the vocabulary that exemplify [uj]#; the second constraint therefore expresses a gradient 
prohibition on both [ij]# and [uj]#, while the third constraint ensures that unattested [ij]# receives 
a greater penalty. (The complement class [^+son,+cor] appears in these constraints because it is 
the largest class that contains all of the legal word-final consonants except [j].)  

8.4 Metrical phonotactics  

Wargamay stress respects a distinction between heavy and light syllables, where a heavy 
syllable is defined as one containing a long vowel, irrespective of whether it is closed. Words 
containing all light syllables exhibit a right-to-left trochaic pattern:  
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(39) Stress pattern of light-syllable words in Wargamay30
 

 σ σ   [bada]  ‘dog’ 
 σ  σ σ   [gagara]  ‘dilly bag’ 
 σ σ  «σ σ   [gia«wulu]  ‘freshwater jewfish’ 
 σ  σ σ  «σ σ   [baini«lagu]  ‘spangled drongo-ERG/INSTR’  

 σ σ  «σ σ  «σ σ   [jajim«bali«lagu]  ‘play about-INTR.PURP’  

As is evident from these examples, primary stress falls on the leftmost stressed syllable, 
following End Rule Left.  

Heavy syllables (i.e., syllables with a long vowel) are limited to word-initial position in 
Wargamay, and all heavy syllables bear primary stress. Even-syllable words containing heavies 
exhibit the same stress pattern as all-light words. But three-syllable words of this type contain a 
lapse (sequence of unstressed syllables), because polysyllables never have final stress (Dixon 
1981: 20).  

(40) Stress pattern of heavy-syllable words in Wargamay  

σ– σ   [muba]  ‘stone fish’  
σ– σ  σ   [gibaa]  ‘fig tree’ (*[giba«a], [gi«baa])  

σ– σ  «σ σ   [gua«ai]  ‘rubbish-ABL’  

There are no six-syllable words that begin with a heavy syllable in the training data and only one 
such word with five syllables. The stress pattern of this last form, [balbalilagu] ‘roll-INTR.PURP’, 
is uncertain: in particular, Dixon’s description does not make clear whether there is a lapse after 
the heavy syllable ([balbali«lagu]) or at the end of the word ([balba«lilagu]). We selected the 
former, based on pattern congruity, but will not consider such forms any further in light of our 
uncertainty about the facts.  

To summarize, Wargamay has an essentially right-to-left trochaic stress pattern, with 
primary stress on the leftmost stressed syllable. Heavy syllables are limited to initial position, 
and three-syllable words that begin with a heavy have a final lapse. The learned grammar 
contains the following constraints on stress and length:  

                                                 

30 Dixon (1981:20) explicitly describes the stress pattern of words up to five syllables. We make the 
straightforward assumption that six-syllable words follow the same alternating pattern. 
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(41) Constraints on stress and length  

 Constraint  Projection Weight  Comment  

 *# #  Main  1.75  Culminativity (top grid level)  
 *[+str][+main]  Stress  18.83  End Rule Left  
 *# #  Stress  0.94  Culminativity (middle grid level)  
 *[+str][+str]  Weight  16.01  *CLASH  
 *[–long][–str][–str]  Weight  11.97  No lapse after light  
 *[ ][+long]  Weight  9.19  No non-initial heavy  
 *[+main,–long]  Weight  7.36  No non-primary heavy  
 *#[–main][–main]  Weight  6.30  Initial window for main stress  
 *[–long,+str]#  Weight  3.40  No final stress on light 
 *[+str]#  Weight  2.71  No final stress 
 *##  Weight  0.94  No all-consonant words 
 *#[–main]#  Weight  0.94  Culminativity (lowest grid level)  

We tested this set against all possible strings of up to length six of the set of possible 
syllables [ga ga «ga «ga ga ga]. ([g] and [a] were chosen to prevent any distracting segmental 
violations.) As our test showed, the constraints of (41) assign penalties (of at least 6.23) to all 
incorrectly-stressed words and perfect scores to all correctly-stressed words except one, [ga˘], 
which received 2.78. The reason for this penalty was that there are only 15 monosyllabic words 
(all heavy) in the learning data (<1% of the total). No evidence is available concerning whether 
Wargamay speakers felt the few monosyllables of their language to be moderately aberrant.  

We experimented with learning Wargamay without projections, and discovered that without 
a Weight projection the stress pattern was inaccessible, owing to the non-locality of the vowels 
(which were assumed to be the stress-bearing units). This is essentially the same reason why 
Shona vowel harmony was unlearnable without projections (§6.2). The system could learn 
Wargamay stress without the higher grid projections (Main and Stress, needed for unbounded 
stress; §7.2), though the resulting grammar was more complicated. 

8.5 Additional phonotactics  

The 43 constraints discussed above account for all of the phonotactics of Wargamay 
discussed by Dixon (1981). The learner also selected 49 additional constraints that have no direct 
analogue in Dixon’s analysis.31 A complete list of these constraints appears in Appendix B. Here 
we discuss two types that have relatively straightforward interpretations.  

The learner selected a number of constraints that are violated by specific CV or VC 
sequences. Many of these refer to [i] or [i]; they appear to be motivated by the relative rarity of 
these vowels, which are about half as frequent in the learning data as [u a] and [u a], 
respectively. For example, the constraint *[+cons,+son][+long,–back] (weight = 2.70) is violated 

                                                 
31 Hence, there were eight constraints, not reported here, that were discovered but ultimately weighted at 

zero; see fn. 8. 
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by [mnrl][i], and indeed all such sequences in the learning data are due to one root ([ia] 
‘tie up’). Similarly, *[+long,–back][+ant,–lat] (weight = 1.38) is violated by [ir], and there are 
no such sequences in the vocabulary or learning data.  

On the one hand, constraints such as these highlight the comprehensiveness of machine-
learned phonotactic grammars, which will often contain constraints that would not be considered 
in traditional phonotactic analysis. On the other hand, their high degree of specificity may point 
to a weakness in our method of constraint selection, which does not directly take into account the 
frequency of individual segments. It may be that, given the baseline frequencies of [i], [i], [r], 
and the other segments mentioned by the constraints, the number of expected sequences is 
roughly equal to the number that is observed. This suggests a question for future research: will 
such constraints still be selected if the learner is initially supplied with a constraint against every 
possible segment (and thus with the a priori ability to use individual-segment frequencies in the 
computation of sequence expectations)?  

Finally, the fact that a small set of roots and affixes was used to construct the learning 
corpus results in a blurring of the line between phonotactic regularities and lexical entries. For 
example, there are two roots in Wargamay that contain a long vowel followed by [r] (i.e., [ara] 
‘hear, listen’ and [ura] ‘rub, wipe’). Because both of these roots have a short low vowel 
following [r], and the initial heavy syllable prevents that vowel from ever being stressed, the 
model constructs the unlikely constraint *[+long][+ant,–lat][–long,–high,–str] (weight = 3.04). 
Though some constraints at this level of detail might be eliminated by taking segment-specific 
frequency into account, as suggested above, a more straightforward way to avoid them would be 
to direct future work toward languages whose root corpora are substantially larger (and thus less 
prone to accidental gaps).  

8.6 Summary  

The present investigation of Wargamay has demonstrated the ability of our model to account 
for an entire phonotactic system. It has also sharpened Dixon’s (1981) description of the 
language’s segmental phonotactics, revealing gradient patterns in the word-final consonant 
inventory and a previously unnoticed restriction on non-homorganic nasal-stop clusters—and 
demonstrated the ability of metrical projections to account for a weight-sensitive stress pattern. 
We have suggested that limitations of the analysis are due either to the rather small vocabulary 
available for the language, or possibly to the fact that our constraint-selection method is not 
sensitive to segment-specific frequencies.  

9. General discussion  

In sum, we claim to have developed a system that can learn a non-trivial portion of the 
phonotactics of natural languages, given only a modest amount of information in the form of a 
segment inventory, a feature system, and a projection set. In so doing, we have developed 
arguments that phonological representations must include apparatus similar to the vowel tier (§6) 
and the metrical grid (§7, §8). In this final section we discuss questions that arise from our study 
and outline directions for future work.  



Hayes/Wilson Maximum Entropy Phonotactics p. 40 

9.1 Should the constraints be ranked?  

We have noticed in various places that our constraints could be made more general if they  
could be ranked, as in Optimality Theory. For instance, in Shona, our model learned three 
separate constraints (repeated below) that forbid mid vowels that fail to follow a harmony 
trigger.  

(42)  Constraint  Projection  Comment  

 a.  *a [–high, –low]  Vowel  No mid vowels after a 
 b.  *[+high][–high, –low]  Vowel  No mid vowels after i, u 
 c.  *[–low, –back] o  Vowel  No o after i, e  

In Optimality Theory, the usual analysis would be to unify these into a single constraint, 
perhaps as in (43).  

(43) UNLICENSED MID: *[ ][–high,–low]  (Vowel projection)  

This forbids any mid vowel in a non-initial syllable, and would be outranked by the constraints 
requiring harmony, *[–high, –low] i, *o u, and *e i. This captures the intuition “noninitial mid 
vowels are bad unless they are the result of harmony”.  

Ranking also frequently seems plausible as applied to stress systems. A simple example 
arises in penultimate stress languages that tolerate (and assign stress to) monosyllables. Our 
learner responds to this pattern with the constraints in (44).  

(44) Constraints for penultimate stress in a language with stressed monosyllables 

  Constraint  Projection  Comment  

 a. *# #  Main  Every word bears a main stress.  
 b. *[ ][+stress] #  Segmental  Stress may not be final in polysyllables.  

Under a ranking regime, we could simplify *[ ][+stress]# to just *[+stress]# (NONFINALITY; 
Prince and Smolensky 1993:42), by ranking it below *# #. This ranking expresses the intuition 
that final stress is avoided unless it would produce a stressless word.32 Similar cases can be 
found throughout Appendix A. 

We concede a lesser elegance in such cases, but not necessarily the scientific ground, for the 
following reasons.  

First, as Chomsky and Halle (1968:331) emphasize, we can only evaluate an acquisition 
model ((3)) by “confronting it with empirical evidence relating to the grammar that actually 
underlies the speakers performance”; they go on to say “we stress this fact because the problem 
has so often been misconstrued as one of ‘taste’ or ‘elegance”’. We agree that the question is an 

                                                 
32 The text oversimplifies, since in the standard ranking theory, OT, many Faithfulness constraints must be 

ranked as well.  In our stress example, Faithfulness to stress would have to be ranked low, DEP would have to be 
ranked high to keep final stresses from being repaired by syllabic epenthesis, and so on. 
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empirical one. Phonotactic grammars that are insufficiently general typically leave gaps: illegal 
forms that fall between the constraints and are thus misclassified as legal. However, this has not 
been a problem for the grammars learned by our system. As we have shown, testing through 
exhaustive search, these grammars effectively separate well-formed structures from ill-formed, 
with overlap limited to attested forms that are highly underrepresented. The reason is that the 
model is designed to defend actively against gaps. The process of sample creation (§3.3) 
constantly explores the space of phonotactic possibilities, looking for illegal forms that can be 
ruled out with new constraints. 

The other reason to favor general grammars is that only such grammars can account for how 
humans extend their knowledge to new forms. For instance, a grammar of English that simply 
listed the existing syllable onsets would fail to generalize to unattested onsets in the way 
observed by Scholes (1966). Because our model seeks general constraints (§4.2.2) based on 
natural classes, it captures the distinctions among the unattested clusters tested by Scholes rather 
well. Whether the model would perform even more accurately if it made use of constraint 
ranking is a matter for future work to determine. 

Moreover, there are considerable advantages arising from using a non-ranked maximum 
entropy approach instead of Optimality Theory, advantages that become clear when we examine 
existing work. First, unlike the OT phonotactic learning algorithms of Hayes (2004) and Prince 
and Tesar (2004), our model has the ability to learn gradient well-formedness (§2.3) on the basis 
of underrepresentation in the learning data. The models just cited work with heuristics designed 
to rank Markedness constraints above Faithfulness constraints wherever possible. These 
heuristics apply on an all-or-nothing basis, creating strictly ranked phonotactic grammars. Such 
grammars are “brittle,” by which we mean two things: they cannot rate forms gradiently (going 
against experimental observation; §2.3), and they cannot learn a constraint ranking if it has even 
one counterexample. Thus, for example, one single token of [pw] (e.g. Puerto Rico), would 
suffice to produce a low ranking for the English constraint against labial + [w] clusters. In 
contrast, a maximum entropy model responds flexibly and sensitively to the range of frequencies 
encountered in the learning data.  

The OT model of Pater and Coetzee (2006) does have the capacity to treat gradience, 
reacting to imperfect phonotactic generalizations by creating lexically-specific Faithfulness 
constraints. However, the statistic this model employs is just O (Observed), not O/E 
(Observed/Expected)—essentially, it ranks Markedness constraints by sorting them in increasing 
order of O. This is problematic, because constraints with identical O values but sharply different 
E values differ greatly in their effects. For example, Clements and Keyser (1983:48) propose a 
constraint whose sole purpose is to ban the onset [stw]. Since English lacks [stw], this constraint 
has an O value of zero. The E value for this constraint surely is low, since [stw] contains [tw], 
which is rare ((12)) and indeed is already penalized by a constraint ((14.24)) discovered by our 
learner. In contrast, the onset [skt] violates a very general constraint on sonority sequencing; in 
our simulation, this is the highly-weighted (14.3). This constraint also has an O of zero, but 
because it is not reducible to simpler constraints, it has a much larger E value. While we lack 
experimental data, we think it very likely that [skt] would be rated as worse than [stw]. Such 
cases suggest that O alone will not suffice to model native intuition; E is needed, too.  
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The stochastic version of OT (Boersma 1997) can capture gradient effects in phonological 
alternation (Boersma and Hayes 2001, Hayes and Londe, in press), and could in principle be 
applied to phonotactics. However, it faces a major conceptual problem, pointed out by Pater and 
Coetzee (2006): for marginal forms, stochastic ranking of the relevant Markedness and 
Faithfulness constraints predicts not marginality, but free variation with some less-marked 
alternative (for Puerto Rico these might be [porto], [pu.wrto], etc.). But often, speakers use 
forms invariantly even when they judge them to be deviant.  

In conclusion, we judge that it would be premature to rule out ranking as a basis for 
phonotactics, particularly since we do appreciate ourselves the elegance of descriptions 
attainable with ranking. We thus would find it of interest if there is a feasible mathematical 
scheme that could increase the generality of constraints through ranking, while retaining the 
quantitative robustness and accuracy of the maximum entropy system.  

9.2 Hidden structure  

In recent work Tesar and Smolensky (1998, 2000) and Tesar (2004) have addressed the role 
of “hidden structure” in phonological learning. By this they mean structure that is not detectible 
in the phonetic signal, but which arguably is phonologically present and provides order and 
systematicity to the phonological pattern. An example of hidden structure is syllable weight (e.g. 
Hayes 1995:§3.9.2): certain properties of a syllable are used to classify syllables into light and 
heavy categories, which then can be used to make sense of other patterns, particularly stress.  

Hidden structure is often language-specific; for example, different languages impose 
different criteria for what counts as a heavy syllable. This creates a “chicken-or-egg” problem: 
we need to know the language-specific criterion of syllable weight to be able to detect the stress 
pattern, but it is often the stress pattern itself that gives the main evidence for the syllable weight 
criterion. Tesar and Smolensky offer intriguing methods, based on expectation maximization and 
inconsistency detection, to discover both the hidden structure and the generalizations based on it.  

While our present model incorporates no clear cases of hidden structure, we believe it could 
be scaled up to learn it. The crucial idea is that when the right hidden structure is selected, this 
can be detected by the methods of maximum entropy. Specifically, correct hidden structure leads 
to a tighter phonotactic characterization, which increases the probability of the learning data, a 
measurable quantity under the maximum entropy approach. In future work we hope to address 
the problem in these terms.  

9.3 Relating phonotactics to alternation  

Phonological alternation occurs when morphemes take on different forms in different 
environments. It is related to phonotactics because alternations frequently are seen to enforce the 
phonotactics dynamically. For instance, the English plural morpheme /-z/ is altered to [-s] 
following voiceless obstruents, as in cups [kps], in order to avoid a violation of the phonotactic 
constraint that bans voicing disagreement in final obstruent clusters. This is the essence of the 
“conspiracy problem” (Kisseberth 1970), which has been the focus of a great deal of 
phonological theorizing, notably in Optimality Theory. A central goal of OT is to reduce the 
description of alternations to the same principles that govern phonotactics. In particular, the 
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ranking of Markedness over Faithfulness constraints results in both static restrictions on surface 
forms and alternations that respect those restrictions.  

Despite the many successes achieved in OT, we are not convinced that its method for 
linking alternations to phonotactics is correct. For instance, it is difficult to extend it to cases 
where alternation does not address phonotactic problems. Thus, for instance, in Yidi 
phonology, [u] is chosen (productively) as the epenthetic vowel following a nasal consonant, yet 
there is no evident connection between nasality and [u] in Yidi phonotactics (Hayes 1999b). 
English vowel length alternations (SPE) are phonotactically motivated insofar as they optimize 
foot structure (see Prince 1990, Hayes 1995), but the accompanying quality alternations ([i] ~ 
[], [e] ~ [æ], [a] ~ [], [o] ~ []) have no evident phonotactic basis. The candidate *prof[]nity 
for prof[e]n + ity would be more Faithful than prof[æ]nity, and phonotactically just as good. 
The point is that if humans posses some mechanism for learning alternations that are 
phonotactically unmotivated, it is difficult to understand why that mechanism would not also be 
used in learning the phonotactically motivated alternations as well.  

We suggest that the proper link between alternations and phonotactics is at the level of 
language learning: knowing the phonotactics makes it easier for the language learner to discover 
alternations, because she expects a priori that alternation should occur for this purpose. Thus, for 
example, an English-learning child who already knew the principle of voicing agreement in final 
obstruent clusters would be in a good position to understand and analyze the voicing alternation 
in the plural suffix (Albright and Hayes 2002, Hayes 2004, Prince and Tesar 2004). That is, it 
would be immediately apparent that the simple concatenation [kp]+[z] is insufficient for the 
plural of cup, owing to its phonotactic violation; and it would remain only to find the change 
needed produce the correct output [kps].  

There is experimental evidence compatible with this conception. Children evidently learn at 
least some of the phonotactics of their language very early (i.e., in infancy; see Hayes 2004 for 
literature review)—so that whatever model of acquisition we develop should in any event 
include the capacity to learn phonotactics solely from distributional data. Moreover, the 
experimental findings of Pater and Tessier (2003) suggest that phonotactic knowledge does 
indeed assist learners in finding alternation patterns. A learning system for phonological 
alternations devised by Albright and Hayes (2002, 2003) already incorporates an elementary 
capacity to use phonotactic knowledge to assist learning, as does the OT-based system of Tesar 
and Prince (to appear).  

In sum, as a tentative answer to the question of how the work described here should be 
related to the problem of phonological alternation, we suggest a long-term research program of 
learning-theoretic phonology. Specifically, we advocate an architecture for phonological theory 
that recapitulates the process by which it is learned, and learning systems that can steadily make 
use of what has been learned so far to assist at each successive stage of learning.  

9.4 How is phonological typology to be explained?  

While establishing the content of the acquisition module AM ((3) above) strikes us as the 
central theoretical challenge in phonology, there is a second question that also deserves attention: 
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why are languages the way they are? More specifically, what is the basis for the systematic 
cross-linguistic patterning, especially involving markedness, that emerges from typological 
study? Certainly an inductive-baseline learner will provide no explanations for these patterns; 
those typologically unnatural patterns that can be characterized by general and accurate 
constraints will be just as learnable as the typologically natural ones.  

One possible response to this question would be to say that, as our inductive baseline 
strategy is pursued further, it will turn out that the only effective learning strategy is one with an 
extremely rich UG—a UG that incorporates the entire constraint set for phonology (Prince and 
Smolensky 1993; Tesar and Smolensky 1998, 2000; McCarthy 2002). If so, the problem of 
typology will likely be solved, and our efforts in developing methods to extract good constraints 
from a large search space will turn out to have been merely a foil, used to provide complete 
vindication for the innate-constraint approach.  

However, there are other ways to enrich the inductive baseline model that are rather more 
conservative in their reliance on innate knowledge. For instance, language learners could make 
use of their own phonetic experience, accessing it to discover phonetically natural constraints 
grounded in articulation and perception (Hayes 1999a; Steriade 1999, 2001a, b.; Gordon 2004; 
Hayes, Kirchner and Steriade 2004). Preference for such constraints would constitute a learning 
bias in favor of phonological systems that are easier to produce or perceive, or that suffer a lesser 
recognition burden from alternation. For experimental evidence in favor of learning biases, and a 
mechanism (based on maximum entropy) whereby they could be incorporated into a general 
learning scheme, see Wilson (to appear).  

Further afield, we note that many scholars hold the view that not all typological patterns 
should be explained by UG; instead, the diachronic process of language transmission and 
mistransmission is responsible for much or all of typology. For representative statements of this 
idea, see Ohala (1981), Blevins (2004), and Myers (ms.). We think that more serious assessment 
of this position will become possible as formally implemented models of the process of language  
mistransmission (e.g. Kochetov 2002) become increasingly available.  

9.5 Directions for future work  

In expanding the approach taken here, we think an important line to follow will be to enrich 
the class of formal mechanisms it can access. In other words, while we have shown that vowel 
tiers and grids are important to phonotactic learning, we judge that our system is still far too 
close to its original inductive baseline, as there are phonological phenomena it clearly cannot 
learn unless further modified. We give two examples here.  

First, we cannot claim that our system of projections has fully solved the problem of 
learning nonlocal phonotactic dependencies. Most notably, it cannot account for consonant-to-
consonant dependencies of the kind studied in McCarthy (1979, 1988), MacEachern (1999), 
Frisch, Pierrehumbert, and Broe (2004), and Rose and Walker (2004). Simply adding a 
consonant projection is unlikely to suffice for these cases, because of two special factors. 
Consonant-to-consonant phonotactics relies heavily on similarity—those consonants that are 
most similar are the ones whose distribution is phonotactically regulated. Further, there are also 
gradient distance effects: consonants that are separated at a short distance are regulated more 
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closely than those at greater distances. Neither of these effects could be modeled merely by 
introducing a consonant projection. We anticipate that the right approach would be to incorporate 
a similarity metric into the theory (perhaps that proposed by Frisch et al.) and use it to scan the 
nearby segments.  

We also lack a theory to learn the phonotactics of neutral vowels; i.e. cases where particular 
vowels (not just consonants) are skipped over in vowel harmony. We are encouraged here by 
findings (Gordon 1999, Benus and Gafos, to appear) that in their allophonic forms, neutral 
vowels can be weakly harmonic, taking on slightly different phonetic forms depending on the 
neighboring harmonic vowels. The incorporation of such phonetic detail into the representations 
would “localize” the phonotactics on the vowel projection, perhaps sufficing to make neutral-
vowel phonotactics learnable.  

The above two lacunae in our approach are surely not the only ones: only extended study 
and modeling of many languages can show what is needed in a phonotactic learning model.  
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Appendix A: Training sets and constraints for the stress typology of Gordon (2002) 

Constraints are listed in discovery order. Abbreviations: (M) = Main tier, (S) = Stress tier; 
otherwise Default tier; [s] = [stress], [m] = [main], 1 = [+main], 2 = [+stress, –main], 0 =  
[–stress]. 

Language Stress pattern  Constraints Learned 
Araucanian 1, 01, 010, 0102, 01020, 010202, 0102020, 

01020202 
*# # (M) 5.4, *[+s]1 (S) 6.3, *[+s][+s] 6.0, *00 
6.3, *#[ ][-m] 4.9, *#[ ][ ][+s] 2.3 

Atayal 1, 01, 001, 0001, 00001, 000001, 0000001, 
00000001 

*# # (M) 6.8, *[+s][+s] (S) 2.1, *[+s][ ] 7.6 

Biangai 1, 10, 210, 2010, 22010, 202010, 2202010, 
20202010 

*# # (M) 5.1, *1[+s] (S) 6.6, *#0 5.4, *00 6.0, 
*[ ][+s]# 3.1, *[ ][+s][+s] 6.3, *[-m][ ]# 3.7 

Cavinena 1, 10, 010, 2010, 02010, 202010, 0202010, 
20202010 

*# # (M) 5.4, *1[+s] (S) 6.3, *[+s][+s] 6.5, *00 
6.3, *[ ][+s]# 3.1, *[-m][ ]# 3.7 

Cayuvava 1, 10, 100, 0100, 00100, 200100, 0200100, 
00200100 

*# # (M) 5.8, *1[+s] (S) 5.4, *[+s][+s] 2.5, 
*[+s][+s][+s] (S) .8, *[ ][+s]# 4.6, *[+s][ ][+s] 2.3, 
*000 4.5, *[ ][+s][ ]# 3.0, *[-m][ ][ ]# 3.5, 
*[+s][ ][ ][-m] 4.2 

Central Alaskan 
Yupik 

1, 01, 021, 0201, 02021, 020201, 0202021, 
02020201 

*# # (M) 4.5, *1[+s] (S) 7.0, *[-m]# 5.6, *#2 6.1, 
*[+s]2 3.4, *00 5.4, *0[ ][+s][ ] 3.6 

Chitimacha 1, 10, 100, 1000, 10000, 100000, 1000000, 
10000000 

*# # (M) 4.5, *[+s][+s] (S) 7.9, *#[-m] 7.3 

Creek 1, 01, 010, 0201, 02010, 020201, 0202010, 
02020201 

*# # (M) 6.0, *1[+s] (S) 6.7, *[+s][+s] 4.2, *#2 
2.1, *00 3.5, *#[+s][ ] 4.9, *0[ ][ ]0 3.7, *0[-m][ ]# 
2.6 

Estonian (data 
from Hint 1973) 

1, 10, 100, 1020, 10200, 10020, 102020, 
100200, 1020200, 1020020, 1002020, 
10202020, 10200200, 10020200, 10020020 

*# # (M) 4.5, *[+s]1 (S) 3.2, *#[-m] 3.6, *[+s][+s] 
6.5, *2# 5.8, *000 5.6, *[ ]1 4.4 

Garawa 1, 10, 100, 1020, 10020, 102020, 1002020, 
10202020 

*# # (M) 4.7, *[+s]1 (S) 3.1, *#[-m] 3.3, *[+s][+s] 
6.3, *2# 5.9, *[-m]00 6.3, *[ ]1 4.7 

Georgian 1, 10, 100, 0100, 20100, 200100, 2000100, 
20000100 

*# # (M) 5.6, *1[+s] (S) 3.0, *[+s][+s] 4.5, 
*[+s][+s][+s] (S) 2.9, *[ ]2 3.1, *[ ][+s]# 4.6, 
*#0[-m] 5.6, *[ ][+s][ ]# 2.5, *[-m][ ][ ]# 4.3, 
*1[ ][ ][ ] 4.0 

Gosiute 
Shoshone 

1, 12, 102, 1022, 10202, 102022, 1020202, 
10202022 

*# # (M) 4.5, *[+s]1 (S) 6.8, *#[-m] 6.1, *0# 5.6, 
*00 6.3, *[+s][+s][ ] 6.5 

Hopi 1, 10, 010, 0100, 01000, 010000, 0100000, 
01000000 

*# # (M) 5.4, *[+s][+s] (S) 7.6, *#[-m][-m] 2.0, 
*#[ ][-m][ ] 6.2, *[ ][+s]# 4.4 

Indonesian 1, 10, 010, 2010, 20010, 202010, 2002010, 
20202010 

*# # (M) 5.4, *1[+s] (S) 3.4, *[+s][+s] 6.1, 
*[ ][+s]# 3.1, *[-m][ ]# 3.7, *#[ ]2 1.3, *#0[-m] 
5.6, *000 1.5, *[ ][ ]00 5.2, *1[ ][ ] 3.7 

Ioway-Oto 1, 01, 010, 0100, 01002, 010020, 0100200, 
01002002 

*# # (M) 5.4, *[+s]1 (S) 5.8, *[+s][+s] 3.4, 
*#[ ][-m] 6.1, *[+s][ ][+s] 2.5, *000 2.7, 
*[+s][ ][ ]0 3.1, *0[ ][ ][+s] 3.4, *#[ ][ ][+s] 2.6 

Lakota 1, 01, 010, 0100, 01000, 010000, 0100000, 
01000000 

*# # (M) 5.4, *[+s][+s] (S) 7.9, *#[ ][-m] 7.3 

Lower Sorbian 1, 10, 100, 1020, 10020, 100020, 1000020, 
10000020 

*# # (M) 4.7, *[+s]1 (S) 2.5, *#[-m] 3.4, 
*[+s][+s][+s] (S) 3.1, *[+s][+s] 4.5, *2# 4.5, 
*2[ ][ ] 3.5, *[-m]0[ ]# 5.8, *[ ]1 4.8 
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Macedonian 1, 10, 100, 0100, 00100, 000100, 0000100, 
00000100 

*# # (M) 5.8, *[+s][+s] (S) 4.5, *[ ][+s]# 4.6, 
*[ ][+s][ ]# 3.3, *[+s][ ][ ][ ] 4.0, *[-m][ ][ ]# 4.0 

Malakmalak 1, 10, 010, 1020, 01020, 102020, 0102020, 
10202020 

*# # (M) 6.3, *[+s]1 (S) 6.9, *[+s][+s] 5.5, *00 
4.9, *2# 2.1, *[ ][+s]# 4.9, *0[ ][ ]0 2.8 

Maranungku 1, 10, 102, 1020, 10202, 102020, 1020202, 
10202020 

*# # (M) 4.8, *[+s]1 (S) 3.0, *#[-m] 3.3, *[+s][+s] 
6.8, *00 6.5, *[ ]1 4.3 

Nahuatl 1, 10, 010, 0010, 00010, 000010, 0000010, 
00000010 

*# # (M) 6.8, *[+s][+s] (S) 2.6, *[ ][+s]# 6.3, 
*[+s][ ][ ] 7.2 

Pacific Yupik 1, 01, 010, 0102, 01002, 010020, 0100202, 
01002002 

*# # (M) 5.4, *[+s]1 (S) 3.4, *[+s][+s] 6.2, 
*#[ ][-m] 6.1, *00# 5.0, *[+s][+s][+s][+s] (S) .8, 
*000 5.4, *[+s][ ][+s][ ] 5.8, *[ ][ ]1 3.3 

Palestinian 
Arabic 

1, 10, 201, 2010, 20201, 202010, 2020201, 
20202010 

*# # (M) 5.2, *1[+s] (S) 6.6, *[+s][+s] 5.2, *#0 
6.1, *00 4.3, *[+s][ ][ ][+s] 3.1, *[-m][-m]# 2.6 

Pintupi 1, 10, 100, 1020, 10200, 102020, 1020200, 
10202020 

*# # (M) 4.8, *[+s]1 (S) 3.0, *#[-m] 3.3, *[+s][+s] 
4.8, *2# 5.3, *0[ ][+s] 1.8, *00[ ] 2.9, *[ ]1 4.3, 
*[+s][ ]0[ ] 3.4 

Piro 1, 10, 010, 2010, 20010, 202010, 2020010, 
20202010 

*# # (M) 5.4, *1[+s] (S) 3.4, *[+s][+s] 5.9, 
*[ ][+s]# 2.9, *[-m][ ]# 3.9, *#[ ]2 2.1, *#0[-m] 
4.8, *00[-m] 5.6, *1[ ][ ] 4.1 

Quebec French 1, 21, 201, 2001, 20001, 200001, 2000001, 
20000001 

*# # (M) 4.6, *1[+s] (S) 2.3, *[-m]# 3.5, 
*[+s][+s][+s] (S) 3.7, *#0 6.1, *1[ ] 4.8, *[ ]2 4.0 

Sanuma 1, 10, 010, 2010, 20010, 200010, 2000010, 
20000010 

*# # (M) 5.3, *1[+s] (S) 6.3, *[+s][+s] 4.4, 
*[+s][+s][+s] (S) 3.2, *[ ]2 3.4, *[ ][+s]# .9, 
*[-m][ ]# 7.1, *#0[-m] 5.8 

Southern Paiute 1, 10, 010, 0120, 01020, 010220, 0102020, 
01020220 

*# # (M) 5.4, *[+s]1 (S) 6.3, *00 6.1, *2# 2.3, 
*#[+s][+s] .5, *[+s][+s][+s] 1.1, *#[ ][-m][ ] 3.6, 
*[ ][+s]# 4.9, *[+s][+s][ ][ ] 5.7, *#[+s][ ][ ] 3.0 

Tauya 1, 21, 201, 2201, 20201, 220201, 2020201, 
22020201 

*# # (M) 4.8, *1[+s] (S) 3.2, *[-m]# 3.2, *#0 5.6, 
*00 6.3, *[ ][+s][+s] 6.5, *1[ ] 4.4 

Udihe 1, 01, 201, 2001, 20001, 200001, 2000001, 
20000001 

*# # (M) 4.6, *1[+s] (S) 2.5, *[+s][+s] 4.4, 
*[+s][+s][+s] (S) 3.4, *[-m]# 3.5, *[ ]2 3.7, 
*#0[-m] 6.0, *1[ ] 4.9 

Urubu Kapor 1, 01, 201, 0201, 20201, 020201, 2020201, 
02020201 

*# # (M) 4.8, *1[+s] (S) 3.3, *[+s][+s] 4.9, *[-m]# 
2.9, *00 5.2, *[+s][ ][ ][+s] 2.4, *1[ ] 4.0, *0[ ][ ]# 
1.8 

Walmatjari 
(data from 
Hudson 1978) 

1, 10, 100, 1020, 10200, 10020, 100200, 
100020, 1000200, 1000020, 10000200, 
10000020 

*# # (M) 4.1, *[+s]1 (S) 6.0, *#[-m] 6.9, 
*[+s][+s][+s] (S) 6.0, *[+s][+s] 4.7, *2# 4.1, 
*00[ ]# 6.1 

Winnebago 1, 01, 001, 0010, 00102, 001002, 0010020, 
00100202 

*# # (M) 5.4, *[+s]1 (S) 5.8, *[+s][+s] 5.8, 
*#[+s][ ] 2.7, *[-m]00 2.6, *[+s][+s][+s][+s] (S) 
.1, *00# 4.5, *#[ ][ ][-m] 5.9, *[+s][ ][+s][ ] 2.3, 
*[+s][ ][ ]0 3.6, *#[ ][-m]# 2.4 
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Appendix B: Constraints for Wargamay not discussed in the text 

All constraints listed were discovered on the Default projection. 

Constraint  Weight  

*[+high,–main,+str][–lat] 6.04  
*[–main,+str][–son,+lab] 5.39  
*[+son,+dors][–main,+str] 5.35  
*[+ant,–lat][+high,–main,+str][–cons] 4.67  
*[+high,+back,–main,+str][+son,+lab] 4.61  
*[+son,+lab][–back,–main,+str] 4.51  
*[–main][–son,+ant][+high,–main] 4.49  
*[+high,+bk,–main][–son][–back,–main] 4.49  
*V[+son,+dors][–back] 4.49  
*[–main,+str][–son,+ant] 4.46  
*[+son,–app][–long,+back,–str] # 4.44  
*[–syl][+son,+cor][+back] 4.42  
*[–app][–syl][–long] 4.37  
*[–back][+high,–main,+str] 4.33  
*[–main,+str][–cons][+back] 4.32  
*[+app,–syl][+ant][+str] 4.22  
*[+high,+back,–main,+str][–son,–ant] 3.94  
*[–back,+syl][–cons][–long,+back] 3.93  
*[+high,+syl][+son,+cor]# 3.70  
*[–app][+son][+back,–main] 3.66  
*[+high,+back][–app] # 3.59  
*[–back,–main][+back] 3.52  
*# [+ant][–long,+back] 3.45  
*V[+back][–long,+back] 3.04  
*[+long][+ant,–lat][–long,–high,–str] 2.88  
*[+cons,+son][+long,–back] 2.86  
*[–app][+son][+high,+str] 2.83  
*[–str][+ant][+back,–str] 2.76  
*[–high][–cons][+ant] 2.71  
*[–main][+back][–long,+back,+str] 2.68  
*# [+cons,+app][–long,+back] 2.65  
*[+back][+long][+app] 2.53  
*[–cons][+long,+high][–app,+cor] 2.51  
*[+long][+lat][+son,–syl] 2.49  
*[+son,+cor][+long] 2.42  
*[–son,–ant][+long][–cons] 2.39  
*[–back][+high,+syl][–cons] 2.17  
*[–back][+long,–high] 1.99  
*[–back,+syl][+son,+cor]# 1.82  
*[+long,–back][+son,+lab] 1.80  
*[–back][+long][+cons,+son] 1.74  
*[+long,+high][–cons][–long,–back,–str] 1.65  
*[–syl][+son,+cor][+high,+back] 1.59  
*[+back]V[+back] 1.53  
*[+long,–back][–son,+ant] 1.53  
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*[–syl][+son,+cor][+high,+main] 1.43  
*[+long,–back][+ant,–lat] 1.40  
*[+str][+lat] # 1.34  
*[+long][+back] 1.31  
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